24 June 2013 – Seminar: SEG‘s 2013 Honorary Lecturer for Europe
When: 5pm on Monday, 24 June 2013
Where: DIAS, Geophysics Section, 5 Merrion Square, Dublin 2, (library)
Speaker: Marion Jegen (Geomar/Helmholtz Centre for Ocean Research, Kiel, Germany)
Title: Joint Inversion – The Way Forward to a Comprehensive Earth Model
Abstract:
Exploration of the subsurface requires the derivation of an Earth model. This is commonly done by acquiring a geophysical data set on the surface, such as seismics, electromagnetic, and/or gravimetric data, which are then converted to a velocity, electrical resistivity, or density model. The conversion of data into an Earth model is termed inversion and is, in principle, a statistical search of a model for which the predicted data fits the observed data. There is, for any geophysical method, always a large number of models with responses that fit measured data, because a) any data set is scarce and associated with errors; b) any modeling routine is hampered by assumptions; c) sheer physics of the chosen methodology might make it impossible to resolve certain structures in question.
Acquiring more than one geophysical data set and gaining additional constraints and complementary information on the Earth model is an obvious way to narrow the possible solutions. Multicomponent geophysical data acquisition has become routine, especially because exploration is forced nowadays to move into geologically more complex regions where single-method exploration is insufficient (i.e. subsalt and sub-basalt exploration).
The question then arises of how to combine complementary content of data sets and identify a reduced subset of models required to fit all data sets. Current practice is to compare final or intermediate results from single data-type inversions. However, given ambiguities in single-method inversion, this is often a difficult process and cumbersome even for experienced interpreters. An obviously more efficient path is to define a new inversion process which combines single inversion streams to a common one and searches right from the start only for models which fit all data sets simultaneously. This type of inversion, called joint inversion, seems a promising path toward a comprehensive Earth model, which is actively researched in academia and industry.
In this presentation, I will give an overview of how joint-inversion problems are formulated and solved. The concepts are obviously target- and method-dependent. For some problems, a safe guess at the physical rock parameter relationship between f.ex. electrical resitivity, seismic velocity, and/or density can be made, which allows a direct and strong coupling of the different methods. For other problems, such a relationship is not known or might change significantly over the structure (f.ex. in subsalt exploration). A better approach seems to be then a structural coupling, requiring that all models considered in the search have a similar structure.
The application and benefit of joint inversion is illustrated through case studies in subsalt/sub-basalt exploration and quantification of gas hydrate and gas in marine sediments.
Leave a Comment
Last Updated: 23rd May 2018 by Louise Collins
2013-06-24 – Seminar: Marion Jegen
24 June 2013 – Seminar: SEG‘s 2013 Honorary Lecturer for Europe
When: 5pm on Monday, 24 June 2013
Where: DIAS, Geophysics Section, 5 Merrion Square, Dublin 2, (library)
Speaker: Marion Jegen (Geomar/Helmholtz Centre for Ocean Research, Kiel, Germany)
Title: Joint Inversion – The Way Forward to a Comprehensive Earth Model
Abstract:
Exploration of the subsurface requires the derivation of an Earth model. This is commonly done by acquiring a geophysical data set on the surface, such as seismics, electromagnetic, and/or gravimetric data, which are then converted to a velocity, electrical resistivity, or density model. The conversion of data into an Earth model is termed inversion and is, in principle, a statistical search of a model for which the predicted data fits the observed data. There is, for any geophysical method, always a large number of models with responses that fit measured data, because a) any data set is scarce and associated with errors; b) any modeling routine is hampered by assumptions; c) sheer physics of the chosen methodology might make it impossible to resolve certain structures in question.
Acquiring more than one geophysical data set and gaining additional constraints and complementary information on the Earth model is an obvious way to narrow the possible solutions. Multicomponent geophysical data acquisition has become routine, especially because exploration is forced nowadays to move into geologically more complex regions where single-method exploration is insufficient (i.e. subsalt and sub-basalt exploration).
The question then arises of how to combine complementary content of data sets and identify a reduced subset of models required to fit all data sets. Current practice is to compare final or intermediate results from single data-type inversions. However, given ambiguities in single-method inversion, this is often a difficult process and cumbersome even for experienced interpreters. An obviously more efficient path is to define a new inversion process which combines single inversion streams to a common one and searches right from the start only for models which fit all data sets simultaneously. This type of inversion, called joint inversion, seems a promising path toward a comprehensive Earth model, which is actively researched in academia and industry.
In this presentation, I will give an overview of how joint-inversion problems are formulated and solved. The concepts are obviously target- and method-dependent. For some problems, a safe guess at the physical rock parameter relationship between f.ex. electrical resitivity, seismic velocity, and/or density can be made, which allows a direct and strong coupling of the different methods. For other problems, such a relationship is not known or might change significantly over the structure (f.ex. in subsalt exploration). A better approach seems to be then a structural coupling, requiring that all models considered in the search have a similar structure.
The application and benefit of joint inversion is illustrated through case studies in subsalt/sub-basalt exploration and quantification of gas hydrate and gas in marine sediments.
Category: News
Meet the Judges of our "Reach for the Stars" Astrophotography competition! @petertgallagher is Head of @DIASAstronomy & has spent the past two decades studying the Sun its impacts on the Earth. To learn more and submit an entry see dias.ie/reachforthesta… #DIASdiscovers
She has over 15 years’ experience working in PR and communications and has wide-ranging experience of providing strategic communications support to organisations. Learn more about the competition and submit an entry 👉dias.ie/reachforthesta… #DIASdiscovers #astrophotography
Meet the Judges of our "Reach for the Stars" Astrophotography competition! @MartinaPQuinn is the Founder & Managing Director of @helloalicepr.
Want to learn more about what's happening on Mars? Check out our public lecture from November delivered Dr John Clinton and titled MarsQuakes! (5/5) youtu.be/_Lp0oLJ8Ahs
And then this Thursday @NASAMars Perseverance rover reaches Mars, which will try to land in a near equatorial crater called Jezero. Here you can see a possible route around the crater. (4/5)
Last Wednesday, the day the UAE revealed their first image of Mars, China's National Space Administration's Tianwen-1 arrived at Mars. This carries a rover which will be despatched to the surface in the coming months. (3/5) bbc.com/news/science-e…
First up is the @uaespaceagency's Hope mission entered orbit this day last week. It is the first inter-planetary mission by the UAE, and will stay in a wide orbit for one Martian year or two earth years to study climate and weather. (2/5)
It's a busy month over at our planetary neighbour Mars. Three missions headed there have or will enter orbit this month. Why so many at one time? They were timed to launch when the distance between the Earth and Mars was relatively short. (1/5)
#WomeninResearch
Looking for some #MondayMotivation? We are delighted to share this short video by @CClearych who is the O'Donovan Scholar at the School of Celtic Studies. Here she describes the amazing inputs of Eleanor Knott MRIA. youtu.be/Zfvw0KZbFTk @SCSLibrary @RIAdawson
Another addition to this DIAS managed online resource twitter.com/DIAS_ISOS/stat…