Dublin Institute for Advanced Studies contact@dias.ie 00353 (0) 16140100

Speakers and Programme

Speakers:

The speakers are:  Dr. Nilanjana Datta (Cambridge), Dr Hans-Peter Eckle (Universität Ulm), Prof. Henrik Johannesson (Gothenburg), Prof. Simon Ruijsenaars (Leeds, UK) and Prof. Mark M. Wilde (Louisiana State University).

 

Programme:  

Timetable

 

Lecture Notes and Abstracts:

(Students are advised to familiarise themselves with these beforehand).

 

Dr. Nilanjana Datta :

Entropy and Information : lecture notes and for more details (Lecture 1- Lecture 5) on:  http://www.qi.damtp.cam.ac.uk/node/223
 
Lecture I : Basics of Classical Information Theory, Shannon entropy, relative entropy, data compression.
 
Lecture II: Asymptotic Equipartition Property, Typical Sequence theorem, Shannon’s Source Coding Theorem.
 
Lecture III: Entropies of pairs of random variables, transmission of information through a noisy channel, Shannon’s Noisy Channel Coding Theorem.

For more details: see lecture notes (Lecture 1- Lecture 5) on:  http://www.qi.damtp.cam.ac.uk/node/223

 

Dr Hans-Peter Eckle:

Exact solution of simple models for quantum information : abstract and recommended reading

 

Prof. Henrik Johannesson:

Quantum phase transitions in integrable systems: a quantum information perspective: abstract

 

Prof. Simon Ruijsenaars :

Quantum integrable systems of Calogero-Moser and Toda type : abstract

 

Prof. Mark M. Wilde : 

Lecture 1: Quantum information processing basics including qubits, Bloch sphere, reversible evolution, measurement, composite quantum systems, no-cloning theorem, entanglement and the CHSH game : lecture notes

Lecture 2: Quantum teleportation and super-dense coding : lecture notes

Lecture 3: Mixed quantum states and channels including density operators, reversible evolution and measurement of mixed states, POVM formalism, partial trace, noisy channels and the Choi-Kraus theorem, examples of noisy channels : lecture notes
 
Lecture 4: Quantum typicality and quantum data compression : lecture notes

Lecture 5: Classical communication and sequential decoding : lecture notes

Lecture 6: Quantum error correction and quantum capacity : lecture notes