Quantum Physics: Fields, Particles and Information Geometry 22-26 January 2018, DIAS, Dublin
In honour of A. P. Balachandran, on the occasion of his 80th birthday.

Nonassociative differential geometry and gravity with non-geometric fluxes

Paolo Aschieri
Università del Piemonte Orientale, Alessandria, Italy

Joint work with Marija Dimitrijević Ćirić and Richard Szabo

January 25, 2018

Why nonassociative gravity?

Geometry of fluxes

Example: electron in a strong magnetic field B. In this regime, due to the minimal coupling with the background gauge field, the dynamics takes place in a reduced phase space. It coincides with the electron coordinates thus the electron coordinates become noncommutative: $[x, y]=\frac{i \hbar}{B}$.

Similarly open strings endpoints test a noncommutative space (brane) in the presence of a nonvanishing constant B-field flux.

Yang-Mills theory captures the low energy effective D-brane action. In the presence of a B-field this suggested a description in terms of Noncommutative Yang-Mills theory: YM-theory on the nongeometric background $[x, y]=i \theta$.

The study of Yang-Mills (and Born-Infeld) theories in these noncommutative spaces has proven very fruitful.
-it provides an exact low energy D-brane effective action (in a given $\alpha^{\prime} \rightarrow 0$ sector of string theory where closed strings decouple).
-it allows to realize string theory T-duality symmetry within the low energy physics of Noncommutative (Super) Yang-Mills theories [Connes, Douglas, Schwartz 1997].

Key example: NC-torus
NC plane $\left[x^{i}, x^{j}\right]=\theta^{i j} \Rightarrow$ NC torus coordinates $U^{i}=e^{i x^{i}}$.
NCSYM: $U(n), \theta^{i j}, G_{i j}, g_{S Y M}, M$ first Chern number $\frac{1}{2 \pi} \int T r F$.
$\mathrm{NCSYM}^{\prime}: U\left(n^{\prime}\right), \theta^{\prime i j}, G_{i j}^{\prime}, g_{S Y M}^{\prime}, M^{\prime}$.

Key example: NC-torus
NC plane $\left[x^{i}, x^{j}\right]=\theta^{i j} \Rightarrow$ NC torus coordinates $U^{i}=e^{i x^{i}}$.
NCSYM: $U(n), \theta^{i j}, G_{i j}, g_{S Y M}, M$ first Chern number $\frac{1}{2 \pi} \int \operatorname{Tr} F$.
$\mathrm{NCSYM}^{\prime}: U\left(n^{\prime}\right), \theta^{\prime i j}, G_{i j}^{\prime}, g_{S Y M}^{\prime}, M^{\prime}$.
Let $\wedge=\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right) \in S O(d, d, Z)$, then
$\theta^{\prime}=(\mathcal{A} \theta+\mathcal{B})(\mathcal{C} \theta+\mathcal{D})^{-1}$,
$G^{\prime i j}=(\mathcal{C} \theta+\mathcal{D}){ }_{k}^{i}(\mathcal{C} \theta+\mathcal{D})^{j}{ }_{l} G^{k l}$,
$g^{\prime 2}{ }_{S Y M}=\sqrt{|\operatorname{det}(\mathcal{C} \theta+\mathcal{D})|} g_{S Y M}^{2}$,
$\binom{n^{\prime}}{M^{\prime}}=S(\wedge)\binom{n}{M} \quad$ spinor representation $S(\wedge)$
The rank and the bundle topology of the NCSYM theory determine the D0 and D2 brane charges in IIA string theory. Noncommutativity $\theta^{i j}$ captures the presence of nontrivial NS B field. The action of these $S O(d, d, Z)$ rotations matches the T-duality transformation on metric, string coupling constant, Dbrane chages, NS field of type IIA string theory.

Closed Strings

T-dualities for closed strings on \mathbb{T}^{d} in the presence of a constant 3-form H-flux suggest the following chain of fluxes:

$$
H_{a b c} \xrightarrow{T_{a}} f^{a}{ }_{b c} \xrightarrow{T_{b}} Q^{a b}{ }_{c} \xrightarrow{T_{c}} R^{a b c}
$$

- H and f-fluxes on Riemannian manifolds,
- Q-flux on T-fold (global description involves T-duality transformations as transition functions between local trivializations of tangent bundle);
- R-flux non geometric background. Expected global description in terms of noncommutative and nonassociative structures
[Lüst, Blumenhagen, et al; Mylonas, Schupp, Szabo]

Closed Strings

T-dualities for closed strings on \mathbb{T}^{d} in the presence of a constant 3-form H-flux suggest the following chain of fluxes:

$$
H_{a b c} \xrightarrow{T_{a}} f_{b c}^{a} \xrightarrow{T_{b}} Q^{a b}{ }_{c} \xrightarrow{T_{c}} R^{a b c}
$$

- H and f-fluxes on Riemannian manifolds,
- Q-flux on T-fold (global description involves T-duality transformations as transition functions between local trivializations of tangent bundle);
- R-flux non geometric background. Expected global description in terms of noncommutative and nonassociative structures
[Lüst, Blumenhagen, et al; Mylonas, Schupp, Szabo]

In R-flux background closed strings are expected to probe the phase space

$$
\left[x^{\mu}, x^{\nu}\right]=\frac{i e_{s}^{3}}{3 \hbar} R^{\mu \nu \rho} p_{\rho}, \quad\left[x^{\mu}, p_{\nu}\right]=i \hbar \delta^{\mu}{ }_{\nu} \quad \text { and } \quad\left[p_{\mu}, p_{\nu}\right]=0,
$$

with spacetime nonassociativity:

$$
\left[x^{\mu}, x^{\nu}, x^{\rho}\right]:=\left[x^{\mu},\left[x^{\nu}, x^{\rho}\right]\right]+\left[x^{\nu},\left[x^{\rho}, x^{\mu}\right]\right]+\left[x^{\rho},\left[x^{\mu}, x^{\nu}\right]\right]=\ell_{s}^{3} R^{\mu \nu \rho} .
$$

Closed Strings

T-dualities for closed strings on \mathbb{T}^{d} in the presence of a constant 3 -form H-flux suggest the following chain of fluxes:

$$
H_{a b c} \xrightarrow{T_{a}} f^{a}{ }_{b c} \xrightarrow{T_{b}} Q^{a b}{ }_{c} \xrightarrow{T_{c}} R^{a b c}
$$

- H and f-fluxes on Riemannian manifolds,
- Q-flux on T-fold (global description involves T-duality transformations as transition functions between local trivializations of tangent bundle);
- R-flux non geometric background. Expected global description in terms of noncommutative and nonassociative structures
[Lüst, Blumenhagen, et al; Mylonas, Schupp, Szabo]
In R-flux background closed strings are expected to probe the phase space

$$
\left[x^{\mu}, x^{\nu}\right]=\frac{i \ell_{s}^{3}}{3 \hbar} R^{\mu \nu \rho} p_{\rho}, \quad\left[x^{\mu}, p_{\nu}\right]=i \hbar \delta^{\mu}{ }_{\nu} \quad \text { and } \quad\left[p_{\mu}, p_{\nu}\right]=0,
$$

with spacetime nonassociativity:

$$
\left[x^{\mu}, x^{\nu}, x^{\rho}\right]:=\left[x^{\mu},\left[x^{\nu}, x^{\rho}\right]\right]+\left[x^{\nu},\left[x^{\rho}, x^{\mu}\right]\right]+\left[x^{\rho},\left[x^{\mu}, x^{\nu}\right]\right]=\ell_{s}^{3} R^{\mu \nu \rho} .
$$

Low energy effective action for closed strings includes the gravitational action.

- Nonassociative Gravity as low energy action in the presence of R-flux?
- T-duality transformations act within nonassociative GR?

This motivates the study of:

- A gravity theory on the phase space \mathcal{M} of coordinates $X^{A}=\left(x^{\mu}, p_{\nu}\right)$.
- The induced Einstein vacuum equations on the nonassociative spacetime of the coordinates x^{μ}.
[P.A, Dimitrijevic, Szabo, arXiv:1710.11467]

This motivates the study of:

- A gravity theory on the phase space \mathcal{M} of coordinates $X^{A}=\left(x^{\mu}, p_{\nu}\right)$.
- The induced Einstein vacuum equations on the nonassociative spacetime of the coordinates x^{μ}.
[P.A, Dimitrijevic, Szabo, arXiv:1710.11467]
A key observation is that the nonassociative R -flux phase space can be obtained via Drinfeld 2-cochain twist deformation of commutative phase space.
-This work is then a nontrivial nonassociative generalization of the NC differential geometry and Riemannian geometry constructed in [Wess Group]. -For an earlier study toward this goal see [Blumenhagen, Fuchs].
-This work is also an explicit (and self contained) example of NA differential geometry as developped for arbitrary 2-cochain twist in [Barnes, Schenkel, Szabo].

Drinfeld twist

Let \equiv be the Lie algebra of vector fields on phase space \mathcal{M}. Let U 三 be the universal enveloping algebra (of sums of products of vector fields). It is a Hopf algebra, i.e. a symmetry algebra, with, for all $u \in$ 三,

$$
\Delta(u)=u \otimes 1+1 \otimes u, \varepsilon(u)=0, S(u)=-u
$$

Consider the twist [Mylonas, Schupp, Szabo]

$$
\mathcal{F}=\exp \left(-\frac{i \hbar}{2}\left(\partial_{\mu} \otimes \widetilde{\partial}^{\mu}-\tilde{\partial}^{\mu} \otimes \partial_{\mu}\right)-\frac{i \ell_{s}^{3}}{12 \hbar} R^{\mu \nu \rho}\left(p_{\nu} \partial_{\rho} \otimes \partial_{\mu}-\partial_{\mu} \otimes p_{\nu} \partial_{\rho}\right)\right)
$$

built with the vector fields $\partial_{A}=\left(\frac{\partial}{\partial x^{\mu}}=\partial_{\mu}, \frac{\partial}{\partial p_{\mu}}=\widetilde{\partial}^{\mu}\right)$ and the R-flux.

The Hopf algebra U 三 is twist deformed in the quasi-Hopf algebra $U \Xi^{\mathcal{F}}$ with same product, ε and S of $U \equiv$, but new coproduct, for all $\xi \in U \equiv$,

$$
\Delta_{\mathcal{F}}(\xi)=\mathcal{F} \Delta(\xi) \mathcal{F}^{-1}
$$

in particular $\Delta_{\mathcal{F}}\left(\partial_{\mu}\right)=1 \otimes \partial_{\mu}+\partial_{\mu} \otimes 1$ and

$$
\Delta_{\mathcal{F}}\left(\tilde{\partial}^{\mu}\right)=1 \otimes \tilde{\partial}^{\mu}+\tilde{\partial}^{\mu} \otimes 1+i \kappa R^{\mu \nu \rho} \partial_{\nu} \otimes \partial_{\rho}, \quad \kappa \equiv \ell_{s}^{3} / 6 \hbar
$$

$U \Xi^{\mathcal{F}}$ is a quasi-Hopf algebra because while $(\Delta \otimes i d) \Delta=(i d \otimes \Delta) \Delta$, for $\Delta_{\mathcal{F}}$ we have

$$
\Phi\left(\Delta_{\mathcal{F}} \otimes i d\right) \Delta_{\mathcal{F}}(\xi)=\left(i d \otimes \Delta_{\mathcal{F}}\right) \Delta_{\mathcal{F}}(\xi) \Phi
$$

where the associator Φ is given by

$$
\Phi=\exp \left(\frac{\ell_{3}^{3}}{6} R^{\mu \nu \rho} \partial_{\mu} \otimes \partial_{\nu} \otimes \partial_{\rho}\right)=: \phi_{1} \otimes \phi_{2} \otimes \phi_{3}
$$

Gravity is based on general covariance under infinitesimal diffeomorphisms, i.e. under the Lie algebra of vector fields (equivalently U 三). We construct a NC/NA Riemannian geometry covariant under the quasi Hopf algebra $U \equiv \mathcal{F}$.

Key point:
Consider commutative algebras that carry a representation of U 三; deform these algebras so that they carry a representation of $U \Xi^{\mathcal{F}}$.

Example: Algebra of functions $\longrightarrow A_{\star} \equiv$ NC/NA algebra of functions.
Notation: $\mathcal{F}=\overline{\mathrm{f}}^{\alpha} \otimes \overline{\mathrm{f}}_{\alpha}$

$$
f \star g=\overline{\mathrm{f}}^{\alpha}(f) \cdot \overline{\mathrm{f}}_{\alpha}(g)
$$

NC controlled by the \mathcal{R}-matrix $\mathcal{R}=\mathcal{F}^{-2}$,

$$
f \star g:=\bar{R}^{\alpha}(g) \star \bar{R}_{\alpha}(f)=:{ }^{\alpha} g \star \alpha f .
$$

NA controlled by the associator Φ,

$$
(f \star g) \star h={ }^{\phi_{1}} f \star\left({ }^{\phi_{2}} g \star{ }^{\phi_{3}} h\right) .
$$

$U \equiv^{\mathcal{F}}$-covariance of \star-product: let $\Delta_{\mathcal{F}}(\xi)=\xi_{(1)} \otimes \xi_{(2)}$ then

$$
\xi^{\xi}(f \star g)=\xi_{(1)} f \star{ }^{\xi}(2) g
$$

This \star-product on coordinates functions gives the R-flux algebra:

$$
\left[x^{\mu}, x^{\nu}\right]_{\star}=2 i \kappa R^{\mu \nu \rho} p_{\rho}, \quad\left[x^{\mu}, p_{\nu}\right]_{\star}=i \hbar \delta^{\mu}{ }_{\nu} \quad \text { and } \quad\left[p_{\mu}, p_{\nu}\right]_{\star}=0
$$

Tensor algebra \mathcal{T}_{\star}

$$
\tau \otimes_{\star} \tau^{\prime}=\overline{\mathrm{f}}^{\alpha}(\tau) \otimes \overline{\mathrm{f}}_{\alpha}\left(\tau^{\prime}\right)
$$

Exterior algebra Ω_{\star}^{\bullet}

$$
\theta \wedge_{\star} \theta^{\prime}=\overline{\mathrm{f}}^{\alpha}(\theta) \wedge \overline{\mathrm{f}}_{\alpha}\left(\theta^{\prime}\right)
$$

In particular we have the A_{\star}-bimodules of forms Ω_{\star} and of vector fields \equiv_{\star}.

$$
\begin{aligned}
f \star \mathrm{~d} \tilde{x}_{\mu} & =f \cdot \mathrm{~d} \tilde{x}_{\mu}=\mathrm{d} \tilde{x}_{\mu} \star f, \\
f \star \mathrm{~d} x^{\mu} & =f \cdot \mathrm{~d} x^{\mu}-\frac{i \kappa}{2} R^{\mu \nu \rho}\left(\partial_{\nu} f\right) \cdot \mathrm{d} \tilde{x}_{\rho}=\mathrm{d} x^{\mu} \star f-\mathrm{d} \tilde{x}_{\rho} \star i \kappa R^{\mu \nu \rho}\left(\partial_{\nu} f\right) \\
f \star \partial_{\mu} & =f \cdot \partial_{\mu}=\partial_{\mu} \star f, \\
f \star \tilde{\partial}^{\mu} & =f \cdot \tilde{\partial}^{\mu}+\frac{i \kappa}{2} R^{\mu \nu \rho}\left(\partial_{\nu} f\right) \cdot \partial_{\rho}=\tilde{\partial}^{\mu} \star f+\partial_{\rho} \star i \kappa R^{\mu \nu \rho}\left(\partial_{\nu} f\right)
\end{aligned}
$$

Pairing between forms and vectors $\langle\rangle:, \Omega \times \equiv \rightarrow C^{\infty}(\mathcal{M})$ is deformed to

$$
\begin{equation*}
\langle,\rangle_{\star}:=\langle,\rangle \circ \mathcal{F}^{-1}: \Omega_{\star} \times \bar{\Xi}_{\star} \rightarrow A_{\star}, \tag{1}
\end{equation*}
$$

explicitly

$$
\begin{equation*}
\langle\omega, u\rangle_{\star}=\left\langle\overline{\mathrm{f}}^{\alpha}(\omega), \overline{\mathrm{f}}_{\alpha}(u)\right\rangle . \tag{2}
\end{equation*}
$$

Covariance under $U \equiv^{\mathcal{F}}:{ }^{\xi}\langle\omega, u\rangle_{\star}=\left\langle^{\xi}(1) \omega,{ }^{\xi}(2) u\right\rangle_{\star}$.
The pairing generalizes to

$$
\langle,\rangle_{\star}: \Omega_{\star} \wedge_{\star} \Omega_{\star} \times \equiv \wedge_{\star} \equiv \rightarrow A_{\star} .
$$

Pairing between forms and vectors $\langle\rangle:, \Omega \times \equiv \rightarrow C^{\infty}(\mathcal{M})$ is deformed to

$$
\begin{equation*}
\langle,\rangle_{\star}:=\langle,\rangle \circ \mathcal{F}^{-1}: \Omega_{\star} \times \equiv_{\star} \rightarrow A_{\star}, \tag{3}
\end{equation*}
$$

explicitly

$$
\begin{equation*}
\langle\omega, u\rangle_{\star}=\left\langle\overline{\mathrm{f}}^{\alpha}(\omega), \overline{\mathrm{f}}_{\alpha}(u)\right\rangle . \tag{4}
\end{equation*}
$$

Covariance under $U \equiv^{\mathcal{F}}: \quad{ }^{\xi}\langle\omega, u\rangle_{\star}=\left\langle{ }^{\xi}(1) \omega,{ }^{\xi}(2) u\right\rangle_{\star}$.
The pairing generalizes to

$$
\langle,\rangle_{\star}: \Omega_{\star} \wedge_{\star} \Omega_{\star} \times \equiv \wedge_{\star} \equiv \rightarrow A_{\star} .
$$

Notice that $\langle\omega, \quad\rangle_{\star}$ is a right A_{\star}-linear map $\equiv_{\star} \rightarrow A_{\star}$. More in general we consder right A_{\star}-linear maps betweeen A_{\star}-bimodules

$$
L: V_{\star} \rightarrow W_{\star}
$$

(e.g. V_{\star}, W_{\star} star-tensor products of Ω_{\star} and \equiv_{\star}).

Action of $U \equiv^{\mathcal{F}}$ on $L: V_{\star} \rightarrow W_{\star}$ is the adjoint action:

$$
\left.\xi_{L(v)}:=\left(\xi_{L}\right)(v)=\xi_{(1)}\left(L{ }^{S\left(\xi_{(2)}\right)} v\right)\right)
$$

so that we have covariance: ${ }^{\xi}(L(v))={ }^{\xi}(1) L\left({ }^{\xi}(2) v\right)$.

Composition of two right A_{\star}-linear maps is defined by

$$
L_{1} \bullet L_{2}:={ }^{\phi_{1}} L_{1} \circ \phi_{2} L_{2} \circ \phi_{3}
$$

so that we have covariance: ${ }^{\xi}\left(L_{1} \bullet L_{2}\right)={ }^{\xi}(1) L_{1} \bullet{ }^{\xi}(2) L_{2}$ moreover $L_{1} \bullet L_{2}$ is again right A_{\star}-linear.

Summary: we defined $\star, \otimes_{\star}, \wedge_{\star},\langle,\rangle_{\star}, \bullet$. They are invariant under $U \equiv{ }^{\mathcal{F}}$.

Composition of two right A_{\star}-linear maps is defined by

$$
L_{1} \bullet L_{2}:={ }^{\phi_{1}} L_{1} \circ{ }^{\phi_{2}} L_{2} \circ \phi_{3}
$$

so that we have covariance: ${ }^{\xi}\left(L_{1} \bullet L_{2}\right)={ }^{\xi}(1) L_{1} \bullet{ }^{\xi}(2) L_{2}$ moreover $L_{1} \bullet L_{2}$ is again right A_{\star}-linear.

Summary: we defined $\star, \otimes_{\star}, \wedge_{\star},\langle,\rangle_{\star}, \bullet$. They are invariant under $U \equiv^{\mathcal{F}}$.

More differential geometry:
Connection
A connection is a linear map

$$
\begin{aligned}
\nabla^{\star}: \bar{\Xi}_{\star} & \longrightarrow \bar{\Xi}_{\star} \otimes_{\star} \Omega_{\star} \\
u & \longmapsto \nabla^{\star} u=u^{i} \otimes_{\star} \omega_{i}
\end{aligned}
$$

where $u^{i} \otimes_{\star} \omega_{i} \in \bar{E}_{\star} \otimes_{\star} \Omega_{\star}$, which satisfies the right Leibniz rule

$$
\nabla^{\star}(u \star f)=\left(\bar{\phi}_{1} \nabla^{\star}\left(\bar{\phi}_{2} u\right)\right) \star \bar{\phi}_{3} f+u \otimes_{\star} \mathrm{d} f
$$

Coefficients of the connection along a vector field $\partial_{A}: \nabla_{\partial_{A}}^{\star} \partial_{B}=\partial_{C} \star \Gamma_{B A}^{C}$.
∇^{\star} uniquely lifts to a connection

$$
d_{\nabla^{\star}}: \equiv_{\star} \otimes_{\star} \Omega_{\star}^{\bullet} \longrightarrow \bar{\Xi}_{\star} \otimes_{\star} \Omega_{\star}^{\bullet} .
$$

Theorem

$$
\begin{equation*}
\mathrm{T}^{\star}(u, v)={ }^{\phi_{1}} \nabla_{\phi_{2 v}}^{\star}{ }^{\phi_{3}} u-{ }^{\phi_{1}} \nabla_{\phi_{2} u}^{\star}{ }^{\phi_{3} \alpha} v+[u, v]_{\star} \tag{5}
\end{equation*}
$$

Proof: True for $u=\partial_{A}, v=\partial_{B}$. Then show that T^{\star} is well defined and right A_{\star}-linear.

Curvature

$$
\mathrm{R}^{\star}=\mathrm{d}_{\nabla}^{\star} \bullet \mathrm{d}_{\nabla}^{\star}: \bar{三}_{\star} \longrightarrow \bar{三}_{\star} \otimes_{\star} \Omega_{\star}^{2} .
$$

Is indeed right A_{\star}－linear（hence a tensor）．

Define curvature as a map $R^{\star}: \bar{\star}_{\star} \otimes_{\star}\left(\bar{\star}_{\star} \wedge_{\star} \bar{\Xi}_{\star}\right) \longrightarrow \bar{\Xi}_{\star}$ giving on vector fields $u, v, z \in \bar{三}_{\star}$ the vector field

$$
R^{\star}(z, u, v)=\left\langle\bar{\phi}_{1} \mathrm{R}^{\star} \bar{\phi}_{2} z, \bar{\phi}_{3}\left(u \wedge_{\star} v\right)\right\rangle_{\star}
$$

Theorem

$$
\begin{aligned}
& R^{\star}(z, u, v)={ }^{\kappa_{1}} \check{\phi}_{1} \phi_{1}^{\prime} \nabla_{\bar{\rho}_{3}}^{\star} \bar{\zeta}_{3} \bar{\phi}_{3} \phi_{3 v}^{\prime}\left(\bar{\rho}_{1} \bar{\phi}_{1} \kappa_{2} \check{\phi}_{2} \phi_{2}^{\prime} \nabla_{\bar{\rho}_{2} \bar{\zeta}_{2} \bar{\phi}_{3} u}^{\star} \bar{\zeta}_{1} \bar{\phi}_{2} \kappa_{3} z\right) \\
& -\kappa_{1} \check{\phi}_{1} \phi_{1}^{\prime} \nabla_{\bar{\rho}_{3} \bar{\zeta}_{3} \bar{\phi}_{3} \phi_{3 \alpha}^{\prime} u}^{\star}\left(\bar{\rho}_{1} \bar{\phi}_{1} \kappa_{2} \check{\phi}_{2} \phi_{2}^{\prime} \nabla_{\bar{\rho}_{2} \bar{\zeta}_{2} \bar{\phi}_{3} \alpha_{v}}^{\star} \bar{\zeta}_{1} \bar{\phi}_{2} \kappa_{3} z\right)+\nabla_{[u, v]_{\star}}^{\star} z
\end{aligned}
$$

where

$$
\nabla_{v}^{\star} u:=\left\langle\bar{\phi}_{1} \nabla^{\left.\star \bar{\phi}_{2} u, \bar{\phi}_{3} v\right\rangle_{\star},}\right.
$$

Proof：as for torsion．

Ricci tensor

$$
\operatorname{Ric}^{\star}(u, v)=\left\langle\mathrm{d} x^{A}, \mathrm{R}^{\star}\left(u, \partial_{A}, v\right)\right\rangle_{\star}
$$

Riemannian Geometry

Metric tensor: $\mathrm{g}^{\star}=g_{M N} \star \mathrm{~d} x^{M} \otimes_{\star} \mathrm{d} x^{N}$.

Theorem

There exists one and only one torsion free and metric compatible connection.
It is determined by $\quad \mathrm{g}_{M N} \star \mathrm{~d} x^{M} \star \Gamma_{A D}^{N}=\frac{1}{2}\left(\partial_{D} \mathrm{~g}_{A B}+\partial_{A} \mathrm{~g}_{B D}-\partial_{B} \mathrm{~g}_{A D}\right) \star \mathrm{d} x^{B}$.

Einstein vacuum equations:

$$
\mathrm{Ric}^{\star}=0
$$

We can pull back these equation on spacetime (spanned by x^{μ} coordinates only). Considering momentum space with the flat metric $\eta^{\mu \nu}$ we obtain Ricci tensor $\mathrm{Ric}_{\mu \nu}^{\circ}$ on the zero momentum leaf and spacetime Einstein equations

$$
\mathrm{Ric}_{\mu \nu}^{\circ}=0
$$

Up to first order in R-flux (but second order in the twist deformation) we explicitly have

$$
\begin{aligned}
\operatorname{Ric}_{\mu \nu}^{\circ}=\operatorname{Ric}_{\mu \nu}+\frac{\ell_{s}^{3}}{12} R^{\alpha \beta \gamma}(& \partial_{\rho}\left(\partial_{\alpha} \mathrm{g}^{\rho \sigma}\left(\partial_{\beta} \mathrm{g}_{\sigma \tau}\right) \partial_{\gamma} \Gamma_{\mu \nu}^{\tau}\right)-\partial_{\nu}\left(\partial_{\alpha} \mathrm{g}^{\rho \sigma}\left(\partial_{\beta} \mathrm{g}_{\sigma \tau}\right) \partial_{\gamma} \Gamma_{\mu \rho}^{\tau}\right) \\
& +\partial_{\gamma \mathrm{g}_{\tau \omega}\left(\partial_{\alpha}\left(\mathrm{g}^{\sigma \tau} \Gamma_{\sigma \nu}^{\rho}\right) \partial_{\beta} \Gamma_{\mu \rho}^{\omega}-\partial_{\alpha}\left(\mathrm{g}^{\sigma \tau} \Gamma_{\sigma \rho}^{\rho}\right) \partial_{\beta} \Gamma_{\mu \nu}^{\omega}\right.} \\
& +\left(\Gamma_{\mu \rho}^{\sigma} \partial_{\alpha} \mathrm{g}^{\rho \tau}-\partial_{\alpha} \Gamma_{\mu \rho}^{\sigma} \mathrm{g}^{\rho \tau}\right) \partial_{\beta} \Gamma_{\sigma \nu}^{\omega} \\
& \left.\left.-\left(\Gamma_{\mu \nu}^{\sigma} \partial_{\alpha} \mathrm{g}^{\rho \tau}-\partial_{\alpha} \Gamma_{\mu \nu}^{\sigma} \mathrm{g}^{\rho \tau}\right) \partial_{\beta} \Gamma_{\sigma \rho}^{\omega}\right)\right)
\end{aligned}
$$

Riemannian Geometry

Levi Civita connection determined by

$$
\mathrm{d}\left\langle\mathrm{~g}^{\star},\left(\partial_{A} \otimes_{\star} \partial_{B}\right)\right\rangle_{\star}=\left\langle\mathrm{g}^{\star}, \nabla^{\star}\left(\partial_{A} \otimes_{\star} \partial_{B}\right)\right\rangle_{\star}
$$

proceed as in classical case (use symmetry of $g_{A B}$ and torsion free condition) to obtain:

$$
\mathrm{g}_{M N} \star \mathrm{~d} x^{M} \star \Gamma_{A D}^{N}=\frac{1}{2}\left(\partial_{D} \mathrm{~g}_{A B}+\partial_{A} \mathrm{~g}_{B D}-\partial_{B} \mathrm{~g}_{A D}\right) \star \mathrm{d} x^{B} .
$$

i.e.
$\mathrm{d} x^{M} \star G_{M N} \star \Gamma_{A D}^{N}=\mathrm{d} x^{M} \star \frac{1}{2}\left(\partial_{D} \mathrm{~g}_{A M}+\partial_{A} \mathrm{~g}_{M D}-\partial_{M} \mathrm{~g}_{A D}\right.$

$$
\left.+i \kappa \mathcal{R}^{E F}{ }_{M}\left(\partial_{E} \partial_{D} \mathrm{~g}_{A F}+\partial_{E} \partial_{A} \mathrm{~g}_{D F}\right)\right),
$$

with

$$
G_{M N}=\mathrm{g}_{M N}+i \kappa \mathcal{R}^{E F}{ }_{M} \partial_{E} \mathrm{~g}_{N F},
$$

Invert $G_{M N}$ as a differential operator and obtain a unique solution for the Levi Civita connection.

This gives Einstein equations in vaccuum on \mathcal{M} phase space.

