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How to play with convex sets
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Positive maps

A linear map

Φ : A1 −→ A2

is positive i�

a ≥ 0 =⇒ Φ[a] ≥ 0

(a ≥ 0 ⇐⇒ a = xx∗)

It is unital i�

Φ[e1] = e2
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Why positive maps?

provide generalization of ∗-homomorphisms,

provide generalization of Jordan homomorphisms,

unital maps de�ne a�ne mappings between sets of states of
C∗-algebras.
de�ne universal tools for detecting quantum entanglement
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The problem

How to construct and classify positive maps

The problem is hard

Related to 17th Hilbert problem
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Special classes of positive maps

completely positive (CP) maps

decomposable maps

CP maps ⊂ decomposable maps ⊂ all positive maps
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Completely positive maps

Φ : A −→ B(H)

Stinespring 1955

Φ is completely positive i�

there exists a Hilbert space K
there exists ?-homomorhism π : A −→ B(K)

there exists V : K −→ H

Φ[a] = V π(a)V ∗
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Decomposable maps

Φ : A −→ B(H)

Φ is a decomposable positive map i�

there exists a Hilbert space K
there exists Jordan-homomorhism j : A −→ B(K)

there exists V : K −→ H

Φ[a] = V j(a)V ∗
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Completely positive maps

dimH <∞

Φ : B(H1) −→ B(H2)

Stinespring, Kraus, Choi

Φ(X) =
∑
α

VαXV
∗
α
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Decomposable maps

Φ = Φ1 + T ◦ Φ2

Φ1,Φ2 � CP maps

d1 · d2 ≤ 6 −→ all positive maps are decomposable (Woronowicz)

The hard problem is the construction of non-decomposable maps
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Positive maps vs. quantum entanglement

H = H2⊗H1

De�nition: (Werner)

ρ =
∑
α

pα ρ
(1)
α ⊗ ρ(2)

α separable state = not entangled

Theorem (Horodecki):

ρ is separable i�

(id⊗Φ)ρ ≥ 0

for all positive maps Φ : B(H2) −→ B(H1)
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ρ is entangled i� there exits a positive map Φ

(id⊗Φ)ρ � 0

Φ detects ρ
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Classi�cation of entangled states←→ Classi�cation of positive maps
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CP property is spectral

{e1, e2, . . . } �ONB in H1

Eij := |ei〉〈ej | ∈ Md1(C)

Choi matrix

Φ −→ Φ̂ =
∑
i,j

Eij ⊗Φ(Eij)

Φ is CP ⇐⇒ Φ̂ ≥ 0
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Quantum Information: Positive Partial Transpose (PPT)

X ∈ B+(H1⊗H2) is PPT

XΓ := (1l⊗T)X ≥ 0

Separable ⊆ PPT

d1 · d2 ≤ 6 −→ Separable = PPT (Peres, Horodecki)

Φ decomposable −→ (1l⊗Φ)X ≥ 0 for all PPT states

The hard problem is to detect entangled PPT states
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Entanglement witness

De�nition:

W is block-positive ⇐⇒ 〈x⊗ y|W |x⊗ y〉 ≥ 0

Theorem:

Φ is positive ⇐⇒ Φ̂ is block-positive

De�nition:

W is entanglement witness

W is block-positive

W is not positive
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ρ is entangled i� there exits an entanglement witness W

Tr(Wρ) < 0

W detects ρ



Entanglement witnesses from mutually unbiased bases

Geometrical picture
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Duality

V � real vector space

A ⊂ V −→ A◦ :=
{
y ∈ V ∗ | y(x) ≥ 0 , x ∈ A

}
⊂ V ∗

For an arbitary A its dual A◦ is a convex cone in V ∗

A ⊂ B =⇒ B◦ ⊂ A◦

(A ∩B)◦ = conv(A◦ ∪B◦)
(A ∪B)◦ = A◦ ∩B◦
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Duality � quantum states

Bsa := self-adjoint elements in B(H⊗H)

Bsa is a real Hilbert space −→ B∗sa ≡ Bsa

B+ = positive elements in Bsa

BPPT = PPT elements in B+

Bsep = separable elements in BPPT

Bsep ⊂ BPPT ⊂ B+ ⊂ Bsa
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Duality � quantum states

Bsep ⊂ BPPT ⊂ B+ ⊂ Bsa

B◦sep ⊃ B◦PPT ⊃ B◦+ ⊃ Bsa

B◦+ = B+ (self-dual set)

B◦sep = block-positive operators

B◦sep = block-positive decomposable operators

entanglement witnesses = B◦sep − B+

non-decomposable entanglement witnesses = B◦PPT − B+
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Optimal witness

W −→ DW = {X ≥ 0 |Tr(XW ) < 0}

De�nition:

W1 is �ner than W2 ⇐⇒ DW2 ⊂ DW1

W is optimal ⇐⇒ there is no witness �ner than W

Theorem:

W is optimal i� W −A is no longer block-positive

where A is an arbitrary A ∈ B+
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nd-optimal witness

W −→ DPPT
W = {X ∈ BPPT |Tr(XW ) < 0}

De�nition:

W1 is nd-�ner than W2 ⇐⇒ DPPT
W2
⊂ DPPT

W1

W is nd-optimal ⇐⇒ no non-decomposable witness �ner thanW

Theorem:

W is nd-optimal i� W −D is no longer block-positive

where D ∈ BPPT is arbitrary
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optimal vs. nd-optimal witness

Theorem:

W is nd-optimal if and only if

both W and WΓ := (id⊗T)W are optimal
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Banach separation theorem

W ′ is �ner than W
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Spanning property

〈xk⊗ yk|W |xk⊗ yk〉 = 0

De�nition:

W has a spanning property if xk⊗ yk span H1⊗H2

W has a bi-spanning property if also xk⊗ y∗k span H1⊗H2

Theorem:

W has a spanning property ⇒ W is optimal

W has a bi-spanning property ⇒ W is nd-optimal
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Exposed witnesses

W −→ PW = {x⊗ y | 〈x⊗ y|W |x⊗ y〉 = 0 }

W is exposed

If for any block-positive operator W ′ such that

〈x⊗ y|W ′|x⊗ y〉 = 0 for x⊗ y ∈ PW

one has W ′ = aW , with a > 0
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Non-decomposable witness

exposed −→ extremal −→ nd-optimal

exposed −→ bi-spanning −→ nd-optimal

Theorem [Straszewicz]

For a compact convex set exposed elements are dense in the set of
extremal elements.
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New construction of postive maps

Using a concept of Mutually Unbiased Bases
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Mutually Unbiased Bases (MUB)

De�nition:

{|ψk〉}dk=1 & {|φk〉}dk=1 are MUB

|〈ψk|φl〉|2 =
1

d
; k, l = 1, . . . , d

For d = 2 the are 3 MUBs

[
0
1

]
,

[
1
0

]
;

1√
2

[
1
1

]
,

1√
2

[
1
−1

]
;

1√
2

[
1
i

]
,

1√
2

[
1
−i

]
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Mutually Unbiased Bases (MUB)

N(d) = maximal number of MUBs in d dimensions

Theorem:

3 ≤ N(d) ≤ d+ 1

d = pr ⇒ N(d) = d+ 1

d = d1d2 ⇒ N(d) ≥ min{N(d1), N(d2)}

For d = 6 there is a numerical evidence that N(6) = 3
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How to construct MUBs in Cd

|0〉, |1〉, . . . , |d− 1〉 � computational basis

|k̃〉 =
1√
d

d−1∑
j=0

ω−kj |j〉

ω = e2πi/d

|j〉 ←→ |k̃〉
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Prime d

|0〉, |1〉, . . . , |d− 1〉 � computational basis

X|j〉 = |j + 1〉 ; Z|j〉 = ωj |j〉

X ,Z,XZ,XZ2, . . . ,XZd−1

|ψ(k)
j 〉 � eigenbasis of XZk de�ne d+ 1 MUBs

XZ`|ψ(k)
j 〉 = ωj+k−`|ψ(k)

j+k−`〉
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Weyl�Heisenberg group Hd (arbitrary d)

XZ = ωZX

Umn := XmZn ; (m,n = 0, 1, . . . , d− 1)

UmnUkl = Um+k,n+l

[Umn, Um′n′ ] = 0 ⇐⇒ mn′ − nm′ = 0

1√
d
Umn � de�ne ONB in Md(C)

Tr[UmnU
†
m′n′ ] = dδmm′δnn′
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Weyl�Heisenberg group Hd (arbitrary d)

Umn := XmZn ; (m,n = 0, 1, . . . , d− 1)

U00 = Id

Hd \ Id −→ C1, C2, . . . , CL

Ck ∩ C` = ∅
Ck contains mutually commuting operators

|Ck| = d− 1

eigenbasis of Ck are Mutually Unbiased

L ≤ d+ 1 ; (d prime −→ L = d+ 1)
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MUBs in Quantum Information
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quantum state tomography (discrete Wigner function)

entropic uncertainty relations

Quantum Key Distribution

...
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MUBs −→ positive maps
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MUBs −→ positive map

N(d) = d+ 1

{|ψ(α)
1 〉, . . . , |ψ

(α)
d 〉} ; α = 1, 2, . . . , d+ 1

|〈ψ(α)
k |ψ

(β)
` 〉|

2 =
1

d
; α 6= β

P
(α)
k = |ψ(α)

k 〉〈ψ
(α)
k |
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General idea

Generalize very basic map � reduction map

Φ[X] =
1

d− 1
(ITrX −X)

optimal but not extremal
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Main result

Φ[X] =
1

d− 1

2ITrX −
d+1∑
α=1

d∑
k,`=1

O(α)
kl Tr[XP

(α)
` ]P

(α)
k


O(α)
kl � orthogonal matrices for α = 1, 2, . . . , d+ 1

O(α)n∗ = n∗ ; n∗ = (1, 1, . . . , 1)

Theorem:

Φ is a unital and trace-preserving positive map
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H1 = { X = X† | TrX = 1 }

S(H) = {ρ ∈ H1 | ρ ≥ 0}

Bin ⊂ S(H) ⊂ Bout

X ∈ Bin ⇐⇒ TrX2 ≤ 1

d− 1

X ∈ Bout ⇐⇒ TrX2 ≤ 1

d = 2 −→ Bin = S(H) = Bout = Bloch ball
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Property of MUBs

x ∈ H ; 〈x|x〉 = 1

d+1∑
α=1

d∑
k=1

|〈x|P (α)
k |x〉|

2 = 2



Entanglement witnesses from mutually unbiased bases

Quantum projective 2-design

P1, . . . , Pm (m ≥ d2) � rank-1 projectors

For any homogeneous function of degree 2

f : S(Cd) −→ C

1

m

m∑
i=1

f(Pi) =

∫
S(Cd)

f(|x〉〈x|)dµH(x)

m∑
i=1

Pi⊗Pi = kΠsym

x ∈ H ; 〈x|x〉 = 1 −→
m∑
i=1

|〈x|Pi|x〉|2 = k
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Φ[X] =
1

d− 1

2ITrX −
d+1∑
α=1

d∑
k,`=1

O(α)
kl Tr[XP

(α)
` ]P

(α)
k


Bin ⊂ S(H) ⊂ Bout

Φ[Bout] ⊂ Bin

Φ[∂Bout] ⊂ ∂Bin

P = |x〉〈x| −→ Φ[P ] ∈ ∂Bin
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Entanglement witness

Φ −→ WΦ = (d− 1)

d∑
i,j=1

Eij ⊗ΦEij (Choi matrix)

WΦ = 2Id⊗ Id −
d+1∑
α=1

d∑
k,`=1

O(α)
k` P

(α)
` ⊗P

(α)
k ,

WΦ is block-positive and W � 0
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O(α) � orthogonal matrices for α = 1, 2, . . . , d+ 1

O(α)n∗ = n∗ ; n∗ = (1, 1, . . . , 1)

De�nition: stochastic matrix

Tn∗ = n∗ ; Tij ≥ 0

doubly stochastic if T t is stochastic

De�nition: pseudo-stochastic matrix

Tn∗ = n∗ ; Tij ∈ R

doubly pseudo-stochastic if T t is pseudo-stochastic
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O(α) � orthogonal matrices for α = 1, 2, . . . , d+ 1

O(α)n∗ = n∗ ; n∗ = (1, 1, . . . , 1)

O(α) is doubly pseudo-stochastic

O(α) is doubly stochastic ⇐⇒ O(α) is a permutation
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Special classes � permutations

Φ[X] =
1

d− 1

2ITrX −
d+1∑
α=1

d∑
k,`=1

O(α)
kl Tr[XP

(α)
` ]P

(α)
k


O(α) = permutation matrix

O(α) = I ; α = 1, 2, . . . , d+ 1

Φ[X] =
1

d− 1
(ITrX −X) (reduction map)
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Reduction map vs. quantum entanglement

R[X] =
1

d− 1
(ITrX −X)

ρ ∈ S(H⊗H)

(1l⊗R)ρ ≥ 0 =⇒ ρ is not distillable
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Special classes � permutations

Φ[X] =
1

d− 1

2ITrX −
d+1∑
α=1

d∑
k,`=1

O(α)
kl Tr[XP

(α)
` ]P

(α)
k


X|k〉 = |k + 1〉 (mod d)

O(1) = X ; O(α) = I ; α = 2, . . . , d+ 1

ΦX =
1

d− 1

(
2ε[X] +

d−1∑
i=2

ε[X iXX †i]−X

)
,

ε[X] =

d∑
i=1

P
(1)
i XP

(1)
i

(Ando maps)
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A case study: d = 3

O(α)n∗ = n∗ ; n∗ = (1, 1, 1)

rotation around n∗

O(ϕ) =

 c1(ϕ) c2(ϕ) c3(ϕ)
c3(ϕ) c1(ϕ) c2(ϕ)
c2(ϕ) c3(ϕ) c1(ϕ)

 ,

c1(ϕ) =
2

3
cosϕ+

1

3
,

c2(ϕ) =
2

3
cos

(
ϕ− 2π

3

)
+

1

3
,

c3(ϕ) =
2

3
cos

(
ϕ+

2π

3

)
+

1

3
.
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(ϕ1, ϕ2, ϕ3, ϕ4)

WΦ = 2Id⊗ Id −
d+1∑
α=1

d∑
k,`=1

O(α)
k` (ϕα)P

(α)
` ⊗P

(α)
k ,

W =



a · · · p∗ · · · p
· b · · · q∗ q · ·
· · c r∗ · · · r ·
· · r c · · · r∗ ·
p · · · a · · · p∗

· q · · · b q∗ · ·
· q∗ · · · q b · ·
· · r∗ r · · · c ·
p∗ · · · p · · · a
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(ϕ1, ϕ2, ϕ3, ϕ4)

 a
b
c

 =
1

3

 1 1 1
1 ω ω∗

1 ω∗ ω

 2
eiϕ1

e−iϕ1


 p

q
r

 = −1

3

 1 1 1
1 ω∗ ω
1 ω ω∗

 eiϕ2

e−iϕ3

eiϕ4
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(ϕ1, ϕ2 = ϕ3 = ϕ4 = 0)

W =



a · · · −1 · · · −1
· b · · · · · · ·
· · c · · · · · ·
· · · c · · · · ·
−1 · · · a · · · −1
· · · · · b · · ·
· · · · · · b · ·
· · · · · · · c ·
−1 · · · −1 · · · a


 a

b
c

 =
1

3

 1 1 1
1 ω ω∗

1 ω∗ ω

 2
eiϕ1

e−iϕ1
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Choi-like witness

W =



a · · · −1 · · · −1
· b · · · · · · ·
· · c · · · · · ·
· · · c · · · · ·
−1 · · · a · · · −1
· · · · · b · · ·
· · · · · · b · ·
· · · · · · · c ·
−1 · · · −1 · · · a


W is block-positive if and only if (Cho-Kye-Lee 1992)

a, b, c ≥ 0

a+ b+ c ≥ 2

a ≤ 1 =⇒ bc ≥ (1− a)2
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Boundary

iiii

ii

iv

v
0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

1.0

1.2

(a, b, c) = (0, 1, 1) � reduction map (iii)

(a, b, c) = (1, 1, 0) or (1, 0, 1) � Choi maps (i) and (ii)
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Conclusions

new construction of positive maps from MUBs

generalization of well known maps

Problems: further analysis of

optimality

extremality

exposedness

spanning property
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Happy birthday Bal!!!
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Choi-like maps for d prime

ΦX = Φ∗X −
1

d− 1

d+1∑
α=1

d∑
k,`=1

O(α)
kl Tr[X̃P

(α)
` ]P

(α)
k

O(1) ∈ T
d−1
2 = maximal commutative subgroup (torus) of SO(d− 1)

O(α) = Id ; α = 2, . . . , d+ 1

torus −→ (ϕ1, . . . , ϕ d−1
2

)

λ0 := d− 1 , λk = eiϕk = λ∗d−k ; k = 1, . . . ,
d− 1

2
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Choi-like witness for d prime ∼ T d∗

λ0 := d− 1 , λk = eiϕk = λ∗d−k ; k = 1, . . . , d∗ :=
d− 1

2

ak =
1

d

d−1∑
`=0

ωk`λ` ; ω = e2πi/d

W =

d−1∑
k,`=0

Ek`⊗Wk`

Wk` = −Ek` ; k 6= `

Wkk = X kW00X †k

W00 = diag(a0, a1, . . . , ad−1)
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Conjecture

W has a bi-spanning property (and hence is nd-optimal) if

a0 =
1

d
(d− 1− 2[cosϕ1 + . . .+ cosϕd∗ ]) ≤ 1 ; ak 6= 0 (k > 0)

cosϕ1 + . . .+ cosϕd∗ ≥ −
1

2
; (ϕ1, . . . , ϕd∗) 6= (0, . . . , 0)

(ϕ1, . . . , ϕd∗) = (0, . . . , 0) −→ reduction

Proof for d = 5
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d = 5 vs. d = 3

2D torus −→ (ϕ1, ϕ2) ; 1D torus −→ ϕ1

cosϕ1 + cosϕ2 ≥ −
1

2
: cosϕ1 ≥ −

1

2

-2

0

2

-2

0

2

-2

-1

0

1

2


