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Why nonassociative gravity?
Geometry of fluxes

Example: electron in a strong magnetic field B. In this regime, due to the
minimal coupling with the background gauge field, the dynamics takes place
In a reduced phase space. It coincides with the electron coordinates thus the

electron coordinates become noncommutative: [z, y] = %.

Similarly open strings endpoints test a noncommutative space (brane) in the
presence of a nonvanishing constant B-field flux.

Yang-Mills theory captures the low energy effective D-brane action. In the
presence of a B-field this suggested a description in terms of Noncommutative
Yang-Mills theory: YM-theory on the nongeometric background [x, y] = 6.

The study of Yang-Mills (and Born-Infeld) theories in these noncommutative
spaces has proven very fruitful.

-it provides an exact low energy D-brane effective action (in a given o/ — 0
sector of string theory where closed strings decouple).



-it allows to realize string theory T-duality symmetry within the low energy
physics of Noncommutative (Super) Yang-Mills theories [Connes, Douglas,
Schwartz 1997].



Key example: NC-torus
NC plane [z%, #/] = 6% = NC torus coordinates U = ¢i*".
NCSYM: U(n), 0 G'ij» 95y Mm»> M first Chern number = [TrF.

NCSYM’: U(n)), 67, Gl Gsy v M-
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Key example: NC-torus

1

NC plane [z¢, 2] = 6 = NC torus coordinates U’ = e'* .
NCSYM: U(n), 0 Gij» 95y Mm»> M first Chern number = [TrF.
NCSYM': U(n'), 0", G;j, gy M.

A B

Let/\:<c D

> € S0(d,d,”Z), then

0 = (A0 + B)(CH+ D)L,
G = (o + D) (Co + D)), GH.,

2
9Sym = \/| det(CO + D)| g2y s+

( ]\TZ// ) = 5(/\)( v ) spinor representation S(A)

The rank and the bundle topology of the NCSYM theory determine the DO
and D2 brane charges in IIA string theory. Noncommutativity 8% captures the
presence of nontrivial NS B field. The action of these SO(d, d, Z) rotations
matches the T-duality transformation on metric, string coupling constant, D-

brane chages, NS field of type IlA string theory.



Closed Strings

T-dualities for closed strings on T¢ in the presence of a constant 3-form H-flux
suggest the following chain of fluxes:

T, Ty T.
Habc % fabc ? Qabc — Rabc

- H and f-fluxes on Riemannian manifolds,
- Q-flux on T-fold (global description involves T-duality transformations as tran-
sition functions between local trivializations of tangent bundle);
-R-flux non geometric background. Expected global description in terms of
noncommutative and nonassociative structures

[LOst, Blumenhagen, et al; Mylonas, Schupp, Szabo]
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In R-flux background closed strings are expected to probe the phase space

03
[zF, 2"] = %Ruuppp ; [z#, pv] = iR My and [pp, pv] = 0,
with spacetime nonassociativity:

[zH, ¥, 2] = [«", [z", 2"]] + [zY, [=”, 2"]] + [P, [z", 2¥]] = E? RMVP



Closed Strings

T-dualities for closed strings on T¢ in the presence of a constant 3-form H-flux
suggest the following chain of fluxes:

T T T,
Habc = fabc ’ ? Qabc — Rabc

- H and f-fluxes on Riemannian manifolds,
- Q-flux on T-fold (global description involves T-duality transformations as tran-
sition functions between local trivializations of tangent bundle);
- R-flux non geometric background. Expected global description in terms of
noncommutative and nonassociative structures

[LUst, Blumenhagen, et al; Mylonas, Schupp, Szabo]

In R-flux background closed strings are expected to probe the phase space
[x'ua ZCV] — 3h R'L”/ppp ’ [x'uapV] — /Lh 5'LLV and [p,u7pV] — O )
with spacetime nonassociativity:

[zH, ¥, 2] = [«", [z", 2"]] + [zY, [=”, 2"]] + [P, [z", 2¥]] = E? RHMVP

Low energy effective action for closed strings includes the gravitational action.
e Nonassociative Gravity as low energy action in the presence of R-flux?
e T-duality transformations act within nonassociative GR?



This motivates the study of:

e A gravity theory on the phase space M of coordinates X4 = (z#, p).

e The induced Einstein vacuum equations on the nonassociative spacetime of
the coordinates z*.

[P.A, Dimitrijevic, Szabo, arXiv:1710.11467]



This motivates the study of:

e A gravity theory on the phase space M of coordinates X4 = (z#, p).

e The induced Einstein vacuum equations on the nonassociative spacetime of
the coordinates z*.
[P.A, Dimitrijevic, Szabo, arXiv:1710.11467]

A key observation is that the nonassociative R-flux phase space can be ob-
tained via Drinfeld 2-cochain twist deformation of commutative phase space.

-This work is then a nontrivial nonassociative generalization of the NC differ-
ential geometry and Riemannian geometry constructed in [Wess Group].

-For an earlier study toward this goal see [Blumenhagen, Fuchs].

-This work is also an explicit (and self contained) example of NA differential
geometry as developped for arbitrary 2-cochain twist in [Barnes, Schenkel,
Szabo].



Drinfeld twist

Let = be the Lie algebra of vector fields on phase space M. Let U= be the
universal enveloping algebra (of sums of products of vector fields). It is a Hopf
algebra, i.e. a symmetry algebra, with, for all u € =,

Au)=u®14+1QRu, e(u) =0, S(u) = —u

Consider the twist [Mylonas, Schupp, Szabo]

. L /3
F = exp ( — %‘ (Ou@o* -0 ®ao,) — féshRW’O(puap ® Op — Ou ® pvap))

built with the vector fields 84 = (a% = 9, 8% = 5#) and the R-flux.



The Hopf algebra U= is twist deformed in the quasi-Hopf algebra U= with
same product, € and S of U=, but new coproduct, for all £ € U=,

AF(€) =FA@OF
in particular A x(0y) =1® 0, + 0y ® 1 and
Ar(0M) =10+ @1+ ik R, 08,, r=4_L/6h
U=/ is a quasi-Hopf algebra because while (A ® id)A = (id ® A)A, for

A r we have

P (Ar®id) Ar(§) = (d® Ax) Ap(H)P

where the associator & is given by

3
P :exp(%Rﬂ”p%@@y@@p) =! 01 Q@ P2 @3

Gravity is based on general covariance under infinitesimal diffeomorphisms,
i.e. under the Lie algebra of vector fields (equivalently U=). We construct a
NC/NA Riemannian geometry covariant under the quasi Hopf algebra U=~
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Key point:

Consider commutative algebras that carry a representation of U=; deform
these algebras so that they carry a representation of U="".

Example: Algebra of functions — A, = NC/NA algebra of functions.
Notation: F =% ® f o
frg=T2f)-falg)
NC controlled by the R-matrix R = F 2,
frg:=R*g)*Ra(f) =:%g*af.
NA controlled by the associator &,

(fxg) *xh=21f*(?2gx?3h).

U= -covariance of x-product: let A (¢) = (1) ® &(2) then

S(frg) =0 fxt@yg

This x-product on coordinates functions gives the R-flux algebra:

[z, 2"]x = 2ik RFP p,, , [zH, pu]x = 1h6*y and [P, Prv]x =0
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Tensor algebra 7

T T =TY1r) @ Talr),
Exterior algebra <23

O Ns 0 =T4O) AT (6.

In particular we have the A,-bimodules of forms <2, and of vector fields =..
fxdz? = f.-dzt — %R“”p (Ovf)-dz, = dat x f —dZ, xix R*P (Ouf)

Fx0y = f-0, = Ouxf,
fxOF = f-OH 4L RMP(D,f)-0p = ' x f 4 Opxin RMP (Ouf)



Pairing between forms and vectors (, ) : 2 x = — C*°(M) is deformed to
(,>*::<,>o}"_1:§2*><5*—>A*, (1)
explicitly

(w,u)e={Tw), Falu) ). (2) [pai
Covariance under U=7: $(w, u )y = <€(1)w, Sy Yk -

The pairing generalizes to
<7 >* : Q*/\*Q*X E/\*E—>A*
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Pairing between forms and vectors (, ) : 2 x = — C*°(M) is deformed to
<,>*::<,>OF_1:Q*XE*—>A*, (3)
explicitly

(w, u)x = < fYw), falu) > . (4) |pai

Covariance under U=7: $(w, u )y = <5<1>w, Sy D -

The pairing generalizes to

()% T Qe Ak Qe X = A= — Ax

Notice that ( w, )« is a right As-linear map =« — A.. More in general we
consder right Ax-linear maps betweeen A,-bimodules

L:V*—>W*

(e.g. Vi, Wy star-tensor products of €2, and =,).

Action of U=/ on L : V, — Wy is the adjoint action:
§L(v) := (CL) (v) = SO (LPE@Dy))

so that we have covariance: ¢(L(v)) = S, (5(2)1)).
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Composition of two right Ax-linear maps is defined by
LieLy:=%L10%[50%3

so that we have covariance: ¢(Lq e Lo) = 5<1>L1 o 5(2>L2
moreover L1 e Lo is again right A.-linear.

Summary: we defined x, ®x, A, (, )x,®. They are invariant under U=".
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Composition of two right A.-linear maps is defined by
Ll o L2 = ¢1L1 o) ¢2L2 o) ¢3

so that we have covariance: $(L{ e L) = g<1>L1 o f(2)L2

moreover L1 e Lo is again right A.-linear.

Summary: we defined x, ®«, Ax, (, )x,®. They are invariant under U=".
More differential geometry:

Connection

A connection is a linear map
V¥ 1= — = ®x %
U — V*uzui@)*wi,
where v @4 w; € =« @« Q%, Which satisfies the right Leibniz rule
V*(ux ) = (MV(P20)) x93 f +u @i df

Coefficients of the connection along a vector field 0 4: VgA(’)B = O * I‘%A.



V* uniquely lifts to a connection

dux | =4 Q% Q) — =L Qx5

Theorem

T*(u,v) = </51v;§20¢3u — ¢1Vg2au¢3 “v+ [u,v]« (9) [Tor

Proof: True for u = 04,v = 9. Then show that T* is well defined and right
As-linear.



Curvature
R*:d*v.d% . E* — E*@*Qg .
Is indeed right A.-linear (hence a tensor).
Define curvature as a map R* : = ®« (=« Ax =x) — =« giving on vector
fields u, v, z € =« the vector field

R*(z,u,v) = { (ElR* (EQZ, q_53(u Ax V) Y

Theorem
R*(Z U ’U) — R1 Qb]_ ¢1Vp353¢3¢3v(p1 ¢1 A% ¢2 ¢2V:2 2&3,“4-1 ¢2 K’3z>
P1 ¢ p1 P1 K2 P2 & . Q¢
__K1¢1 1vp3<3¢3¢3 u( 1 ¢1 K2 @2 2Vp2g2¢3av 1 zmsz)—I—V[uv]*

where

Proof: as for torsion.
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Ricci tensor

Ric*(u,v) = (dz?, R*(u, d4,v) )x .

Riemannian Geometry
Metric tensor: g* = gy n * dzM @, dz?V.

Theorem
There exists one and only one torsion free and metric compatible connection.

It is determined by gun * dz™ x T, = 2 (Opgap + dagsp — Opgan) x dz? .

Einstein vacuum equations:

Ric*=0.
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We can pull back these equation on spacetime (spanned by z* coordinates
only). Considering momentum space with the flat metric n** we obtain Ricci
tensor Ric,,, on the zero momentum leaf and spacetime Einstein equations

Ricy,,, =0

Up to first order in R-flux (but second order in the twist deformation) we explic-
itly have

Ric}, = Ric,, + 15 R (c%(aag” (0880r) 4T 1,) — 0v(ag” (Opg0r) 04T )1)
+ 0,80 (0a (g7 T8,) BT, — Da (877 T 5)) DT,

+ (r/jp aOéng o 804 rﬁp ng) aﬁrgju

— (7, 0u8™ — BaT 1, 7) 05T
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Riemannian Geometry

Levi Civita connection determined by

d< g*a (aA Xk aB) >* — <g*7 V*(aA Dk aB) >*

proceed as in classical case (use symmetry of g 4 g and torsion free condition)
to obtain:

garn x dz™ i = % (OpgaB + dagBD — OBEAD) * dz® .

.e.
de™ « Gy *Thp = da™ *3 <5'DgAM + 048V D — OMBAD

+ik R¥F 1 (Op0pgar + 0pdagpr))
with

Gun = gvn +in REY 1 Openr

Invert GG, as a differential operator and obtain a unique solution for the Levi
Civita connection.

This gives Einstein equations in vaccuum on M phase space.
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