Entanglement witnesses from mutually unbiased bases

Dariusz Chruściński

Nicolaus Copernicus University, Toruń, POLAND

In honour of A. P. Balachandran on the occasion of his 80th birthday

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline:

I basic intro to positive maps and entanglement witnesses

・ロト ・ 日 ・ モート ・ 田 ・ うへで

- 2 positive maps vs. quantum entanglement
- Mutually Unbiased Bases (MUBs)
- conclusions

How to play with convex sets

Positive maps

A linear map

$$\Phi : \mathcal{A}_1 \longrightarrow \mathcal{A}_2$$

is positive iff

$$a \ge 0 \implies \Phi[a] \ge 0$$

$$(a \ge 0 \iff a = xx^*)$$

It is unital iff

$$\Phi[e_1] = e_2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why positive maps?

- provide generalization of *-homomorphisms,
- provide generalization of Jordan homomorphisms,
- \bullet unital maps define affine mappings between sets of states of $\mathbb{C}^*\mbox{-algebras}.$
- define universal tools for detecting quantum entanglement

ション ふゆ アメリア メリア しょうくしゃ

The problem

How to construct and classify positive maps

The problem is hard

Related to 17th Hilbert problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The problem

How to construct and classify positive maps

The problem is hard

Related to 17th Hilbert problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Special classes of positive maps

- completely positive (CP) maps
- decomposable maps

 $\mathsf{CP} \mathsf{ maps} \subset \mathsf{decomposable} \mathsf{ maps} \subset \mathsf{all} \mathsf{ positive} \mathsf{ maps}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Completely positive maps

$$\Phi \; : \; \mathcal{A} \; \longrightarrow \; \mathcal{B}(\mathcal{H})$$

Stinespring 1955

 Φ is completely positive iff

- $\bullet\,$ there exists a Hilbert space ${\cal K}$
- there exists \star -homomorhism $\pi : \mathcal{A} \longrightarrow \mathcal{B}(\mathcal{K})$
- there exists $V : \mathcal{K} \longrightarrow \mathcal{H}$

$$\Phi[a] = V\pi(a)V^*$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Decomposable maps

$$\Phi \; : \; \mathcal{A} \; \longrightarrow \; \mathcal{B}(\mathcal{H})$$

 Φ is a decomposable positive map iff

- ullet there exists a Hilbert space ${\cal K}$
- there exists Jordan-homomorhism $j: \mathcal{A} \longrightarrow \mathcal{B}(\mathcal{K})$
- there exists $V: \mathcal{K} \longrightarrow \mathcal{H}$

 $\Phi[a] = Vj(a)V^*$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Entanglement witnesses from mutually unbiased bases

Completely positive maps

$\dim \mathcal{H} < \infty$

$$\Phi \; : \; \mathcal{B}(\mathcal{H}_1) \; \longrightarrow \; \mathcal{B}(\mathcal{H}_2)$$

Stinespring, Kraus, Choi

$$\Phi(X) = \sum_{\alpha} V_{\alpha} X V_{\alpha}^*$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Decomposable maps

$$\Phi = \Phi_1 + T \circ \Phi_2$$

$$\Phi_1, \Phi_2 - \mathsf{CP} \mathsf{ maps}$$

 $d_1 \cdot d_2 \leq 6 \longrightarrow$ all positive maps are decomposable (Woronowicz)

The hard problem is the construction of non-decomposable maps

ション ふゆ アメリア メリア しょうくしゃ

Positive maps vs. quantum entanglement

$$\mathcal{H} = \mathcal{H}_2 \otimes \mathcal{H}_1$$

Definition: (Werner)

$$ho = \sum_lpha \ p_lpha \
ho_lpha^{(1)} \otimes
ho_lpha^{(2)}$$
 separable state = not entangled

Theorem (Horodecki):

 ρ is separable iff

 $(\mathrm{id}\otimes\Phi)\rho\geq 0$

for all positive maps $\Phi : \mathcal{B}(\mathcal{H}_2) \longrightarrow \mathcal{B}(\mathcal{H}_1)$

ho is entangled iff there exits a positive map Φ

$(\mathrm{id}\otimes\Phi)\rho \not\geq 0$

Φ detects ρ

Classification of entangled states \longleftrightarrow Classification of positive maps

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへで

CP property is spectral

$\{e_1, e_2, \dots\}$ -ONB in \mathcal{H}_1 $E_{ij} := |e_i\rangle\langle e_j| \in M_{d_1}(\mathbb{C})$

Choi matrix

$$\Phi \longrightarrow \widehat{\Phi} = \sum_{i,j} E_{ij} \otimes \Phi(E_{ij})$$

 $\Phi \text{ is CP } \iff \widehat{\Phi} \ge 0$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Quantum Information: Positive Partial Transpose (PPT)

 $X \in \mathcal{B}_+(\mathcal{H}_1 \otimes \mathcal{H}_2)$ is PPT

 $X^{\Gamma} := (1 \otimes \mathbf{T}) X \ge 0$

 $\mathsf{Separable} \subseteq \mathsf{PPT}$

 $d_1 \cdot d_2 \leq 6 \longrightarrow$ Separable = PPT (Peres, Horodecki)

 Φ decomposable $\longrightarrow (1 \otimes \Phi) X \ge 0$ for all PPT states

The hard problem is to detect entangled PPT states

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Entanglement witness

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ρ is entangled iff there exits an entanglement witness W

$\operatorname{Tr}(W\rho) < 0$

W detects ρ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Geometrical picture

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Duality

V — real vector space

$$A \subset V \longrightarrow A^{\circ} := \left\{ y \in V^* \mid y(x) \ge 0 \ , \ x \in A \right\} \subset V^*$$

For an arbitary A its dual A° is a convex cone in V^{*}

 $A \subset B \implies B^{\circ} \subset A^{\circ}$ $(A \cap B)^{\circ} = \operatorname{conv}(A^{\circ} \cup B^{\circ})$ $(A \cup B)^{\circ} = A^{\circ} \cap B^{\circ}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Duality

V — real vector space

$$A \subset V \longrightarrow A^{\circ} := \left\{ y \in V^* \mid y(x) \ge 0 \ , \ x \in A \right\} \subset V^*$$

For an arbitary A its dual A° is a convex cone in V^*

$$A \subset B \implies B^{\circ} \subset A^{\circ}$$
$$(A \cap B)^{\circ} = \operatorname{conv}(A^{\circ} \cup B^{\circ})$$
$$(A \cup B)^{\circ} = A^{\circ} \cap B^{\circ}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Duality – quantum states

$$\mathcal{B}_{\mathrm{sa}} := \mathsf{self}\mathsf{-adjoint} \ \mathsf{elements} \ \mathsf{in} \ \ \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$$

$$\mathcal{B}_{\mathrm{sa}}$$
 is a real Hilbert space $\ \longrightarrow \ \mathcal{B}_{\mathrm{sa}}^* \equiv \mathcal{B}_{\mathrm{sa}}$

$$\mathcal{B}_+ = \mathsf{positive}$$
 elements in $\mathcal{B}_{\mathrm{sa}}$

$$\mathcal{B}_{\mathrm{PPT}} = \mathsf{PPT}$$
 elements in \mathcal{B}_+

$$\mathcal{B}_{ ext{sep}} = ext{separable}$$
 elements in $\mathcal{B}_{ ext{PPT}}$

$$\mathcal{B}_{sep} \subset \mathcal{B}_{PPT} \subset \mathcal{B}_+ \subset \mathcal{B}_{sa}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Duality – quantum states

$$\mathcal{B}_{ ext{sep}} \subset \mathcal{B}_{ ext{PPT}} \subset \mathcal{B}_+ \subset \mathcal{B}_{ ext{sa}}$$

$$\mathcal{B}^{\circ}_{ ext{sep}} \supset \mathcal{B}^{\circ}_{ ext{PPT}} \supset \mathcal{B}^{\circ}_{+} \supset \mathcal{B}_{ ext{sa}}$$

 $\mathcal{B}^\circ_+ = \mathcal{B}_+$ (self-dual set)

 $\mathcal{B}^\circ_{ ext{sep}} = \mathsf{block} ext{-positive operators}$

 $\mathcal{B}^\circ_{\mathrm{sep}} = \mathsf{block} ext{-positive decomposable operators}$

entanglement witnesses = $\mathcal{B}_{sep}^{\circ} - \mathcal{B}_{+}$ non-decomposable entanglement witnesses = $\mathcal{B}_{PPT}^{\circ} - \mathcal{B}_{+}$

$$W \longrightarrow \mathcal{D}_W = \{X \ge 0 \mid \operatorname{Tr}(XW) < 0\}$$

Definition:

$$W_1$$
 is finer than $W_2 \iff \mathcal{D}_{W_2} \subset \mathcal{D}_{W_1}$

W is optimal \iff there is no witness finer than W

Theorem:

W is optimal iff W - A is no longer block-positive

where A is an arbitrary $A \in \mathcal{B}_+$

nd-optimal witness

$$W \longrightarrow \mathcal{D}_W^{\text{PPT}} = \{ X \in \mathcal{B}_{\text{PPT}} \mid \text{Tr}(XW) < 0 \}$$

Definition:

$$W_1$$
 is nd-finer than $W_2 \iff \mathcal{D}_{W_2}^{\mathrm{PPT}} \subset \mathcal{D}_{W_1}^{\mathrm{PPT}}$

 $W ext{ is nd-optimal} \iff ext{ no non-decomposable witness finer than } W$

Theorem:

W is nd-optimal iff W - D is no longer block-positive

where $D \in \mathcal{B}_{PPT}$ is arbitrary

Entanglement witnesses from mutually unbiased bases

optimal vs. nd-optimal witness

Theorem:

W is nd-optimal if and only if

both W and $W^{\Gamma} := (\mathrm{id} \otimes \mathrm{T})W$ are optimal

・ロト ・四ト ・ヨト ・ヨー うへぐ

Banach separation theorem

 W^\prime is finer than W

(ロ)、

◆□ → <個 → < E → < E → E の < @</p>

Entanglement witnesses from mutually unbiased bases

Spanning property

$\langle x_k \otimes y_k | W | x_k \otimes y_k \rangle = 0$

Definition:

- W has a spanning property if $x_k \otimes y_k$ span $\mathcal{H}_1 \otimes \mathcal{H}_2$
- ullet W has a bi-spanning property if also $x_k \otimes y_k^*$ span $\mathcal{H}_1 \otimes \mathcal{H}_2$

Theorem:

W has a spanning property \Rightarrow W is optimal

W has a bi-spanning property \Rightarrow W is nd-optimal

Exposed witnesses

$$W \longrightarrow P_W = \{ x \otimes y \, | \, \langle x \otimes y | W | x \otimes y \rangle = 0 \, \}$$

W is exposed

If for any block-positive operator W' such that

$$\langle x \otimes y | W' | x \otimes y \rangle = 0$$
 for $x \otimes y \in P_W$

one has W' = aW, with a > 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Non-decomposable witness

・ロト ・ 日 ・ モート ・ 田 ・ うへで

(ロ)、(型)、(E)、(E)、 E) のQで

New construction of postive maps

Using a concept of Mutually Unbiased Bases

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Mutually Unbiased Bases (MUB)

Definition:

$$\{|\psi_k
angle\}_{k=1}^d$$
 & $\{|\phi_k
angle\}_{k=1}^d$ are MUB

$$|\langle \psi_k | \phi_l \rangle|^2 = \frac{1}{d}; \quad k, l = 1, \dots, d$$

For d = 2 the are 3 MUBs

$$\left[\begin{array}{c}0\\1\end{array}\right], \left[\begin{array}{c}1\\0\end{array}\right] \ ; \frac{1}{\sqrt{2}}\left[\begin{array}{c}1\\1\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}1\\-1\end{array}\right] \ ; \frac{1}{\sqrt{2}}\left[\begin{array}{c}1\\i\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}1\\-i\end{array}\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Mutually Unbiased Bases (MUB)

N(d) = maximal number of MUBs in d dimensions

For d = 6 there is a numerical evidence that N(6) = 3

ション ふゆ アメリア メリア しょうくしゃ

How to construct MUBs in \mathbb{C}^d

$$|0
angle, |1
angle, \dots, |d-1
angle$$
 — computational basis

$$\begin{split} |\widetilde{k}\rangle &= \frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} \omega^{-kj} |j\rangle \\ \omega &= e^{2\pi i/d} \end{split}$$

$$|j\rangle \iff |\widetilde{k}\rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\mathsf{Prime}\;d$

$$\begin{split} |0\rangle, |1\rangle, \dots, |d-1\rangle & - \text{computational basis} \\ \mathcal{X}|j\rangle = |j+1\rangle \; ; \quad \mathcal{Z}|j\rangle = \omega^j |j\rangle \\ \mathcal{X}, \mathcal{Z}, \mathcal{XZ}, \mathcal{XZ}^2, \dots, \mathcal{XZ}^{d-1} \\ \\ |\psi_j^{(k)}\rangle & - \text{eigenbasis of} \; \; \mathcal{XZ}^k \; \text{define} \; d+1 \; \text{MUBs} \end{split}$$

$$\mathcal{XZ}^{\ell}|\psi_{j}^{(k)}\rangle = \omega^{j+k-\ell}|\psi_{j+k-\ell}^{(k)}\rangle$$

Weyl–Heisenberg group \mathbb{H}_d (arbitrary d)

$$\mathcal{XZ} = \omega \mathcal{ZX}$$

$$U_{mn} := \mathcal{X}^m \mathcal{Z}^n ; \quad (m, n = 0, 1, \dots, d-1)$$

$$U_{mn}U_{kl} = U_{m+k,n+l}$$

$$[U_{mn}, U_{m'n'}] = 0 \iff mn' - nm' = 0$$

$$\frac{1}{\sqrt{d}} U_{mn} - \text{define ONB in } M_d(\mathbb{C})$$
$$\text{Tr}[U_{mn}U_{m'n'}^{\dagger}] = d\delta_{mm'}\delta_{nn'}$$

(ロ)、

Weyl–Heisenberg group \mathbb{H}_d (arbitrary d)

$$U_{mn} := \mathcal{X}^m \mathcal{Z}^n ; \quad (m, n = 0, 1, \dots, d-1)$$

$$U_{00} = \mathbb{I}_d$$

$$\mathbb{H}_d \setminus \mathbb{I}_d \longrightarrow \mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_L$$

- $\mathcal{C}_k \cap \mathcal{C}_\ell = \emptyset$
- \mathcal{C}_k contains mutually commuting operators
- $|\mathcal{C}_k| = d 1$

eigenbasis of \mathcal{C}_k are Mutually Unbiased

$$L \le d+1$$
; (d prime $\longrightarrow L = d+1$)

Entanglement witnesses from mutually unbiased bases

MUBs in Quantum Information

• quantum state tomography (discrete Wigner function)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- entropic uncertainty relations
- Quantum Key Distribution
- ...

MUBs \longrightarrow positive maps

(ロ)、(型)、(E)、(E)、 E のQで

$MUBs \longrightarrow positive map$

$$N(d) = d + 1$$

$$\{|\psi_1^{(\alpha)}\rangle, \dots, |\psi_d^{(\alpha)}\rangle\} ; \quad \alpha = 1, 2, \dots, d+1$$
$$|\langle \psi_k^{(\alpha)} | \psi_\ell^{(\beta)} \rangle|^2 = \frac{1}{d} ; \quad \alpha \neq \beta$$
$$P_k^{(\alpha)} = |\psi_k^{(\alpha)}\rangle\langle \psi_k^{(\alpha)}|$$

(ロ)、

General idea

Generalize very basic map — reduction map

$$\Phi[X] = \frac{1}{d-1} \left(\mathbb{I} \operatorname{Tr} X - X \right)$$

optimal but not extremal

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Main result

$$\Phi[X] = \frac{1}{d-1} \left\{ 2\mathbb{I} \operatorname{Tr} X - \sum_{\alpha=1}^{d+1} \sum_{k,\ell=1}^{d} \mathcal{O}_{kl}^{(\alpha)} \operatorname{Tr} [XP_{\ell}^{(\alpha)}] P_{k}^{(\alpha)} \right\}$$

 $\mathcal{O}_{kl}^{(\alpha)}$ — orthogonal matrices for $\alpha=1,2,\ldots,d+1$

$$\mathcal{O}^{(\alpha)}\mathbf{n}_* = \mathbf{n}_* ; \ \mathbf{n}_* = (1, 1, \dots, 1)$$

Theorem:

 Φ is a unital and trace-preserving positive map

$$\mathbb{H}_{1} = \{ X = X^{\dagger} \mid \operatorname{Tr} X = 1 \}$$
$$S(\mathcal{H}) = \{ \rho \in \mathbb{H}_{1} \mid \rho \ge 0 \}$$
$$\mathbf{B}_{\mathrm{in}} \subset S(\mathcal{H}) \subset \mathbf{B}_{\mathrm{out}}$$

$$X \in \mathbf{B}_{\mathrm{in}} \iff \mathrm{Tr}X^2 \leq \frac{1}{d-1}$$

 $X \in \mathbf{B}_{\mathrm{out}} \iff \mathrm{Tr}X^2 \leq 1$
 $d = 2 \longrightarrow \mathbf{B}_{\mathrm{in}} = S(\mathcal{H}) = \mathbf{B}_{\mathrm{out}} = \mathsf{Bloch} \; \mathsf{ball}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Property of MUBs

$$x \in \mathcal{H} ; \quad \langle x | x \rangle = 1$$
$$\sum_{\alpha=1}^{d+1} \sum_{k=1}^{d} |\langle x | P_k^{(\alpha)} | x \rangle|^2 = 2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Quantum projective 2-design

$$P_1,\ldots,P_m \,\,(m\geq d^2)\,$$
 – rank-1 projectors

For any homogeneous function of degree $2\,$

$$f: S(\mathbb{C}^d) \longrightarrow \mathbb{C}$$

$$\frac{1}{m}\sum_{i=1}^{m}f(P_i) = \int_{S(\mathbb{C}^d)}f(|x\rangle\langle x|)d\mu_H(x)$$

$$\sum_{i=1}^{m} P_i \otimes P_i = k \Pi_{\text{sym}}$$

$$x \in \mathcal{H}$$
; $\langle x|x \rangle = 1 \longrightarrow \sum_{i=1}^{m} |\langle x|P_i|x \rangle|^2 = k$

<ロ> <四> <四> <三> <三> <三> <三> <三</p>

$$\Phi[X] = \frac{1}{d-1} \left\{ 2\mathbb{I} \operatorname{Tr} X - \sum_{\alpha=1}^{d+1} \sum_{k,\ell=1}^{d} \mathcal{O}_{kl}^{(\alpha)} \operatorname{Tr}[X P_{\ell}^{(\alpha)}] P_{k}^{(\alpha)} \right\}$$

 $\mathbf{B}_{in} \subset S(\mathcal{H}) \subset \mathbf{B}_{out}$

 $\Phi[\mathbf{B}_{out}] \subset \mathbf{B}_{in}$ $\Phi[\partial \mathbf{B}_{out}] \subset \partial \mathbf{B}_{in}$

 $P = |x\rangle\langle x| \longrightarrow \Phi[P] \in \partial \mathbf{B}_{\mathrm{in}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Entanglement witness

$$\Phi \longrightarrow W_{\Phi} = (d-1) \sum_{i,j=1}^{d} E_{ij} \otimes \Phi E_{ij} \quad \text{(Choi matrix)}$$
$$W_{\Phi} = 2\mathbb{I}_{d} \otimes \mathbb{I}_{d} - \sum_{\alpha=1}^{d+1} \sum_{k,\ell=1}^{d} \mathcal{O}_{k\ell}^{(\alpha)} \overline{P}_{\ell}^{(\alpha)} \otimes P_{k}^{(\alpha)},$$

 W_{Φ} is block-positive and $W \not\geq 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\mathcal{O}^{(\alpha)}$$
 — orthogonal matrices for $\alpha = 1, 2, \dots, d+1$

$$\mathcal{O}^{(\alpha)}\mathbf{n}_* = \mathbf{n}_* ; \ \mathbf{n}_* = (1, 1, \dots, 1)$$

Definition: stochastic matrix

$$T\mathbf{n}_* = \mathbf{n}_* ; \quad T_{ij} \ge 0$$

doubly stochastic if T^{t} is stochastic

Definition: pseudo-stochastic matrix

$$T\mathbf{n}_* = \mathbf{n}_* ; \ T_{ij} \in \mathbb{R}$$

doubly pseudo-stochastic if $\ T^{
m t}$ is pseudo-stochastic

$$\mathcal{O}^{(\alpha)}$$
 — orthogonal matrices for $\alpha = 1, 2, \dots, d+1$

$$\mathcal{O}^{(\alpha)}\mathbf{n}_* = \mathbf{n}_* ; \ \mathbf{n}_* = (1, 1, \dots, 1)$$

Definition: stochastic matrix

$$T\mathbf{n}_* = \mathbf{n}_* ; \quad T_{ij} \ge 0$$

doubly stochastic if T^{t} is stochastic

Definition: pseudo-stochastic matrix

$$T\mathbf{n}_* = \mathbf{n}_* ; \ T_{ij} \in \mathbb{R}$$

doubly pseudo-stochastic if $\ T^{
m t}$ is pseudo-stochastic

$$\mathcal{O}^{(\alpha)}$$
 — orthogonal matrices for $\alpha = 1, 2, \dots, d+1$

$$\mathcal{O}^{(\alpha)}\mathbf{n}_* = \mathbf{n}_* ; \ \mathbf{n}_* = (1, 1, \dots, 1)$$

Definition: stochastic matrix

$$T\mathbf{n}_* = \mathbf{n}_* ; \quad T_{ij} \ge 0$$

doubly stochastic if T^{t} is stochastic

Definition: pseudo-stochastic matrix

$$T\mathbf{n}_* = \mathbf{n}_* ; \ T_{ij} \in \mathbb{R}$$

doubly pseudo-stochastic if T^{t} is pseudo-stochastic

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 包 ○ ○ ○ ○

$$\mathcal{O}^{(\alpha)}$$
 — orthogonal matrices for $\alpha = 1, 2, \dots, d+1$

$$\mathcal{O}^{(\alpha)}\mathbf{n}_* = \mathbf{n}_* ; \ \mathbf{n}_* = (1, 1, \dots, 1)$$

 $\mathcal{O}^{(\alpha)}$ is doubly pseudo-stochastic $\mathcal{O}^{(\alpha)}$ is doubly stochastic $\iff \mathcal{O}^{(\alpha)}$ is a permutation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Special classes – permutations

$$\Phi[X] = \frac{1}{d-1} \left\{ 2\mathbb{I}\operatorname{Tr} X - \sum_{\alpha=1}^{d+1} \sum_{k,\ell=1}^{d} \mathcal{O}_{kl}^{(\alpha)} \operatorname{Tr}[XP_{\ell}^{(\alpha)}]P_{k}^{(\alpha)} \right\}$$

 $\mathcal{O}^{(\alpha)} = \mathsf{permutation} \ \mathsf{matrix}$

$$\mathcal{O}^{(\alpha)} = \mathbb{I} \; ; \;\; \alpha = 1, 2, \dots, d+1$$
 $\Phi[X] = \frac{1}{d-1} \left(\mathbb{I} \operatorname{Tr} X - X \right) \;\; (\text{reduction map})$

Special classes – permutations

$$\Phi[X] = \frac{1}{d-1} \left\{ 2\mathbb{I} \operatorname{Tr} X - \sum_{\alpha=1}^{d+1} \sum_{k,\ell=1}^{d} \mathcal{O}_{kl}^{(\alpha)} \operatorname{Tr} [XP_{\ell}^{(\alpha)}] P_{k}^{(\alpha)} \right\}$$

 $\mathcal{O}^{(lpha)}=\mathsf{permutation}$ matrix

$$\mathcal{O}^{(\alpha)} = \mathbb{I}; \quad \alpha = 1, 2, \dots, d+1$$
 $\Phi[X] = \frac{1}{d-1} \left(\mathbb{I} \operatorname{Tr} X - X \right) \quad (\text{reduction map})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reduction map vs. quantum entanglement

$$R[X] = \frac{1}{d-1} \left(\mathbb{I} \operatorname{Tr} X - X \right)$$

 $\rho \in S(\mathcal{H} \otimes \mathcal{H})$

 $(1\!\!1 \otimes R) \rho \ge 0 \implies \rho$ is not distillable

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

Special classes – permutations

$$\Phi[X] = \frac{1}{d-1} \left\{ 2\mathbb{I}\operatorname{Tr} X - \sum_{\alpha=1}^{d+1} \sum_{k,\ell=1}^{d} \mathcal{O}_{kl}^{(\alpha)} \operatorname{Tr}[XP_{\ell}^{(\alpha)}]P_{k}^{(\alpha)} \right\}$$

$$\mathcal{X}|k\rangle = |k+1\rangle \pmod{d}$$

$$\mathcal{O}^{(1)} = \mathcal{X} ; \ \mathcal{O}^{(\alpha)} = \mathbb{I} ; \ \alpha = 2, \dots, d+1$$

 $\Phi X = \frac{1}{d-1} \left(2\varepsilon[X] + \sum_{i=2}^{d-1} \varepsilon[\mathcal{X}^i X \mathcal{X}^{\dagger i}] - X \right),$ $\varepsilon[X] = \sum_{i=1}^{d} P_i^{(1)} X P_i^{(1)}$

/. . .

A case study: d = 3

$$\mathcal{O}^{(\alpha)}\mathbf{n}_* = \mathbf{n}_* ; \ \mathbf{n}_* = (1, 1, 1)$$

rotation around $\, n_{*} \,$

$$\mathcal{O}(\varphi) = \begin{pmatrix} c_1(\varphi) & c_2(\varphi) & c_3(\varphi) \\ c_3(\varphi) & c_1(\varphi) & c_2(\varphi) \\ c_2(\varphi) & c_3(\varphi) & c_1(\varphi) \end{pmatrix},$$

$$c_1(\varphi) = \frac{2}{3}\cos\varphi + \frac{1}{3},$$

$$c_2(\varphi) = \frac{2}{3}\cos\left(\varphi - \frac{2\pi}{3}\right) + \frac{1}{3},$$

$$c_3(\varphi) = \frac{2}{3}\cos\left(\varphi + \frac{2\pi}{3}\right) + \frac{1}{3}.$$

 $(\varphi_1,\varphi_2,\varphi_3,\varphi_4)$

$$W_{\Phi} = 2\mathbb{I}_d \otimes \mathbb{I}_d - \sum_{\alpha=1}^{d+1} \sum_{k,\ell=1}^d \mathcal{O}_{k\ell}^{(\alpha)}(\varphi_{\alpha}) \overline{P}_{\ell}^{(\alpha)} \otimes P_k^{(\alpha)},$$

$$W = \begin{pmatrix} a & \cdot & \cdot & \cdot & p^* & \cdot & \cdot & \cdot & p \\ \cdot & b & \cdot & \cdot & \cdot & q^* & q & \cdot & \cdot \\ \cdot & \cdot & c & r^* & \cdot & \cdot & r & \cdot \\ \hline \cdot & \cdot & r & c & \cdot & \cdot & r^* & \cdot \\ p & \cdot & \cdot & a & \cdot & \cdot & r^* & \cdot \\ p & \cdot & \cdot & a & \cdot & \cdot & p^* \\ \hline \cdot & q^* & \cdot & \cdot & b & q^* & \cdot & \cdot \\ \hline \cdot & q^* & \cdot & \cdot & r^* & r & \cdot & c & \cdot \\ p^* & \cdot & \cdot & p & \cdot & \cdot & a \end{pmatrix}$$

・ロト ・聞 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

 $(\varphi_1,\varphi_2,\varphi_3,\varphi_4)$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^* \\ 1 & \omega^* & \omega \end{pmatrix} \begin{pmatrix} 2 \\ e^{i\varphi_1} \\ e^{-i\varphi_1} \end{pmatrix}$$
$$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^* & \omega \\ 1 & \omega & \omega^* \end{pmatrix} \begin{pmatrix} e^{i\varphi_2} \\ e^{-i\varphi_3} \\ e^{i\varphi_4} \end{pmatrix}$$

◆□ > < 個 > < E > < E > E 9 < 0</p>

$$(\varphi_1, \varphi_2 = \varphi_3 = \varphi_4 = 0)$$

$$W = \begin{pmatrix} a & \cdot & \cdot & \cdot & -1 & \cdot & \cdot & -1 \\ \cdot & b & \cdot \\ \cdot & \cdot & c & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & c & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ -1 & \cdot & \cdot & c & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot & b & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot & b & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot & b & \cdot & \cdot \\ \hline -1 & \cdot & \cdot & -1 & \cdot & \cdot & c & \cdot \\ -1 & \cdot & \cdot & -1 & \cdot & \cdot & c & \cdot \\ 1 & \omega & \omega^* \\ 1 & \omega^* & \omega \end{pmatrix} \begin{pmatrix} 2 \\ e^{i\varphi_1} \\ e^{-i\varphi_1} \end{pmatrix}$$

Choi-like witness

W is block-positive if and only if (Cho-Kye-Lee 1992)

• $a, b, c \ge 0$ • $a + b + c \ge 2$ • $a \le 1 \Longrightarrow bc \ge (1 - a)^2$ Entanglement witnesses from mutually unbiased bases

- (a, b, c) = (0, 1, 1) reduction map (iii)
- (a,b,c)=(1,1,0) or (1,0,1) Choi maps (i) and (ii)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusions

• new construction of positive maps from MUBs

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- generalization of well known maps
- Problems: further analysis of
 - optimality
 - extremality
 - exposedness
 - spanning property

Entanglement witnesses from mutually unbiased bases

Happy birthday Bal!!!

(ロ)、(型)、(E)、(E)、 E のQで

Choi-like maps for d prime

$$\Phi X = \Phi_* X - \frac{1}{d-1} \sum_{\alpha=1}^{d+1} \sum_{k,\ell=1}^d \mathcal{O}_{kl}^{(\alpha)} \operatorname{Tr}[\widetilde{X} P_\ell^{(\alpha)}] P_k^{(\alpha)}$$

 $\mathcal{O}^{(1)} \in T^{\frac{d-1}{2}} = \text{maximal commutative subgroup (torus) of } SO(d-1)$

$$\mathcal{O}^{(\alpha)} = \mathbb{I}_d ; \quad \alpha = 2, \dots, d+1$$

torus
$$\longrightarrow (\varphi_1, \ldots, \varphi_{\frac{d-1}{2}})$$

$$\lambda_0 := d - 1 \ , \lambda_k = e^{i\varphi_k} = \lambda_{d-k}^* \ ; k = 1, \dots, \frac{d-1}{2}$$

Choi-like witness for d prime $~\sim~T^{d_*}$

$$\lambda_0 := d - 1, \lambda_k = e^{i\varphi_k} = \lambda_{d-k}^*; k = 1, \dots, d_* := \frac{d-1}{2}$$

$$a_{k} = \frac{1}{d} \sum_{\ell=0}^{d-1} \omega^{k\ell} \lambda_{\ell} ; \quad \omega = e^{2\pi i/d}$$
$$W = \sum_{k,\ell=0}^{d-1} E_{k\ell} \otimes W_{k\ell}$$

$$W_{k\ell} = -E_{k\ell} \; ; \; k \neq \ell$$

$$W_{kk} = \mathcal{X}^k W_{00} \mathcal{X}^{\dagger k}$$

$$W_{00} = \operatorname{diag}(a_0, a_1, \dots, a_{d-1})$$

Proof

W has a bi-spanning property (and hence is nd-optimal) if

$$a_0 = \frac{1}{d}(d - 1 - 2[\cos \varphi_1 + \ldots + \cos \varphi_{d_*}]) \le 1 \; ; a_k \ne 0 \; (k > 0)$$

$$\cos\varphi_1 + \ldots + \cos\varphi_{d_*} \ge -\frac{1}{2} \quad ; \quad (\varphi_1, \ldots, \varphi_{d_*}) \ne (0, \ldots, 0)$$

$$(\varphi_1,\ldots,\varphi_{d_*})=(0,\ldots,0) \ \longrightarrow \ {\rm reduction}$$
 for $d=5$

$$d = 5$$
 vs. $d = 3$

2D torus
$$\longrightarrow (\varphi_1, \varphi_2)$$
; 1D torus $\longrightarrow \varphi_1$
 $\cos \varphi_1 + \cos \varphi_2 \ge -\frac{1}{2}$; $\cos \varphi_1 \ge -\frac{1}{2}$

(ロ)、(型)、(E)、(E)、 E のQで