Quantum Physics: Fields, Particles and Information Geometry 22 - 26 January 2018, DIAS, Dublin In honour of A. P. Balachandran, on the occasion of his 80th birthday.

Nonassociative differential geometry and gravity with non-geometric fluxes

Paolo Aschieri

Università del Piemonte Orientale, Alessandria, Italy

Joint work with Marija Dimitrijević Ćirić and Richard Szabo

January 25, 2018

Geometry of fluxes

Example: electron in a strong magnetic field *B*. In this regime, due to the minimal coupling with the background gauge field, the dynamics takes place in a reduced phase space. It coincides with the electron coordinates thus the electron coordinates become noncommutative: $[x, y] = \frac{i\hbar}{B}$.

Similarly open strings endpoints test a noncommutative space (brane) in the presence of a nonvanishing constant B-field flux.

Yang-Mills theory captures the low energy effective *D*-brane action. In the presence of a *B*-field this suggested a description in terms of Noncommutative Yang-Mills theory: YM-theory on the *nongeometric background* $[x, y] = i\theta$.

The study of Yang-Mills (and Born-Infeld) theories in these noncommutative spaces has proven very fruitful.

-it provides an exact low energy *D*-brane effective action (in a given $\alpha' \rightarrow 0$ sector of string theory where closed strings decouple).

-it allows to realize string theory T-duality symmetry within the low energy physics of Noncommutative (Super) Yang-Mills theories [Connes, Douglas, Schwartz 1997].

Key example: NC-torus

NC plane $[x^i, x^j] = \theta^{ij} \Rightarrow$ NC torus coordinates $U^i = e^{ix^i}$.

NCSYM: U(n), θ^{ij} , G_{ij} , g_{SYM} , M first Chern number $\frac{1}{2\pi}\int TrF$.

NCSYM': $U(n'), \theta'^{ij}, G'_{ij}, g'_{SYM}, M'$.

Key example: NC-torus

NC plane $[x^i, x^j] = \theta^{ij} \Rightarrow$ NC torus coordinates $U^i = e^{ix^i}$. NCSYM: $U(n), \theta^{ij}, G_{ij}, g_{SYM}, M$ first Chern number $\frac{1}{2\pi} \int TrF$. NCSYM': $U(n'), \theta'^{ij}, G'_{ij}, g'_{SYM}, M'$.

Let
$$\Lambda = \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D} \end{pmatrix} \in SO(d, d, Z)$$
, then

$$\begin{split} \theta' &= (\mathcal{A}\theta + \mathcal{B})(\mathcal{C}\theta + \mathcal{D})^{-1}, \\ G'^{ij} &= (\mathcal{C}\theta + \mathcal{D})^{i}_{k}(\mathcal{C}\theta + \mathcal{D})^{j}_{l}G^{kl}, \\ g'^{2}_{SYM} &= \sqrt{|\det(\mathcal{C}\theta + \mathcal{D})|} g^{2}_{SYM}, \\ \begin{pmatrix} n' \\ M' \end{pmatrix} &= S(\Lambda) \begin{pmatrix} n \\ M \end{pmatrix} \quad \text{spinor representation } S(\Lambda) \end{split}$$

The rank and the bundle topology of the NCSYM theory determine the D0 and D2 brane charges in IIA string theory. Noncommutativity θ^{ij} captures the presence of nontrivial NS B field. The action of these SO(d, d, Z) rotations matches the T-duality transformation on metric, string coupling constant, D-brane chages, NS field of type IIA string theory.

Closed Strings

T-dualities for closed strings on \mathbb{T}^d in the presence of a constant 3-form *H*-flux suggest the following chain of fluxes:

$$H_{abc} \xrightarrow{T_a} f^a{}_{bc} \xrightarrow{T_b} Q^{ab}{}_c \xrightarrow{T_c} R^{abc}$$

- H and f-fluxes on Riemannian manifolds,

- Q-flux on T-fold (global description involves T-duality transformations as transition functions between local trivializations of tangent bundle);

-*R*-flux *non geometric background.* Expected global description in terms of noncommutative and nonassociative structures

[Lüst, Blumenhagen, et al; Mylonas, Schupp, Szabo]

Closed Strings

T-dualities for closed strings on \mathbb{T}^d in the presence of a constant 3-form *H*-flux suggest the following chain of fluxes:

$$H_{abc} \xrightarrow{T_a} f^a{}_{bc} \xrightarrow{T_b} Q^{ab}{}_c \xrightarrow{T_c} R^{abc}$$

- H and f-fluxes on Riemannian manifolds,

- Q-flux on T-fold (global description involves T-duality transformations as transition functions between local trivializations of tangent bundle);

- *R*-flux non geometric background. Expected global description in terms of noncommutative and nonassociative structures

[Lüst, Blumenhagen, et al; Mylonas, Schupp, Szabo]

In *R*-flux background closed strings are expected to probe the phase space

 $[x^{\mu}, x^{\nu}] = \frac{i\ell_s^3}{3\hbar} R^{\mu\nu\rho} p_{\rho}, \quad [x^{\mu}, p_{\nu}] = i\hbar \delta^{\mu}{}_{\nu} \quad \text{and} \quad [p_{\mu}, p_{\nu}] = 0,$ with spacetime nonassociativity:

 $[x^{\mu}, x^{\nu}, x^{\rho}] := [x^{\mu}, [x^{\nu}, x^{\rho}]] + [x^{\nu}, [x^{\rho}, x^{\mu}]] + [x^{\rho}, [x^{\mu}, x^{\nu}]] = \ell_s^3 R^{\mu\nu\rho}.$

Closed Strings

T-dualities for closed strings on \mathbb{T}^d in the presence of a constant 3-form *H*-flux suggest the following chain of fluxes:

$$H_{abc} \xrightarrow{T_a} f^a{}_{bc} \xrightarrow{T_b} Q^{ab}{}_c \xrightarrow{T_c} R^{abc}$$

- H and f-fluxes on Riemannian manifolds,

- Q-flux on T-fold (global description involves T-duality transformations as transition functions between local trivializations of tangent bundle);

- R-flux non geometric background. Expected global description in terms of noncommutative and nonassociative structures

[Lüst, Blumenhagen, et al; Mylonas, Schupp, Szabo]

In *R*-flux background closed strings are expected to probe the phase space

 $[x^{\mu}, x^{\nu}] = \frac{i\ell_s^3}{3\hbar} R^{\mu\nu\rho} p_{\rho}, \quad [x^{\mu}, p_{\nu}] = i\hbar \delta^{\mu}{}_{\nu} \quad \text{and} \quad [p_{\mu}, p_{\nu}] = 0,$ with spacetime nonassociativity:

 $[x^{\mu}, x^{\nu}, x^{\rho}] := [x^{\mu}, [x^{\nu}, x^{\rho}]] + [x^{\nu}, [x^{\rho}, x^{\mu}]] + [x^{\rho}, [x^{\mu}, x^{\nu}]] = \ell_s^3 R^{\mu\nu\rho}.$

Low energy effective action for closed strings includes the gravitational action.

- Nonassociative Gravity as low energy action in the presence of *R*-flux?
- T-duality transformations act within nonassociative GR?

This motivates the study of:

• A gravity theory on the phase space \mathcal{M} of coordinates $X^A = (x^{\mu}, p_{\nu})$.

• The induced Einstein vacuum equations on the nonassociative spacetime of the coordinates x^{μ} .

[P.A, Dimitrijevic, Szabo, arXiv:1710.11467]

This motivates the study of:

• A gravity theory on the phase space \mathcal{M} of coordinates $X^A = (x^{\mu}, p_{\nu})$.

• The induced Einstein vacuum equations on the nonassociative spacetime of the coordinates x^{μ} .

[P.A, Dimitrijevic, Szabo, arXiv:1710.11467]

A key observation is that the nonassociative R-flux phase space can be obtained via Drinfeld 2-cochain twist deformation of commutative phase space.

-This work is then a nontrivial nonassociative generalization of the NC differential geometry and *Riemannian geometry* constructed in [Wess Group]. -For an earlier study toward this goal see [Blumenhagen, Fuchs]. -This work is also an explicit (and self contained) example of NA differential geometry as developped for arbitrary 2-cochain twist in [Barnes, Schenkel, Szabo].

Drinfeld twist

Let Ξ be the Lie algebra of vector fields on phase space \mathcal{M} . Let $U\Xi$ be the universal enveloping algebra (of sums of products of vector fields). It is a Hopf algebra, i.e. a **symmetry algebra**, with, for all $u \in \Xi$,

$$\Delta(u) = u \otimes 1 + 1 \otimes u$$
, $\varepsilon(u) = 0$, $S(u) = -u$

Consider the twist [Mylonas, Schupp, Szabo]

$$\mathcal{F} = \exp\left(-\frac{i\hbar}{2}\left(\partial_{\mu}\otimes\tilde{\partial}^{\mu}-\tilde{\partial}^{\mu}\otimes\partial_{\mu}\right)-\frac{i\ell_{s}^{3}}{12\hbar}R^{\mu\nu\rho}(p_{\nu}\partial_{\rho}\otimes\partial_{\mu}-\partial_{\mu}\otimes p_{\nu}\partial_{\rho})
ight)$$

built with the vector fields $\partial_{A} = \left(\frac{\partial}{\partial x^{\mu}}=\partial_{\mu},\frac{\partial}{\partial p_{\mu}}=\tilde{\partial}^{\mu}\right)$ and the R-flux.

The Hopf algebra $U \equiv$ is twist deformed in the quasi-Hopf algebra $U \equiv^{\mathcal{F}}$ with same product, ε and S of $U \equiv$, but new coproduct, for all $\xi \in U \equiv$,

$$\Delta_{\mathcal{F}}(\xi) = \mathcal{F}\Delta(\xi)\mathcal{F}^{-1}$$

in particular $\Delta_{\mathcal{F}}(\partial_{\mu}) = 1 \otimes \partial_{\mu} + \partial_{\mu} \otimes 1$ and

$$\Delta_{\mathcal{F}}(\tilde{\partial}^{\mu}) = 1 \otimes \tilde{\partial}^{\mu} + \tilde{\partial}^{\mu} \otimes 1 + i\kappa R^{\mu\nu\rho} \partial_{\nu} \otimes \partial_{\rho} , \quad \kappa \equiv \ell_s^3/6\hbar$$

 $U \equiv^{\mathcal{F}}$ is a quasi-Hopf algebra because while $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$, for $\Delta_{\mathcal{F}}$ we have

$$\Phi (\Delta_{\mathcal{F}} \otimes id) \Delta_{\mathcal{F}}(\xi) = (id \otimes \Delta_{\mathcal{F}}) \Delta_{\mathcal{F}}(\xi) \Phi$$

where the associator Φ is given by

$$\Phi = \exp\left(\frac{\ell_s^3}{6} R^{\mu\nu\rho} \partial_\mu \otimes \partial_\nu \otimes \partial_\rho\right) =: \phi_1 \otimes \phi_2 \otimes \phi_3$$

Gravity is based on general covariance under infinitesimal diffeomorphisms, i.e. under the Lie algebra of vector fields (equivalently $U\Xi$). We construct a NC/NA Riemannian geometry covariant under the quasi Hopf algebra $U\Xi^{\mathcal{F}}$.

Key point:

Consider commutative algebras that carry a representation of $U\Xi$; deform these algebras so that they carry a representation of $U\Xi^{\mathcal{F}}$.

Example: Algebra of functions $\longrightarrow A_{\star} \equiv NC/NA$ algebra of functions. Notation: $\mathcal{F} = \overline{f}^{\alpha} \otimes \overline{f}_{\alpha}$

$$f \star g = \overline{\mathsf{f}}^{\alpha}(f) \cdot \overline{\mathsf{f}}_{\alpha}(g)$$

NC controlled by the \mathcal{R} -matrix $\mathcal{R} = \mathcal{F}^{-2}$,

$$f \star g := \bar{R}^{\alpha}(g) \star \bar{R}_{\alpha}(f) =: {}^{\alpha}g \star {}_{\alpha}f.$$

NA controlled by the associator Φ ,

$$(f \star g) \star h = {}^{\phi_1} f \star ({}^{\phi_2} g \star {}^{\phi_3} h) .$$

 $U \equiv^{\mathcal{F}}$ -covariance of *-product: let $\Delta_{\mathcal{F}}(\xi) = \xi_{(1)} \otimes \xi_{(2)}$ then $\xi(f \star g) = \xi_{(1)} f \star \xi_{(2)} g$

This *-product on coordinates functions gives the *R*-flux algebra: $[x^{\mu}, x^{\nu}]_{\star} = 2i\kappa R^{\mu\nu\rho} p_{\rho}, \qquad [x^{\mu}, p_{\nu}]_{\star} = i\hbar \delta^{\mu}{}_{\nu} \qquad \text{and} \qquad [p_{\mu}, p_{\nu}]_{\star} = 0$

Tensor algebra \mathcal{T}_{\star}

$$\tau \otimes_{\star} \tau' = \bar{\mathsf{f}}^{\alpha}(\tau) \otimes \bar{\mathsf{f}}_{\alpha}(\tau'),$$

Exterior algebra Ω^{\bullet}_{\star}

$$\theta \wedge_{\star} \theta' = \overline{\mathsf{f}}^{\alpha}(\theta) \wedge \overline{\mathsf{f}}_{\alpha}(\theta').$$

In particular we have the A_{\star} -bimodules of forms Ω_{\star} and of vector fields Ξ_{\star} .

$$\begin{aligned} f \star d\tilde{x}_{\mu} &= f \cdot d\tilde{x}_{\mu} = d\tilde{x}_{\mu} \star f , \\ f \star dx^{\mu} &= f \cdot dx^{\mu} - \frac{i\kappa}{2} R^{\mu\nu\rho} (\partial_{\nu}f) \cdot d\tilde{x}_{\rho} = dx^{\mu} \star f - d\tilde{x}_{\rho} \star i\kappa R^{\mu\nu\rho} (\partial_{\nu}f) \\ f \star \partial_{\mu} &= f \cdot \partial_{\mu} = \partial_{\mu} \star f , \\ f \star \tilde{\partial}^{\mu} &= f \cdot \tilde{\partial}^{\mu} + \frac{i\kappa}{2} R^{\mu\nu\rho} (\partial_{\nu}f) \cdot \partial_{\rho} = \tilde{\partial}^{\mu} \star f + \partial_{\rho} \star i\kappa R^{\mu\nu\rho} (\partial_{\nu}f) \end{aligned}$$

Pairing between forms and vectors $\langle , \rangle : \Omega \times \Xi \to C^{\infty}(\mathcal{M})$ is deformed to

$$\langle , \rangle_{\star} := \langle , \rangle \circ \mathcal{F}^{-1} : \Omega_{\star} \times \Xi_{\star} \to A_{\star} ,$$
 (1)

explicitly

$$\langle \omega, u \rangle_{\star} = \left\langle \, \bar{\mathsf{f}}^{\,\alpha}(\omega) \,, \, \bar{\mathsf{f}}_{\,\alpha}(u) \, \right\rangle \,.$$
 (2) pair

Covariance under $U \Xi^{\mathcal{F}}$: $\xi \langle \omega, u \rangle_{\star} = \langle \xi_{(1)} \omega, \xi_{(2)} u \rangle_{\star}$.

The pairing generalizes to

$$\langle \ , \ \rangle_{\star} : \Omega_{\star} \wedge_{\star} \Omega_{\star} \times \Xi \wedge_{\star} \Xi \to A_{\star} .$$

Pairing between forms and vectors $\langle , \rangle : \Omega \times \Xi \to C^{\infty}(\mathcal{M})$ is deformed to

$$\langle , \rangle_{\star} := \langle , \rangle \circ \mathcal{F}^{-1} : \Omega_{\star} \times \Xi_{\star} \to A_{\star} ,$$
 (3)

explicitly

$$\langle \omega, u \rangle_{\star} = \left\langle \bar{\mathsf{f}}^{\alpha}(\omega), \bar{\mathsf{f}}_{\alpha}(u) \right\rangle.$$
 (4) pair

Covariance under $U \Xi^{\mathcal{F}}$: $\xi \langle \omega, u \rangle_{\star} = \langle \xi_{(1)} \omega, \xi_{(2)} u \rangle_{\star}$.

The pairing generalizes to

$$\langle , \rangle_{\star} : \Omega_{\star} \wedge_{\star} \Omega_{\star} \times \Xi \wedge_{\star} \Xi \to A_{\star} .$$

Notice that $\langle \omega, \rangle_{\star}$ is a right A_{\star} -linear map $\Xi_{\star} \to A_{\star}$. More in general we consder right A_{\star} -linear maps betweeen A_{\star} -bimodules

 $L: V_{\star} \to W_{\star}$

(e.g. V_{\star}, W_{\star} star-tensor products of Ω_{\star} and Ξ_{\star}).

Action of $U \equiv^{\mathcal{F}}$ on $L : V_{\star} \to W_{\star}$ is the **adjoint** action:

$${}^{\xi}L(v) := ({}^{\xi}L)(v) = {}^{\xi(1)}(L({}^{S(\xi(2))}v))$$

so that we have **covariance**: $\xi(L(v)) = \xi(1)L(\xi(2)v)$.

Composition of two right A_{\star} -linear maps is defined by

$$L_1 \bullet L_2 := {}^{\phi_1}L_1 \circ {}^{\phi_2}L_2 \circ {}^{\phi_3}$$

so that we have **covariance**: $\xi(L_1 \bullet L_2) = \xi_{(1)}L_1 \bullet \xi_{(2)}L_2$ moreover $L_1 \bullet L_2$ is again right A_* -linear.

Summary: we defined $\star, \otimes_{\star}, \wedge_{\star}, \langle, \rangle_{\star}, \bullet$. They are invariant under $U \equiv^{\mathcal{F}}$.

Composition of two right A_{\star} -linear maps is defined by

$$L_1 \bullet L_2 := {}^{\phi_1}L_1 \circ {}^{\phi_2}L_2 \circ {}^{\phi_3}$$

so that we have **covariance**: $\xi(L_1 \bullet L_2) = \xi_{(1)}L_1 \bullet \xi_{(2)}L_2$ moreover $L_1 \bullet L_2$ is again right A_* -linear.

Summary: we defined \star , \otimes_{\star} , \wedge_{\star} , \langle , \rangle_{\star} , \bullet . They are invariant under $U \equiv \mathcal{F}$.

More differential geometry:

Connection

A connection is a linear map

$$\nabla^{\star} : \Xi_{\star} \longrightarrow \Xi_{\star} \otimes_{\star} \Omega_{\star}$$
$$u \longmapsto \nabla^{\star} u = u^{i} \otimes_{\star} \omega_{i} ,$$

where $u^i \otimes_{\star} \omega_i \in \Xi_{\star} \otimes_{\star} \Omega_{\star}$, which satisfies the right Leibniz rule

$$\nabla^{\star}(u \star f) = \left(\bar{\phi}_{1} \nabla^{\star}(\bar{\phi}_{2} u)\right) \star \bar{\phi}_{3} f + u \otimes_{\star} \mathrm{d}f$$

Coefficients of the connection along a vector field ∂_A : $\nabla^{\star}_{\partial_A} \partial_B = \partial_C \star \Gamma^C_{BA}$.

 ∇^{\star} uniquely lifts to a connection

$$\mathsf{d}_{\nabla^{\star}}$$
 : $\Xi_{\star} \otimes_{\star} \Omega^{\bullet}_{\star} \longrightarrow \Xi_{\star} \otimes_{\star} \Omega^{\bullet}_{\star}$

Theorem

$$\mathsf{T}^{\star}(u,v) = {}^{\phi_1} \nabla^{\star}_{\phi_2 v} {}^{\phi_3} u - {}^{\phi_1} \nabla^{\star}_{\phi_2 \alpha u} {}^{\phi_3 \alpha} v + [u,v]_{\star}$$

Proof: True for $u = \partial_A, v = \partial_B$. Then show that T^* is well defined and right A_* -linear.

Curvature

$$\mathsf{R}^{\star} = \mathsf{d}_{\nabla}^{\star} \bullet \mathsf{d}_{\nabla}^{\star} \, : \, \Xi_{\star} \, \longrightarrow \, \Xi_{\star} \otimes_{\star} \Omega_{\star}^{2} \, .$$

Is indeed right A_{\star} -linear (hence a tensor).

Define curvature as a map $R^* : \Xi_* \otimes_* (\Xi_* \wedge_* \Xi_*) \longrightarrow \Xi_*$ giving on vector fields $u, v, z \in \Xi_*$ the vector field

$$R^{\star}(z, u, v) = \langle \, \overline{\phi}_1 \mathsf{R}^{\star \, \overline{\phi}_2} z \,, \, \overline{\phi}_3(u \wedge_{\star} v) \, \rangle_{\star} \,.$$

Theorem

$$R^{\star}(z, u, v) = {}^{\kappa_1 \check{\phi}_1 \phi'_1} \nabla^{\star}_{\bar{\rho}_3 \bar{\zeta}_3 \bar{\phi}_3 \phi'_{3v}} \begin{pmatrix} \bar{\rho}_1 \bar{\phi}_1 \kappa_2 \check{\phi}_2 \phi'_2 \nabla^{\star}_{\bar{\rho}_2 \bar{\zeta}_2 \check{\phi}_3 u} \\ \bar{\rho}_1 \bar{\phi}_1 \phi'_1 \nabla^{\star}_{\bar{\rho}_3 \bar{\zeta}_3 \bar{\phi}_3 \phi'_{3\alpha u}} \begin{pmatrix} \bar{\rho}_1 \bar{\phi}_1 \kappa_2 \check{\phi}_2 \phi'_2 \nabla^{\star}_{\bar{\rho}_2 \bar{\zeta}_2 \check{\phi}_3 \alpha_v} \\ \bar{\rho}_2 \bar{\zeta}_2 \check{\phi}_3 \alpha_v \end{pmatrix} + \nabla^{\star}_{[u,v]_{\star}} z$$

where

$$\boldsymbol{\nabla}_{v}^{\star} u := \langle \, \bar{\phi}_{1} \nabla^{\star \bar{\phi}_{2}} u \,, \, \bar{\phi}_{3} v \, \rangle_{\star}$$

Proof: as for torsion.

Ricci tensor

$$\operatorname{Ric}^{\star}(u,v) = \langle \, \mathrm{d}x^A \,, \, \mathrm{R}^{\star}(u,\partial_A,v) \, \rangle_{\star} \,.$$

Riemannian Geometry

Metric tensor: $g^{\star} = g_{MN} \star dx^M \otimes_{\star} dx^N$.

Theorem

There exists one and only one torsion free and metric compatible connection.

It is determined by
$$g_{MN} \star dx^M \star \Gamma^N_{AD} = \frac{1}{2} (\partial_D g_{AB} + \partial_A g_{BD} - \partial_B g_{AD}) \star dx^B$$

Einstein vacuum equations:

$$\operatorname{Ric}^{\star} = 0$$
.

We can pull back these equation on spacetime (spanned by x^{μ} coordinates only). Considering momentum space with the flat metric $\eta^{\mu\nu}$ we obtain Ricci tensor Ric^o_{$\mu\nu$} on the zero momentum leaf and spacetime Einstein equations

$$\operatorname{Ric}_{\mu
u}^{\circ}=0$$

Up to first order in R-flux (but second order in the twist deformation) we explicitly have

$$\begin{aligned} \operatorname{Ric}_{\mu\nu}^{\circ} &= \operatorname{Ric}_{\mu\nu} + \frac{\ell_{s}^{3}}{12} R^{\alpha\beta\gamma} \left(\partial_{\rho} \left(\partial_{\alpha} \mathsf{g}^{\rho\sigma} \left(\partial_{\beta} \mathsf{g}_{\sigma\tau} \right) \partial_{\gamma} \Gamma_{\mu\nu}^{\tau} \right) - \partial_{\nu} \left(\partial_{\alpha} \mathsf{g}^{\rho\sigma} \left(\partial_{\beta} \mathsf{g}_{\sigma\tau} \right) \partial_{\gamma} \Gamma_{\mu\rho}^{\tau} \right) \\ &+ \partial_{\gamma} \mathsf{g}_{\tau\omega} \left(\partial_{\alpha} \left(\mathsf{g}^{\sigma\tau} \Gamma_{\sigma\nu}^{\rho} \right) \partial_{\beta} \Gamma_{\mu\rho}^{\omega} - \partial_{\alpha} \left(\mathsf{g}^{\sigma\tau} \Gamma_{\sigma\rho}^{\rho} \right) \partial_{\beta} \Gamma_{\mu\nu}^{\omega} \right. \\ &+ \left(\Gamma_{\mu\rho}^{\sigma} \partial_{\alpha} \mathsf{g}^{\rho\tau} - \partial_{\alpha} \Gamma_{\mu\rho}^{\sigma} \mathsf{g}^{\rho\tau} \right) \partial_{\beta} \Gamma_{\sigma\nu}^{\omega} \\ &- \left(\Gamma_{\mu\nu}^{\sigma} \partial_{\alpha} \mathsf{g}^{\rho\tau} - \partial_{\alpha} \Gamma_{\mu\nu}^{\sigma} \mathsf{g}^{\rho\tau} \right) \partial_{\beta} \Gamma_{\sigma\rho}^{\omega} \right) \end{aligned}$$

Riemannian Geometry

Levi Civita connection determined by

$$\mathsf{d}\langle \mathsf{g}^{\star}, (\partial_A \otimes_{\star} \partial_B) \rangle_{\star} = \langle \mathsf{g}^{\star}, \nabla^{\star}(\partial_A \otimes_{\star} \partial_B) \rangle_{\star}$$

proceed as in classical case (use symmetry of g_{AB} and torsion free condition) to obtain:

$$g_{MN} \star dx^M \star \Gamma^N_{AD} = \frac{1}{2} \left(\partial_D g_{AB} + \partial_A g_{BD} - \partial_B g_{AD} \right) \star dx^B .$$
 i.e.

$$dx^{M} \star G_{MN} \star \Gamma^{N}_{AD} = dx^{M} \star \frac{1}{2} \left(\partial_{D} g_{AM} + \partial_{A} g_{MD} - \partial_{M} g_{AD} + i\kappa \mathcal{R}^{EF}{}_{M} \left(\partial_{E} \partial_{D} g_{AF} + \partial_{E} \partial_{A} g_{DF} \right) \right),$$

with

$$G_{MN} = g_{MN} + i\kappa \,\mathcal{R}^{EF}{}_M \,\partial_E g_{NF} \,,$$

Invert G_{MN} as a differential operator and obtain a unique solution for the Levi Civita connection.

This gives Einstein equations in vaccuum on \mathcal{M} phase space.