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Why nonassociative gravity?

Geometry of fluxes

Example: electron in a strong magnetic field B. In this regime, due to the
minimal coupling with the background gauge field, the dynamics takes place
in a reduced phase space. It coincides with the electron coordinates thus the
electron coordinates become noncommutative: [x, y] = i~

B .

Similarly open strings endpoints test a noncommutative space (brane) in the
presence of a nonvanishing constant B-field flux.

Yang-Mills theory captures the low energy effective D-brane action. In the
presence of aB-field this suggested a description in terms of Noncommutative
Yang-Mills theory: YM-theory on the nongeometric background [x, y] = iθ.

The study of Yang-Mills (and Born-Infeld) theories in these noncommutative
spaces has proven very fruitful.

-it provides an exact low energy D-brane effective action (in a given α′ → 0
sector of string theory where closed strings decouple).
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-it allows to realize string theory T-duality symmetry within the low energy
physics of Noncommutative (Super) Yang-Mills theories [Connes, Douglas,
Schwartz 1997].



Key example: NC-torus

NC plane [xi, xj] = θij ⇒ NC torus coordinates U i = eix
i
.

NCSYM: U(n), θij, Gij, gSYM , M first Chern number 1
2π

∫
TrF .

NCSYM′: U(n′), θ′ij, G′ij, g
′
SYM , M ′.
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Key example: NC-torus

NC plane [xi, xj] = θij ⇒ NC torus coordinates U i = eix
i
.

NCSYM: U(n), θij, Gij, gSYM , M first Chern number 1
2π

∫
TrF .

NCSYM′: U(n′), θ′ij, G′ij, g
′
SYM , M ′.

Let Λ =

(
A B
C D

)
∈ SO(d, d, Z) , then

θ′ = (Aθ + B)(Cθ +D)−1,

G′ij = (Cθ +D)ik(Cθ +D)jlG
kl,

g′2SYM =
√
|det(Cθ +D)| g2

SYM ,(
n′

M ′

)
= S(Λ)

(
n
M

)
spinor representation S(Λ)

The rank and the bundle topology of the NCSYM theory determine the D0
and D2 brane charges in IIA string theory. Noncommutativity θij captures the
presence of nontrivial NS B field. The action of these SO(d, d, Z) rotations
matches the T-duality transformation on metric, string coupling constant, D-
brane chages, NS field of type IIA string theory.
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Closed Strings

T -dualities for closed strings on Td in the presence of a constant 3-formH-flux
suggest the following chain of fluxes:

Habc
Ta−−→ fabc

Tb−−→ Qabc
Tc−−→ Rabc

- H and f -fluxes on Riemannian manifolds,
- Q-flux on T-fold (global description involves T-duality transformations as tran-
sition functions between local trivializations of tangent bundle);
-R-flux non geometric background. Expected global description in terms of
noncommutative and nonassociative structures

[Lüst, Blumenhagen, et al; Mylonas, Schupp, Szabo]
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In R-flux background closed strings are expected to probe the phase space

[xµ, xν] = i`3s
3~ R

µνρ pρ , [xµ, pν] = i~ δµν and [pµ, pν] = 0 ,

with spacetime nonassociativity:

[xµ, xν, xρ] := [xµ, [xν, xρ]] + [xν, [xρ, xµ]] + [xρ, [xµ, xν]] = `3s R
µνρ .
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In R-flux background closed strings are expected to probe the phase space

[xµ, xν] = i`3s
3~ R

µνρ pρ , [xµ, pν] = i~ δµν and [pµ, pν] = 0 ,

with spacetime nonassociativity:

[xµ, xν, xρ] := [xµ, [xν, xρ]] + [xν, [xρ, xµ]] + [xρ, [xµ, xν]] = `3s R
µνρ .

Low energy effective action for closed strings includes the gravitational action.
• Nonassociative Gravity as low energy action in the presence of R-flux?
• T-duality transformations act within nonassociative GR?
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This motivates the study of:

• A gravity theory on the phase spaceM of coordinates XA = (xµ, pν).

• The induced Einstein vacuum equations on the nonassociative spacetime of
the coordinates xµ.

[P.A, Dimitrijevic, Szabo, arXiv:1710.11467]

7



This motivates the study of:

• A gravity theory on the phase spaceM of coordinates XA = (xµ, pν).

• The induced Einstein vacuum equations on the nonassociative spacetime of
the coordinates xµ.

[P.A, Dimitrijevic, Szabo, arXiv:1710.11467]

A key observation is that the nonassociative R-flux phase space can be ob-
tained via Drinfeld 2-cochain twist deformation of commutative phase space.

-This work is then a nontrivial nonassociative generalization of the NC differ-
ential geometry and Riemannian geometry constructed in [Wess Group].
-For an earlier study toward this goal see [Blumenhagen, Fuchs].
-This work is also an explicit (and self contained) example of NA differential
geometry as developped for arbitrary 2-cochain twist in [Barnes, Schenkel,
Szabo].
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Drinfeld twist
Let Ξ be the Lie algebra of vector fields on phase spaceM. Let UΞ be the
universal enveloping algebra (of sums of products of vector fields). It is a Hopf
algebra, i.e. a symmetry algebra, with, for all u ∈ Ξ,

∆(u) = u⊗ 1 + 1⊗ u , ε(u) = 0 , S(u) = −u

Consider the twist [Mylonas, Schupp, Szabo]

F = exp
(
− i~

2 (∂µ ⊗ ∂̃µ − ∂̃µ ⊗ ∂µ)− i`3s
12~R

µνρ(pν∂ρ ⊗ ∂µ − ∂µ ⊗ pν∂ρ)
)

built with the vector fields ∂A =
(
∂
∂xµ = ∂µ,

∂
∂pµ

= ∂̃µ
)

and the R-flux.
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The Hopf algebra UΞ is twist deformed in the quasi-Hopf algebra UΞF with
same product, ε and S of UΞ, but new coproduct, for all ξ ∈ UΞ,

∆F(ξ) = F∆(ξ)F−1

in particular ∆F(∂µ) = 1⊗ ∂µ + ∂µ ⊗ 1 and

∆F(∂̃µ) = 1⊗ ∂̃µ + ∂̃µ ⊗ 1 + iκRµνρ ∂ν ⊗ ∂ρ , κ ≡ `3s/6~

UΞF is a quasi-Hopf algebra because while (∆ ⊗ id)∆ = (id ⊗∆)∆, for
∆F we have

Φ (∆F ⊗ id) ∆F(ξ) = (id⊗∆F) ∆F(ξ)Φ

where the associator Φ is given by

Φ = exp
(
`3s
6 R

µνρ ∂µ ⊗ ∂ν ⊗ ∂ρ
)

=: φ1 ⊗ φ2 ⊗ φ3

Gravity is based on general covariance under infinitesimal diffeomorphisms,
i.e. under the Lie algebra of vector fields (equivalently UΞ). We construct a
NC/NA Riemannian geometry covariant under the quasi Hopf algebra UΞF .
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Key point:

Consider commutative algebras that carry a representation of UΞ; deform
these algebras so that they carry a representation of UΞF .

Example: Algebra of functions −→ A? ≡ NC/NA algebra of functions.
Notation: F = f̄ α ⊗ f̄ α

f ? g = f̄ α(f) · f̄ α(g)

NC controlled by the R-matrix R = F−2,

f ? g := R̄ α(g) ? R̄ α(f) =: αg ? αf .

NA controlled by the associator Φ,

(f ? g) ? h = φ1f ? (φ2g ? φ3h) .

UΞF -covariance of ?-product: let ∆F(ξ) = ξ(1) ⊗ ξ(2) then

ξ(f ? g) = ξ(1)f ? ξ(2)g

This ?-product on coordinates functions gives the R-flux algebra:

[xµ, xν]? = 2iκRµνρ pρ , [xµ, pν]? = i~ δµν and [pµ, pν]? = 0
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Tensor algebra T?

τ ⊗? τ ′ = f̄ α(τ)⊗ f̄ α(τ ′),

Exterior algebra Ω•?

θ ∧? θ′ = f̄ α(θ) ∧ f̄ α(θ′).

In particular we have the A?-bimodules of forms Ω? and of vector fields Ξ?.

f ? dx̃µ = f · dx̃µ = dx̃µ ? f ,

f ? dxµ = f · dxµ − iκ
2 R

µνρ (∂νf) · dx̃ρ = dxµ ? f − dx̃ρ ? iκR
µνρ (∂νf)

f ? ∂µ = f · ∂µ = ∂µ ? f ,

f ? ∂̃µ = f · ∂̃µ + iκ
2 R

µνρ (∂νf) · ∂ρ = ∂̃µ ? f + ∂ρ ? iκR
µνρ (∂νf)



Pairing between forms and vectors 〈 , 〉 : Ω×Ξ→ C∞(M) is deformed to

〈 , 〉? := 〈 , 〉 ◦ F−1 : Ω? ×Ξ? → A? , (1)

explicitly

〈 ω , u 〉? =
〈

f̄ α(ω) , f̄ α(u)
〉
. (2) pairing

Covariance under UΞF : ξ〈 ω , u 〉? = 〈 ξ(1)ω , ξ(2)u 〉? .

The pairing generalizes to

〈 , 〉? : Ω? ∧? Ω? ×Ξ ∧? Ξ→ A? .
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Pairing between forms and vectors 〈 , 〉 : Ω×Ξ→ C∞(M) is deformed to

〈 , 〉? := 〈 , 〉 ◦ F−1 : Ω? ×Ξ? → A? , (3)

explicitly

〈 ω , u 〉? =
〈

f̄ α(ω) , f̄ α(u)
〉
. (4) pairing

Covariance under UΞF : ξ〈 ω , u 〉? = 〈 ξ(1)ω , ξ(2)u 〉? .

The pairing generalizes to

〈 , 〉? : Ω? ∧? Ω? ×Ξ ∧? Ξ→ A? .

Notice that 〈 ω , 〉? is a right A?-linear map Ξ? → A?. More in general we
consder right A?-linear maps betweeen A?-bimodules

L : V? →W?

(e.g. V?,W? star-tensor products of Ω? and Ξ?).

Action of UΞF on L : V? →W? is the adjoint action:

ξL(v) := (ξL)(v) = ξ(1)(L(S(ξ(2))v))

so that we have covariance: ξ(L(v)) = ξ(1)L(ξ(2)v).
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Composition of two right A?-linear maps is defined by

L1 • L2 := φ1L1 ◦ φ2L2 ◦ φ3

so that we have covariance: ξ(L1 • L2) = ξ(1)L1 •
ξ(2)L2

moreover L1 • L2 is again right A?-linear.

Summary: we defined ?, ⊗?, ∧?, 〈 , 〉?, • . They are invariant under UΞF .
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More differential geometry:

Connection
A connection is a linear map

∇? : Ξ? −→ Ξ? ⊗? Ω?

u 7−→ ∇?u = ui ⊗? ωi ,

where ui ⊗? ωi ∈ Ξ? ⊗? Ω?, which satisfies the right Leibniz rule

∇?(u ? f) =
(
φ̄1∇?(φ̄2u)

)
? φ̄3f + u⊗? df

Coefficients of the connection along a vector field ∂A: ∇?∂A∂B = ∂C ? ΓCBA.



∇? uniquely lifts to a connection

d∇? : Ξ? ⊗? Ω•? −→ Ξ? ⊗? Ω•? .

Theorem

T?(u, v) = φ1∇?φ2v
φ3u− φ1∇?φ2αu

φ3 αv + [u, v]? (5) Torsion

Proof: True for u = ∂A, v = ∂B. Then show that T ? is well defined and right
A?-linear.



Curvature

R? = d?∇ • d?∇ : Ξ? −→ Ξ? ⊗? Ω2
? .

Is indeed right A?-linear (hence a tensor).

Define curvature as a map R? : Ξ? ⊗? (Ξ? ∧? Ξ?) −→ Ξ? giving on vector
fields u, v, z ∈ Ξ? the vector field

R?(z, u, v) = 〈 φ̄1R? φ̄2z , φ̄3(u ∧? v) 〉? .

Theorem

R?(z, u, v) = κ1 φ̌1 φ
′
1∇?

ρ̄3 ζ̄3 φ̄3 φ
′
3v

(
ρ̄1 φ̄1 κ2 φ̌2 φ

′
2∇?

ρ̄2 ζ̄2 φ̌3u
ζ̄1 φ̄2 κ3z

)
− κ1 φ̌1 φ

′
1∇?

ρ̄3 ζ̄3 φ̄3 φ
′
3αu

(
ρ̄1 φ̄1 κ2 φ̌2 φ

′
2∇?

ρ̄2 ζ̄2 φ̌3αv
ζ̄1 φ̄2 κ3z

)
+ ∇?

[u,v]?
z

where

∇?
vu := 〈 φ̄1∇?φ̄2u , φ̄3v 〉?

Proof: as for torsion.
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Ricci tensor

Ric?(u, v) = 〈 dxA , R?(u, ∂A, v) 〉? .

Riemannian Geometry

Metric tensor: g? = gMN ? dxM ⊗? dxN .

Theorem
There exists one and only one torsion free and metric compatible connection.

It is determined by gMN ? dxM ? ΓN
AD = 1

2
(∂DgAB + ∂AgBD − ∂BgAD) ? dxB .

Einstein vacuum equations:

Ric? = 0 .
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We can pull back these equation on spacetime (spanned by xµ coordinates
only). Considering momentum space with the flat metric ηµν we obtain Ricci
tensor Ric◦µν on the zero momentum leaf and spacetime Einstein equations

Ric◦µν = 0

Up to first order in R-flux (but second order in the twist deformation) we explic-
itly have

Ric◦µν = Ricµν + `3
s

12
Rαβγ

(
∂ρ
(
∂αg

ρσ (∂βgστ) ∂γΓ
τ
µν

)
− ∂ν

(
∂αg

ρσ (∂βgστ) ∂γΓ
τ
µρ

)
+ ∂γgτω

(
∂α(gστ Γ ρ

σν) ∂βΓω
µρ − ∂α(gστ Γ ρ

σρ) ∂βΓω
µν

+ (Γσ
µρ ∂αg

ρτ − ∂αΓσ
µρ g

ρτ) ∂βΓω
σν

− (Γσ
µν ∂αg

ρτ − ∂αΓσ
µν g

ρτ) ∂βΓω
σρ

))
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Riemannian Geometry

Levi Civita connection determined by

d〈 g? , (∂A ⊗? ∂B) 〉? = 〈 g? , ∇?(∂A ⊗? ∂B) 〉?

proceed as in classical case (use symmetry of gAB and torsion free condition)
to obtain:

gMN ? dxM ? ΓNAD = 1
2 (∂DgAB + ∂AgBD − ∂BgAD) ? dxB .

i.e.

dxM ? GMN ? ΓNAD = dxM ? 1
2

(
∂DgAM + ∂AgMD − ∂MgAD

+ iκREFM (∂E∂DgAF + ∂E∂AgDF )
)
,

with

GMN = gMN + iκREFM ∂EgNF ,

Invert GMN as a differential operator and obtain a unique solution for the Levi
Civita connection.

This gives Einstein equations in vaccuum onM phase space.
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