Entanglement witnesses from mutually unbiased bases

Dariusz Chruściński
Nicolaus Copernicus University, Toruń, POLAND

In honour of A. P. Balachandran on the occasion of his 80th birthday

Outline:

(1) basic intro to positive maps and entanglement witnesses
(2) positive maps vs. quantum entanglement
(3) Mutually Unbiased Bases (MUBs)
(1) MUBs \rightarrow positive maps
(5) conclusions

How to play with convex sets

Positive maps

A linear map

$$
\Phi: \mathcal{A}_{1} \longrightarrow \mathcal{A}_{2}
$$

is positive iff

$$
\begin{aligned}
& a \geq 0 \Longrightarrow \Phi[a] \geq 0 \\
& \left(a \geq 0 \Longleftrightarrow a=x x^{*}\right)
\end{aligned}
$$

It is unital iff

$$
\Phi\left[e_{1}\right]=e_{2}
$$

Why positive maps?

- provide generalization of $*$-homomorphisms,
- provide generalization of Jordan homomorphisms,
- unital maps define affine mappings between sets of states of \mathbb{C}^{*}-algebras.
- define universal tools for detecting quantum entanglement

The problem

How to construct and classify positive maps

The problem

How to construct and classify positive maps

The problem is hard

Related to 17th Hilbert problem

Special classes of positive maps

- completely positive (CP) maps
- decomposable maps

CP maps \subset decomposable maps \subset all positive maps

Completely positive maps

$$
\Phi: \mathcal{A} \longrightarrow \mathcal{B}(\mathcal{H})
$$

Stinespring 1955

Φ is completely positive iff

- there exists a Hilbert space \mathcal{K}
- there exists \star-homomorhism $\pi: \mathcal{A} \longrightarrow \mathcal{B}(\mathcal{K})$
- there exists $V: \mathcal{K} \longrightarrow \mathcal{H}$

$$
\Phi[a]=V \pi(a) V^{*}
$$

Decomposable maps

$$
\Phi: \mathcal{A} \longrightarrow \mathcal{B}(\mathcal{H})
$$

Φ is a decomposable positive map iff

- there exists a Hilbert space \mathcal{K}
- there exists Jordan-homomorhism $j: \mathcal{A} \longrightarrow \mathcal{B}(\mathcal{K})$
- there exists $V: \mathcal{K} \longrightarrow \mathcal{H}$

$$
\Phi[a]=V j(a) V^{*}
$$

Completely positive maps

$$
\begin{gathered}
\operatorname{dim} \mathcal{H}<\infty \\
\Phi: \mathcal{B}\left(\mathcal{H}_{1}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)
\end{gathered}
$$

Stinespring, Kraus, Choi

$$
\Phi(X)=\sum_{\alpha} V_{\alpha} X V_{\alpha}^{*}
$$

Decomposable maps

$$
\begin{gathered}
\Phi=\Phi_{1}+\mathrm{T} \circ \Phi_{2} \\
\Phi_{1}, \Phi_{2}-\mathrm{CP} \text { maps }
\end{gathered}
$$

$d_{1} \cdot d_{2} \leq 6 \longrightarrow$ all positive maps are decomposable (Woronowicz)

The hard problem is the construction of non-decomposable maps

Positive maps vs. quantum entanglement

$$
\mathcal{H}=\mathcal{H}_{2} \otimes \mathcal{H}_{1}
$$

Definition: (Werner)

$$
\rho=\sum_{\alpha} p_{\alpha} \rho_{\alpha}^{(1)} \otimes \rho_{\alpha}^{(2)} \quad \text { separable state }=\text { not entangled }
$$

Theorem (Horodecki):
ρ is separable iff

$$
(\operatorname{id} \otimes \Phi) \rho \geq 0
$$

for all positive maps $\Phi: \mathcal{B}\left(\mathcal{H}_{2}\right) \longrightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$

ρ is entangled iff there exits a positive map Φ

$(\mathrm{id} \otimes \Phi) \rho \nsupseteq 0$

Φ detects ρ

Classification of entangled states \longleftrightarrow Classification of positive maps

CP property is spectral

$$
\begin{aligned}
& \left\{e_{1}, e_{2}, \ldots\right\} \text {-ONB in } \mathcal{H}_{1} \\
& E_{i j}:=\left|e_{i}\right\rangle\left\langle e_{j}\right| \in M_{d_{1}}(\mathbb{C})
\end{aligned}
$$

Choli matrix

$$
\begin{gathered}
\Phi \longrightarrow \widehat{\Phi}=\sum_{i, j} E_{i j} \otimes \Phi\left(E_{i j}\right) \\
\Phi \text { is } \mathrm{CP} \Longleftrightarrow \widehat{\Phi} \geq 0
\end{gathered}
$$

Quantum Information: Positive Partial Transpose (PPT)

$$
\begin{gathered}
X \in \mathcal{B}_{+}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right) \quad \text { is PPT } \\
X^{\Gamma}:=(\mathbb{1} \otimes \mathrm{T}) X \geq 0 \\
\text { Separable } \subseteq \text { PPT } \\
d_{1} \cdot d_{2} \leq 6 \longrightarrow \text { Separable }=\text { PPT } \quad \text { (Peres, Horodecki) }
\end{gathered}
$$

Φ decomposable $\longrightarrow(\mathbb{1} \otimes \Phi) X \geq 0$ for all PPT states

The hard problem is to detect entangled PPT states

Entanglement witness

Definition:

$$
W \text { is block-positive } \Longleftrightarrow\langle x \otimes y| W|x \otimes y\rangle \geq 0
$$

Theorem:

$$
\Phi \text { is positive } \Longleftrightarrow \widehat{\Phi} \text { is block-positive }
$$

Definition:

W is entanglement witness

- W is block-positive
- W is not positive
ρ is entangled iff there exits an entanglement witness W

$$
\operatorname{Tr}(W \rho)<0
$$

W detects ρ

Geometrical picture

Duality

$$
V \text { - real vector space }
$$

$$
A \subset V \longrightarrow A^{\circ}:=\left\{y \in V^{*} \mid y(x) \geq 0, x \in A\right\} \subset V^{*}
$$

For an arbitary A its dual A° is a convex cone in V^{*}

Duality

V - real vector space

$$
A \subset V \longrightarrow A^{\circ}:=\left\{y \in V^{*} \mid y(x) \geq 0, x \in A\right\} \subset V^{*}
$$

For an arbitary A its dual A° is a convex cone in V^{*}

$$
\begin{aligned}
A \subset B & \Longrightarrow B^{\circ} \subset A^{\circ} \\
(A \cap B)^{\circ} & =\operatorname{conv}\left(A^{\circ} \cup B^{\circ}\right) \\
(A \cup B)^{\circ} & =A^{\circ} \cap B^{\circ}
\end{aligned}
$$

Duality - quantum states

$$
\mathcal{B}_{\text {sa }}:=\text { self-adjoint elements in } \mathcal{B}(\mathcal{H} \otimes \mathcal{H})
$$

$\mathcal{B}_{\mathrm{sa}}$ is a real Hilbert space $\longrightarrow \mathcal{B}_{\mathrm{sa}}^{*} \equiv \mathcal{B}_{\mathrm{sa}}$

$$
\begin{aligned}
& \mathcal{B}_{+}=\text {positive elements in } \mathcal{B}_{\mathrm{sa}} \\
& \mathcal{B}_{\mathrm{PPT}}=\mathrm{PPT} \text { elements in } \mathcal{B}_{+}
\end{aligned}
$$

$\mathcal{B}_{\text {sep }}=$ separable elements in $\mathcal{B}_{\text {PPT }}$

$$
\mathcal{B}_{\mathrm{sep}} \subset \mathcal{B}_{\mathrm{PPT}} \subset \mathcal{B}_{+} \subset \mathcal{B}_{\mathrm{sa}}
$$

Duality - quantum states

$$
\begin{aligned}
& \mathcal{B}_{\mathrm{sep}} \subset \mathcal{B}_{\mathrm{PPT}} \subset \mathcal{B}_{+} \subset \mathcal{B}_{\mathrm{sa}} \\
& \mathcal{B}_{\mathrm{sep}}^{\circ} \supset \mathcal{B}_{\mathrm{PPT}}^{\circ} \supset \mathcal{B}_{+}^{\circ} \supset \mathcal{B}_{\mathrm{sa}}
\end{aligned}
$$

$$
\mathcal{B}_{+}^{\circ}=\mathcal{B}_{+} \quad(\text { self-dual set })
$$

$$
\mathcal{B}_{\text {sep }}^{\circ}=\text { block-positive operators }
$$

$\mathcal{B}_{\text {sep }}^{\circ}=$ block-positive decomposable operators

$$
\begin{aligned}
\text { entanglement witnesses } & =\mathcal{B}_{\mathrm{sep}}^{\circ}-\mathcal{B}_{+} \\
\text {non-decomposable entanglement witnesses } & =\mathcal{B}_{\mathrm{PPT}}^{\circ}-\mathcal{B}_{+}
\end{aligned}
$$

Optimal witness

$$
W \longrightarrow \mathcal{D}_{W}=\{X \geq 0 \mid \operatorname{Tr}(X W)<0\}
$$

Definition:

W_{1} is finer than $W_{2} \Longleftrightarrow \mathcal{D}_{W_{2}} \subset \mathcal{D}_{W_{1}}$ W is optimal \Longleftrightarrow there is no witness finer than W

Theorem:

W is optimal iff $W-A$ is no longer block-positive
where A is an arbitrary $A \in \mathcal{B}_{+}$

nd-optimal witness

$$
W \longrightarrow \mathcal{D}_{W}^{\mathrm{PPT}}=\left\{X \in \mathcal{B}_{\mathrm{PPT}} \mid \operatorname{Tr}(X W)<0\right\}
$$

Definition:

W_{1} is nd-finer than $W_{2} \Longleftrightarrow \mathcal{D}_{W_{2}}^{\mathrm{PPT}} \subset \mathcal{D}_{W_{1}}^{\mathrm{PPT}}$
W is nd-optimal \Longleftrightarrow no non-decomposable witness finer than W

Theorem:

W is nd-optimal iff $W-D$ is no longer block-positive where $D \in \mathcal{B}_{\text {PPT }}$ is arbitrary

optimal vs. nd-optimal witness

Theorem:

$$
W \text { is nd-optimal if and only if }
$$

both W and $W^{\Gamma}:=(\mathrm{id} \otimes \mathrm{T}) W$ are optimal

Banach separation theorem

W^{\prime} is finer than W

Spanning property

$$
\left\langle x_{k} \otimes y_{k}\right| W\left|x_{k} \otimes y_{k}\right\rangle=0
$$

Definition:

- W has a spanning property if $x_{k} \otimes y_{k}$ span $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
- W has a bi-spanning property if also $x_{k} \otimes y_{k}^{*}$ span $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$

Theorem:

W has a spanning property $\Rightarrow W$ is optimal
W has a bi-spanning property $\Rightarrow W$ is nd-optimal

Exposed witnesses

$$
W \longrightarrow P_{W}=\{x \otimes y \mid\langle x \otimes y| W|x \otimes y\rangle=0\}
$$

W is exposed

If for any block-positive operator W^{\prime} such that

$$
\langle x \otimes y| W^{\prime}|x \otimes y\rangle=0 \text { for } x \otimes y \in P_{W}
$$

one has $W^{\prime}=a W$, with $a>0$

Non-decomposable witness

$$
\text { exposed } \longrightarrow \text { extremal } \longrightarrow \text { nd-optimal }
$$

$$
\text { exposed } \longrightarrow \text { bi-spanning } \longrightarrow \text { nd-optimal }
$$

Theorem [Straszewicz]

For a compact convex set exposed elements are dense in the set of extremal elements.

New construction of postive maps

Using a concept of Mutually Unbiased Bases

Mutually Unbiased Bases (MUB)

Definition:

$$
\begin{aligned}
& \left\{\left|\psi_{k}\right\rangle\right\}_{k=1}^{d} \&\left\{\left|\phi_{k}\right\rangle\right\}_{k=1}^{d} \text { are MUB } \\
& \left|\left\langle\psi_{k} \mid \phi_{l}\right\rangle\right|^{2}=\frac{1}{d} ; \quad k, l=1, \ldots, d
\end{aligned}
$$

For $d=2$ the are 3 MUBs

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right] ; \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] ; \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
i
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

Mutually Unbiased Bases (MUB)

$N(d)=$ maximal number of MUBs in d dimensions

Theorem:

- $3 \leq N(d) \leq d+1$
- $d=p^{r} \Rightarrow N(d)=d+1$
- $d=d_{1} d_{2} \Rightarrow N(d) \geq \min \left\{N\left(d_{1}\right), N\left(d_{2}\right)\right\}$

For $d=6$ there is a numerical evidence that $N(6)=3$

How to construct MUBs in \mathbb{C}^{d}

$$
|0\rangle,|1\rangle, \ldots,|d-1\rangle \text { - computational basis }
$$

$$
\begin{gathered}
|\widetilde{k}\rangle=\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} \omega^{-k j}|j\rangle \\
\omega=e^{2 \pi i / d}
\end{gathered}
$$

$$
|j\rangle \longleftrightarrow|\widetilde{k}\rangle
$$

Prime d

$$
|0\rangle,|1\rangle, \ldots,|d-1\rangle \text { - computational basis }
$$

$$
\mathcal{X}|j\rangle=|j+1\rangle ; \quad \mathcal{Z}|j\rangle=\omega^{j}|j\rangle
$$

$$
\mathcal{X}, \mathcal{Z}, \mathcal{X} \mathcal{Z}, \mathcal{X} \mathcal{Z}^{2}, \ldots, \mathcal{X} \mathcal{Z}^{d-1}
$$

$\left|\psi_{j}^{(k)}\right\rangle$ - eigenbasis of $\mathcal{X} \mathcal{Z}^{k}$ define $d+1 \mathrm{MUBs}$

$$
\mathcal{X} \mathcal{Z}^{\ell}\left|\psi_{j}^{(k)}\right\rangle=\omega^{j+k-\ell}\left|\psi_{j+k-\ell}^{(k)}\right\rangle
$$

Weyl-Heisenberg group \mathbb{H}_{d} (arbitrary d)

$$
\begin{gathered}
\mathcal{X} \mathcal{Z}=\omega \mathcal{Z X} \\
U_{m n}:=\mathcal{X}^{m} \mathcal{Z}^{n} ; \quad(m, n=0,1, \ldots, d-1) \\
U_{m n} U_{k l}=U_{m+k, n+l} \\
{\left[U_{m n}, U_{m^{\prime} n^{\prime}}\right]=0 \Longleftrightarrow m n^{\prime}-n m^{\prime}=0} \\
\frac{1}{\sqrt{d}} U_{m n}-\text { define ONB in } M_{d}(\mathbb{C}) \\
\operatorname{Tr}\left[U_{m n} U_{m^{\prime} n^{\prime}}^{\dagger}\right]=d \delta_{m m^{\prime}} \delta_{n n^{\prime}}
\end{gathered}
$$

Weyl-Heisenberg group \mathbb{H}_{d} (arbitrary d)

$$
\begin{gathered}
U_{m n}:=\mathcal{X}^{m} \mathcal{Z}^{n} ; \quad(m, n=0,1, \ldots, d-1) \\
U_{00}=\mathbb{I}_{d} \\
\mathbb{H}_{d} \backslash \mathbb{I}_{d} \longrightarrow \mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{L}
\end{gathered}
$$

- $\mathcal{C}_{k} \cap \mathcal{C}_{\ell}=\emptyset$
- \mathcal{C}_{k} contains mutually commuting operators
- $\left|\mathcal{C}_{k}\right|=d-1$

eigenbasis of \mathcal{C}_{k} are Mutually Unbiased

$$
L \leq d+1 \quad ; \quad(d \text { prime } \longrightarrow L=d+1)
$$

MUBs in Quantum Information

- quantum state tomography (discrete Wigner function)
- entropic uncertainty relations
- Quantum Key Distribution
- ...

MUBs \longrightarrow positive maps

MUBs \longrightarrow positive map

$$
N(d)=d+1
$$

$$
\begin{gathered}
\left\{\left|\psi_{1}^{(\alpha)}\right\rangle, \ldots,\left|\psi_{d}^{(\alpha)}\right\rangle\right\} ; \quad \alpha=1,2, \ldots, d+1 \\
\left|\left\langle\psi_{k}^{(\alpha)} \mid \psi_{\ell}^{(\beta)}\right\rangle\right|^{2}=\frac{1}{d} ; \quad \alpha \neq \beta \\
P_{k}^{(\alpha)}=\left|\psi_{k}^{(\alpha)}\right\rangle\left\langle\psi_{k}^{(\alpha)}\right|
\end{gathered}
$$

General idea

Generalize very basic map - reduction map

$$
\Phi[X]=\frac{1}{d-1}(\mathbb{I} \operatorname{Tr} X-X)
$$

optimal but not extremal

Main result

$$
\Phi[X]=\frac{1}{d-1}\left\{2 \mathbb{I} \operatorname{Tr} X-\sum_{\alpha=1}^{d+1} \sum_{k, \ell=1}^{d} \mathcal{O}_{k l}^{(\alpha)} \operatorname{Tr}\left[X P_{\ell}^{(\alpha)}\right] P_{k}^{(\alpha)}\right\}
$$

$\mathcal{O}_{k l}^{(\alpha)} \quad$ - orthogonal matrices for $\alpha=1,2, \ldots, d+1$

$$
\mathcal{O}^{(\alpha)} \mathbf{n}_{*}=\mathbf{n}_{*} ; \mathbf{n}_{*}=(1,1, \ldots, 1)
$$

Theorem:

Φ is a unital and trace-preserving positive map

$$
\begin{gathered}
\mathbb{H}_{1}=\left\{X=X^{\dagger} \mid \operatorname{Tr} X=1\right\} \\
S(\mathcal{H})=\left\{\rho \in \mathbb{H}_{1} \mid \rho \geq 0\right\}
\end{gathered}
$$

$$
\mathbf{B}_{\mathrm{in}} \subset S(\mathcal{H}) \subset \mathbf{B}_{\mathrm{out}}
$$

$$
\begin{gathered}
X \in \mathbf{B}_{\text {in }} \Longleftrightarrow \operatorname{Tr} X^{2} \leq \frac{1}{d-1} \\
X \in \mathbf{B}_{\text {out }} \Longleftrightarrow \operatorname{Tr} X^{2} \leq 1 \\
d=2 \longrightarrow \mathbf{B}_{\text {in }}=S(\mathcal{H})=\mathbf{B}_{\text {out }}=\text { Bloch ball }
\end{gathered}
$$

Property of MUBs

$$
\begin{gathered}
x \in \mathcal{H} ; \quad\langle x \mid x\rangle=1 \\
\left.\sum_{\alpha=1}^{d+1} \sum_{k=1}^{d}\left|\langle x| P_{k}^{(\alpha)}\right| x\right\rangle\left.\right|^{2}=2
\end{gathered}
$$

Quantum projective 2-design

$$
P_{1}, \ldots, P_{m}\left(m \geq d^{2}\right)-\text { rank-1 projectors }
$$

For any homogeneous function of degree 2

$$
\begin{gathered}
f: S\left(\mathbb{C}^{d}\right) \longrightarrow \mathbb{C} \\
\frac{1}{m} \sum_{i=1}^{m} f\left(P_{i}\right)=\int_{S\left(\mathbb{C}^{d}\right)} f(|x\rangle\langle x|) d \mu_{H}(x)
\end{gathered}
$$

$$
\sum_{i=1}^{m} P_{i} \otimes P_{i}=k \Pi_{\mathrm{sym}}
$$

$$
\left.x \in \mathcal{H} ; \quad\langle x \mid x\rangle=1 \longrightarrow \sum_{i=1}^{m}\left|\langle x| P_{i}\right| x\right\rangle\left.\right|^{2}=k
$$

$$
\Phi[X]=\frac{1}{d-1}\left\{2 \mathbb{I} \operatorname{Tr} X-\sum_{\alpha=1}^{d+1} \sum_{k, \ell=1}^{d} \mathcal{O}_{k l}^{(\alpha)} \operatorname{Tr}\left[X P_{\ell}^{(\alpha)}\right] P_{k}^{(\alpha)}\right\}
$$

$\mathbf{B}_{\text {in }} \subset S(\mathcal{H}) \subset \mathbf{B}_{\text {out }}$

$$
\begin{aligned}
\Phi\left[\mathbf{B}_{\text {out }}\right] & \subset \mathbf{B}_{\text {in }} \\
\Phi\left[\partial \mathbf{B}_{\text {out }}\right] & \subset \partial \mathbf{B}_{\text {in }}
\end{aligned}
$$

$$
P=|x\rangle\langle x| \longrightarrow \Phi[P] \in \partial \mathbf{B}_{\text {in }}
$$

Entanglement witness

$$
\begin{gathered}
\Phi \longrightarrow W_{\Phi}=(d-1) \sum_{i, j=1}^{d} E_{i j} \otimes \Phi E_{i j} \quad \text { (Choi matrix) } \\
W_{\Phi}=2 \mathbb{I}_{d} \otimes \mathbb{I}_{d}-\sum_{\alpha=1}^{d+1} \sum_{k, \ell=1}^{d} \mathcal{O}_{k \ell}^{(\alpha)} \bar{P}_{\ell}^{(\alpha)} \otimes P_{k}^{(\alpha)}
\end{gathered}
$$

W_{Φ} is block-positive and $W \nsupseteq 0$

$$
\begin{gathered}
\mathcal{O}^{(\alpha)} \text { - orthogonal matrices for } \alpha=1,2, \ldots, d+1 \\
\mathcal{O}^{(\alpha)} \mathbf{n}_{*}=\mathbf{n}_{*} ; \mathbf{n}_{*}=(1,1, \ldots, 1)
\end{gathered}
$$

doubly stochastic if T^{t} is stochastic

$$
\begin{gathered}
\mathcal{O}^{(\alpha)} \text { - orthogonal matrices for } \alpha=1,2, \ldots, d+1 \\
\mathcal{O}^{(\alpha)} \mathbf{n}_{*}=\mathbf{n}_{*} ; \mathbf{n}_{*}=(1,1, \ldots, 1)
\end{gathered}
$$

Definition: stochastic matrix

$$
T \mathbf{n}_{*}=\mathbf{n}_{*} ; \quad T_{i j} \geq 0
$$

doubly stochastic if T^{t} is stochastic
$\mathcal{O}^{(\alpha)}$ - orthogonal matrices for $\alpha=1,2, \ldots, d+1$

$$
\mathcal{O}^{(\alpha)} \mathbf{n}_{*}=\mathbf{n}_{*} ; \quad \mathbf{n}_{*}=(1,1, \ldots, 1)
$$

Definition: stochastic matrix

$$
T \mathbf{n}_{*}=\mathbf{n}_{*} ; \quad T_{i j} \geq 0
$$

doubly stochastic if T^{t} is stochastic
Definition: pseudo-stochastic matrix

$$
T \mathbf{n}_{*}=\mathbf{n}_{*} ; \quad T_{i j} \in \mathbb{R}
$$

doubly pseudo-stochastic if T^{t} is pseudo-stochastic
$\mathcal{O}^{(\alpha)}$ - orthogonal matrices for $\alpha=1,2, \ldots, d+1$

$$
\mathcal{O}^{(\alpha)} \mathbf{n}_{*}=\mathbf{n}_{*} ; \quad \mathbf{n}_{*}=(1,1, \ldots, 1)
$$

$\mathcal{O}^{(\alpha)}$ is doubly pseudo-stochastic
$\mathcal{O}^{(\alpha)}$ is doubly stochastic $\Longleftrightarrow \mathcal{O}^{(\alpha)}$ is a permutation

Special classes - permutations

$$
\Phi[X]=\frac{1}{d-1}\left\{2 \mathbb{I} \operatorname{Tr} X-\sum_{\alpha=1}^{d+1} \sum_{k, \ell=1}^{d} \mathcal{O}_{k l}^{(\alpha)} \operatorname{Tr}\left[X P_{\ell}^{(\alpha)}\right] P_{k}^{(\alpha)}\right\}
$$

$$
\mathcal{O}^{(\alpha)}=\text { permutation matrix }
$$

Special classes - permutations

$$
\Phi[X]=\frac{1}{d-1}\left\{2 \mathbb{I} \operatorname{Tr} X-\sum_{\alpha=1}^{d+1} \sum_{k, \ell=1}^{d} \mathcal{O}_{k l}^{(\alpha)} \operatorname{Tr}\left[X P_{\ell}^{(\alpha)}\right] P_{k}^{(\alpha)}\right\}
$$

$\mathcal{O}^{(\alpha)}=$ permutation matrix

$$
\mathcal{O}^{(\alpha)}=\mathbb{I} ; \quad \alpha=1,2, \ldots, d+1
$$

$$
\Phi[X]=\frac{1}{d-1}(\mathbb{I} \operatorname{Tr} X-X) \quad \text { (reduction map) }
$$

Reduction map vs. quantum entanglement

$$
\begin{gathered}
R[X]=\frac{1}{d-1}(\mathbb{I} \operatorname{Tr} X-X) \\
\rho \in S(\mathcal{H} \otimes \mathcal{H})
\end{gathered}
$$

$(\mathbb{1 1} \otimes R) \rho \geq 0 \Longrightarrow \rho$ is not distillable

Special classes - permutations

$$
\begin{gathered}
\Phi[X]=\frac{1}{d-1}\left\{2 \mathbb{I} \operatorname{Tr} X-\sum_{\alpha=1}^{d+1} \sum_{k, \ell=1}^{d} \mathcal{O}_{k l}^{(\alpha)} \operatorname{Tr}\left[X P_{\ell}^{(\alpha)}\right] P_{k}^{(\alpha)}\right\} \\
\mathcal{X}|k\rangle=|k+1\rangle(\bmod d) \\
\mathcal{O}^{(1)}=\mathcal{X} ; \mathcal{O}^{(\alpha)}=\mathbb{I} ; \quad \alpha=2, \ldots, d+1 \\
\Phi X=\frac{1}{d-1}\left(2 \varepsilon[X]+\sum_{i=2}^{d-1} \varepsilon\left[\mathcal{X}^{i} X \mathcal{X}^{\dagger i}\right]-X\right) \\
\varepsilon[X]=\sum_{i=1}^{d} P_{i}^{(1)} X P_{i}^{(1)}
\end{gathered}
$$

A case study: $d=3$

$$
\mathcal{O}^{(\alpha)} \mathbf{n}_{*}=\mathbf{n}_{*} ; \quad \mathbf{n}_{*}=(1,1,1)
$$

rotation around \mathbf{n}_{*}

$$
\begin{aligned}
\mathcal{O}(\varphi) & =\left(\begin{array}{lll}
c_{1}(\varphi) & c_{2}(\varphi) & c_{3}(\varphi) \\
c_{3}(\varphi) & c_{1}(\varphi) & c_{2}(\varphi) \\
c_{2}(\varphi) & c_{3}(\varphi) & c_{1}(\varphi)
\end{array}\right), \\
c_{1}(\varphi) & =\frac{2}{3} \cos \varphi+\frac{1}{3}, \\
c_{2}(\varphi) & =\frac{2}{3} \cos \left(\varphi-\frac{2 \pi}{3}\right)+\frac{1}{3}, \\
c_{3}(\varphi) & =\frac{2}{3} \cos \left(\varphi+\frac{2 \pi}{3}\right)+\frac{1}{3} .
\end{aligned}
$$

$\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right)$

$$
\begin{gathered}
W_{\Phi}=2 \mathbb{I}_{d} \otimes \mathbb{I}_{d}-\sum_{\alpha=1}^{d+1} \sum_{k, \ell=1}^{d} \mathcal{O}_{k \ell}^{(\alpha)}\left(\varphi_{\alpha}\right) \bar{P}_{\ell}^{(\alpha)} \otimes P_{k}^{(\alpha)}, \\
W=\left(\begin{array}{ccc|ccc|ccc}
a & \cdot & \cdot & \cdot & p^{*} & \cdot & \cdot & \cdot & p \\
\cdot & b & \cdot & \cdot & \cdot & q^{*} & q & \cdot & \cdot \\
\cdot & \cdot & c & r^{*} & \cdot & \cdot & \cdot & r & \cdot \\
\hline \cdot & \cdot & r & c & \cdot & \cdot & \cdot & r^{*} & \cdot \\
p & \cdot & \cdot & \cdot & a & \cdot & \cdot & \cdot & p^{*} \\
\cdot & q & \cdot & \cdot & \cdot & b & q^{*} & \cdot & \cdot \\
\hline \cdot & q^{*} & \cdot & \cdot & \cdot & q & b & \cdot & \cdot \\
\cdot & \cdot & r^{*} & r & \cdot & \cdot & \cdot & c & \cdot \\
p^{*} & \cdot & \cdot & \cdot & p & \cdot & \cdot & \cdot & a
\end{array}\right)
\end{gathered}
$$

$\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right)$

$$
\begin{aligned}
& \left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{*} \\
1 & \omega^{*} & \omega
\end{array}\right)\left(\begin{array}{c}
2 \\
e^{i \varphi_{1}} \\
e^{-i \varphi_{1}}
\end{array}\right) \\
& \left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=-\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega^{*} & \omega \\
1 & \omega & \omega^{*}
\end{array}\right)\left(\begin{array}{c}
e^{i \varphi_{2}} \\
e^{-i \varphi_{3}} \\
e^{i \varphi_{4}}
\end{array}\right)
\end{aligned}
$$

$$
\left(\varphi_{1}, \varphi_{2}=\varphi_{3}=\varphi_{4}=0\right)
$$

$$
\begin{gathered}
W=\left(\begin{array}{ccc|ccc|ccc}
a & \cdot & \cdot & \cdot & -1 & \cdot & \cdot & \cdot & -1 \\
\cdot & b & \cdot \\
\cdot & \cdot & c & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & c & \cdot & \cdot & \cdot & \cdot & \cdot \\
-1 & \cdot & \cdot & \cdot & a & \cdot & \cdot & \cdot & -1 \\
\cdot & \cdot & \cdot & \cdot & \cdot & b & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & b & \cdot & \cdot \\
\cdot & c & \cdot \\
-1 & \cdot & \cdot & \cdot & -1 & \cdot & \cdot & \cdot & a
\end{array}\right) \\
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cccc}
1 & 1 & 1 \\
1 & \omega & \omega^{*} \\
1 & \omega^{*} & \omega
\end{array}\right)\left(\begin{array}{c}
2 \\
e^{i \varphi_{1}} \\
e^{-i \varphi_{1}}
\end{array}\right)
\end{gathered}
$$

Choi-like witness

$$
W=\left(\begin{array}{ccc|ccc|ccc}
a & \cdot & \cdot & \cdot & -1 & \cdot & \cdot & \cdot & -1 \\
\cdot & b & \cdot \\
\cdot & \cdot & c & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & c & \cdot & \cdot & \cdot & \cdot & \cdot \\
-1 & \cdot & \cdot & \cdot & a & \cdot & \cdot & \cdot & -1 \\
\cdot & \cdot & \cdot & \cdot & \cdot & b & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & b & \cdot & \cdot \\
\cdot & c & \cdot \\
-1 & \cdot & \cdot & \cdot & -1 & \cdot & \cdot & \cdot & a
\end{array}\right)
$$

W is block-positive if and only if (Cho-Kye-Lee 1992)

- $a, b, c \geq 0$
- $a+b+c \geq 2$
- $a \leq 1 \Longrightarrow b c \geq(1-a)^{2}$

- $(a, b, c)=(0,1,1)$ - reduction map (iii)
- $(a, b, c)=(1,1,0)$ or $(1,0,1)$ - Choi maps (i) and (ii)

Conclusions

- new construction of positive maps from MUBs
- generalization of well known maps
- Problems: further analysis of
- optimality
- extremality
- exposedness
- spanning property

Happy birthday Bal!!!

Choi-like maps for d prime

$$
\Phi X=\Phi_{*} X-\frac{1}{d-1} \sum_{\alpha=1}^{d+1} \sum_{k, \ell=1}^{d} \mathcal{O}_{k l}^{(\alpha)} \operatorname{Tr}\left[\widetilde{X} P_{\ell}^{(\alpha)}\right] P_{k}^{(\alpha)}
$$

$\mathcal{O}^{(1)} \in T^{\frac{d-1}{2}}=$ maximal commutative subgroup (torus) of $S O(d-1)$

$$
\begin{gathered}
\mathcal{O}^{(\alpha)}=\mathbb{I}_{d} ; \alpha=2, \ldots, d+1 \\
\text { torus } \longrightarrow\left(\varphi_{1}, \ldots, \varphi_{\frac{d-1}{2}}\right) \\
\lambda_{0}:=d-1, \lambda_{k}=e^{i \varphi_{k}}=\lambda_{d-k}^{*} ; k=1, \ldots, \frac{d-1}{2}
\end{gathered}
$$

Choi-like witness for d prime $\sim T^{d_{*}}$

$$
\begin{gathered}
\lambda_{0}:=d-1, \lambda_{k}=e^{i \varphi_{k}}=\lambda_{d-k}^{*} ; k=1, \ldots, d_{*}:=\frac{d-1}{2} \\
a_{k}=\frac{1}{d} \sum_{\ell=0}^{d-1} \omega^{k \ell} \lambda_{\ell} ; \quad \omega=e^{2 \pi i / d} \\
W=\sum_{k, \ell=0}^{d-1} E_{k \ell} \otimes W_{k \ell} \\
W_{k \ell}=-E_{k \ell} ; \quad k \neq \ell \\
W_{k k}=\mathcal{X}^{k} W_{00} \mathcal{X}^{\dagger k} \\
W_{00}=\operatorname{diag}\left(a_{0}, a_{1}, \ldots, a_{d-1}\right)
\end{gathered}
$$

Conjecture

W has a bi-spanning property (and hence is nd-optimal) if

$$
\begin{gathered}
a_{0}=\frac{1}{d}\left(d-1-2\left[\cos \varphi_{1}+\ldots+\cos \varphi_{d_{*}}\right]\right) \leq 1 ; a_{k} \neq 0(k>0) \\
\cos \varphi_{1}+\ldots+\cos \varphi_{d_{*}} \geq-\frac{1}{2} ; \quad\left(\varphi_{1}, \ldots, \varphi_{d_{*}}\right) \neq(0, \ldots, 0) \\
\left(\varphi_{1}, \ldots, \varphi_{d_{*}}\right)=(0, \ldots, 0) \longrightarrow \text { reduction }
\end{gathered}
$$

Proof for $d=5$

$$
d=5 \text { vs. } d=3
$$

$$
\begin{aligned}
& \text { 2D torus } \longrightarrow\left(\varphi_{1}, \varphi_{2}\right) \quad ; \quad \text { 1D torus } \longrightarrow \varphi_{1} \\
& \cos \varphi_{1}+\cos \varphi_{2} \geq-\frac{1}{2} \quad: \quad \cos \varphi_{1} \geq-\frac{1}{2}
\end{aligned}
$$

