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A quantum particle on a segment
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  Self-adjoint extensions

Unitary matrices at the boundary
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Boundaries without boundaries

Generate quantum boundary conditions starting 
from a particle on a manifold without boundaries?
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Reduction by symmetry

Figure 1: Identification of symmetric points of the unit circle S by means of ⇧.

and can be parametrized, in S \ {(�1, 0)}, by

x 2 (�⇡,⇡) !

(
x1 = cosx,

x2 = sinx.
(8)

It is possible to generate an interval of the real line by modding out the unit
circle by a parity transformation. Consider the map

⇧ : S ! S, ⇧(x1, x2) = (x1,�x2), (9)

or in terms of x 2 (�⇡,⇡), ⇧(x) = �x. Manifestly, ⇧ is a bijection and an
involution, since ⇧2 = I.

The action of ⇧ on the unit circle S (see Figure 1) identifies pairs of points on75

the circle and admits only two fixed points, namely (1, 0) and (�1, 0). With the
aid of the transformation ⇧ we are identifying symmetric points, or, equivalently,
puncturing the circle in (1, 0) and (�1, 0), and pushing the lower semicircle onto
the upper one.

This is mathematically achieved by considering the quotient space of the unit
circle under the action of the discrete group Z2. Indeed, the space of (discrete)
orbits determined by ⇧,

M = S/⇧, (10)

is the interval S+ = [0,⇡] (or, equivalently, the interval S� = [�⇡, 0]). Thus,80

by taking the quotient of the unit circle by the discrete action of ⇧ we obtain a
one dimensional manifold with boundary, say M = S+.

Now, we will represent the action of ⇧ on square integrable functions on S,
and show how boundary conditions are going to emerge after this process.

The action of ⇧ on functions can be implemented by a pull-back

P : L2(S) ! L
2(S), (P )(x) =  (⇧(x)) =  (�x). (11)
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Now, we will represent the action of ⇧ on square integrable functions on S,
and show how boundary conditions are going to emerge after this process.80

The action of ⇧ on functions can be implemented by a pull-back

P : L2(S) ! L
2(S), (P )(x) =  (⇧(x)) =  (�x). (11)

Moreover P
2 = I, so that the eigenspaces of the parity operator P belong to

the eigenvalues ±1.
The action of P splits the Hilbert space L2(S) into two mutually orthogonal

subspaces H+ and H�, defined by

H± = { 2 L
2(S) |P = ± }. (12)

Notice that L2(S) can be identified with L
2(�⇡,⇡), the Hilbert space of square

integrable functions on the interval (�⇡,⇡). Under such identification we get

H± = { 2 L
2(�⇡,⇡) | (�x) = ± (x)}, (13)

that is, the set of even and odd functions on (�⇡,⇡), respectively.
Consider now the Hamiltonian of a free particle on a circle (2). Since S is

a compact manifold without boundary, the Laplace operator is essentially self-
adjoint on C

1(S) = C
1

c (S), the smooth function on the circle [19]. The domain
of self-adjointness is the second Sobolev space H2(S), which, in coordinates reads

H2(S) = { 2 H2[�⇡,⇡] :  (�⇡) =  (⇡) ,  0(�⇡) =  
0(⇡)}. (14)

Here, H2[�⇡,⇡] is the set of square-integrable functions, with square-integrable
(first and) second distribution derivative.85

Interestingly, the parity operator P and the operator H commute on H2(S):

H P = P H. (15)

This is a crucial ingredient in our construction, which we remind consists in
obtaining a self-adjoint operator on the quotient space, say the interval [0,⇡],
starting from the operator H on the unit circle.

From the commutation relation HP = PH it follows that whenever the
operator H acts on H+ (respectively on H�) then, its image remains in H+90

(respectively in H�). Thus, the restriction of H to one of the two subspaces
gives rise to a self-adjoint operator. We are going to show that the restrictions of
H to these parity eigenspaces can be identified with two self-adjoint Hamiltonian
operators on the interval [0,⇡].

From (13) and (14), one has

D(H|H+) = H2(S) \H+ = { 2 H2[�⇡,⇡] \H+ :  0(�⇡) = 0 =  
0(⇡)}. (16)

Since the space of square integrable even functions  on the interval (�⇡,⇡) is95

unitarily equivalent to the space of square integrable functions � on (0,⇡), the
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QBC by reduction

Figure 1: Identification of symmetric points of the unit circle S by means of ⇧.
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It is well known, indeed, from the basic principles of quantum mechanics, that10

physical observables correspond to self-adjoint operators [9].
A paradigmatic example is a free nonrelativistic quantum particle in a cav-

ity ⌦, an open bounded set of Rn, whose kinetic energy is described by the
Laplace operator:

H = �
~2
2m

�, D(H) = C
1

c (⌦), (1)

where m is the mass of the particle, ~ is the Planck constant, and the oper-
ator domain D(H) is the space of smooth functions compactly supported in
⌦. This operator is symmetric but not self-adjoint, and admits infinitely many
self-adjoint extensions as provided by von Neumann’s theory of self-adjoint ex-15

tensions [10].
There has been an increasing interest in classifying the self-adjoint extensions

of elliptic operators in terms of boundary conditions. In particular, it was
proved [5, 11, 12] that the set of the self-adjoint extensions of the Laplace
operator on a manifold with boundary is in one-to-one correspondence with the20

set of unitary operators on the boundary. The situation can be easily specialized
for the one dimensional case.

Consider the interval ⌦ = (0,⇡) and let L2(⌦) be the Hilbert space of square
integrable functions on ⌦. The Hamiltonian (1) reads

H =
p
2

2m
= �

~2
2m

d2

dx2
. (2)

As already stressed, this operator is not self-adjoint, but admits infinitely
many self-adjoint extensions, each of which is parametrized by a two dimensional
unitary matrix [5]. Well-known boundary conditions are Dirichlet:

 (0) = 0,  (⇡) = 0, (3)

and Neumann:
 
0(0) = 0,  

0(⇡) = 0, (4)

where  0 = d /dx. These are examples of local boundary conditions, which
do not mix the values at the endpoints of the interval. The most general local
boundary conditions are given by Robin:25

 
0(0) = µ0 (0)  

0(⇡) = �µ⇡ (⇡), µ0, µ⇡ 2 R. (5)

Notice that for µ = 0 one recovers Neumann, while for µ ! 1 one gets Dirichlet.
In general, Robin boundary conditions mix the values of the function  with
that of its derivative  0 at the boundary points x = 0 and x = ⇡.

A family of non-local boundary conditions is provided by

 (0) = e
i↵
 (⇡),  

0(0) = e
i↵
 
0(⇡), ↵ 2 R, (6)

which are known as twisted (or pseudo-) periodic boundary conditions. As a
particular case, one recovers periodic and anti-periodic boundary conditions for30

↵ = 0 and ↵ = ⇡, respectively.
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From (13) and (14), one has

D(H|H+) = H2(S) \H+ = { 2 H2[�⇡,⇡] \H+ :  0(�⇡) = 0 =  
0(⇡)}. (16)

Since the space of square integrable even functions  on the interval (�⇡,⇡) is95

unitarily equivalent to the space of square integrable functions � on (0,⇡), the
domain in equation (16) can be recast on the interval S+ = [0,⇡]. Indeed, let
us define the following unitary operator

U+ : H+ ! L
2(0,⇡), �(x) = (U+ )(x) =

p

2 (x), x 2 S+,

U
†

+ : L2(0,⇡) ! H+,  (x) = (U†

+�)(x) =
1
p
2

(
�(x), x 2 S+,
�(�x), x 2 S�.

(17)

Then we have

H+ := U+ H|H+ U
†

+ = �
~2
2m

d2

dx2
, (18)

D(H+) = { 2 H2[0,⇡] :  0(0) = 0 =  
0(⇡)}, (19)

where the derivative at 0 must vanish, because even functions have odd deriva-100

tives. Equation (19) can be immediately read on the quotient space S+ = [0,⇡],
as a self-adjoint extension of the Hamiltonian describing a free particle on the
interval [0,⇡] with Neumann boundary conditions.

Similarly, for the subspace of odd functions H�, we get

D(H|H�) = H2(S) \H� = { 2 H2[�⇡,⇡] \H� :  (�⇡) = 0 =  (⇡)}, (20)

and we can define the unitary operator between the space of square integrable
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Now, we will represent the action of ⇧ on squre integrable functions on S,
and show how boundary conditions are going to emerge after this process.80

The action of ⇧ on functions can be implemented by a pull-back

P : L2(S) ! L
2(S), (P )(x) =  (⇧(x)) =  (�x). (11)

Moreover P
2 = I, so that the eigenspaces of the parity operator P belong to

the eigenvalues ±1.
The action of P splits the Hilbert space L2(S) into two mutually orthogonal

subspaces H+ and H�, defined by

L
2(S) = H+ �H�

H± = { 2 L
2(S) |P = ± }. (12)

Notice that L2(S) can be identified with L
2(�⇡,⇡), the Hilbert space of square

integrable functions on the interval (�⇡,⇡). Under such identification we get

H± = { 2 L
2(�⇡,⇡) | (�x) = ± (x)}, (13)

that is, the set of even and odd functions on (�⇡,⇡), respectively.
Consider now the Hamiltonian of a free particle on a circle (2). Since S is

a compact manifold without boundary, the Laplace operator is essentially self-
adjoint on C

1(S) = C
1

c (S), the smooth function on the circle [19]. The domain
of self-adjointness is the second Sobolev space H2(S), which, in coordinates reads

H2(S) = { 2 H2[�⇡,⇡] :  (�⇡) =  (⇡) ,  0(�⇡) =  
0(⇡)}. (14)

Here, H2[�⇡,⇡] is the set of square-integrable functions, with square-integrable
(first and) second distribution derivative.85

Interestingly, the parity operator P and the operator H commute on H2(S):

H P = P H. (15)

This is a crucial ingredient in our construction, which we remind consists in
obtaining a self-adjoint operator on the quotient space, say the interval [0,⇡],
starting from the operator H on the unit circle.

From the commutation relation HP = PH it follows that whenever the
operator H acts on H+ (respectively on H�) then, its image remains in H+90

(respectively in H�). Thus, the restriction of H to one of the two subspaces
gives rise to a self-adjoint operator. We are going to show that the restrictions of
H to these parity eigenspaces can be identified with two self-adjoint Hamiltonian
operators on the interval [0,⇡].
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Dirichlet
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p
2
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�(�x), x 2 S�.
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dx2
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In this case we have obtained a free particle on an interval with Dirichlet bound-
ary conditions.

Summing up, we started from a self-adjoint operator H on the unit circle S,110

which generates a unitary dynamics for the free particle on the circle. Besides,
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Now, we will represent the action of ⇧ on squre integrable functions on S,
and show how boundary conditions are going to emerge after this process.80

The action of ⇧ on functions can be implemented by a pull-back

P : L2(S) ! L
2(S), (P )(x) =  (⇧(x)) =  (�x). (11)

Moreover P
2 = I, so that the eigenspaces of the parity operator P belong to

the eigenvalues ±1.
The action of P splits the Hilbert space L2(S) into two mutually orthogonal

subspaces H+ and H�, defined by

L
2(S) = H+ �H�

H± = { 2 L
2(S) |P = ± }. (12)

Notice that L2(S) can be identified with L
2(�⇡,⇡), the Hilbert space of square

integrable functions on the interval (�⇡,⇡). Under such identification we get

H± = { 2 L
2(�⇡,⇡) | (�x) = ± (x)}, (13)

that is, the set of even and odd functions on (�⇡,⇡), respectively.
Consider now the Hamiltonian of a free particle on a circle (2). Since S is

a compact manifold without boundary, the Laplace operator is essentially self-
adjoint on C

1(S) = C
1

c (S), the smooth function on the circle [19]. The domain
of self-adjointness is the second Sobolev space H2(S), which, in coordinates reads

H2(S) = { 2 H2[�⇡,⇡] :  (�⇡) =  (⇡) ,  0(�⇡) =  
0(⇡)}. (14)

Here, H2[�⇡,⇡] is the set of square-integrable functions, with square-integrable
(first and) second distribution derivative.85

Interestingly, the parity operator P and the operator H commute on H2(S):

H P = P H. (15)

This is a crucial ingredient in our construction, which we remind consists in
obtaining a self-adjoint operator on the quotient space, say the interval [0,⇡],
starting from the operator H on the unit circle.

From the commutation relation HP = PH it follows that whenever the
operator H acts on H+ (respectively on H�) then, its image remains in H+90

(respectively in H�). Thus, the restriction of H to one of the two subspaces
gives rise to a self-adjoint operator. We are going to show that the restrictions of
H to these parity eigenspaces can be identified with two self-adjoint Hamiltonian
operators on the interval [0,⇡].
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It is well known, indeed, from the basic principles of quantum mechanics, that10

physical observables correspond to self-adjoint operators [9].
A paradigmatic example is a free nonrelativistic quantum particle in a cav-

ity ⌦, an open bounded set of Rn, whose kinetic energy is described by the
Laplace operator:

H = �
~2
2m

�, D(H) = C
1

c (⌦), (1)

where m is the mass of the particle, ~ is the Planck constant, and the oper-
ator domain D(H) is the space of smooth functions compactly supported in
⌦. This operator is symmetric but not self-adjoint, and admits infinitely many
self-adjoint extensions as provided by von Neumann’s theory of self-adjoint ex-15

tensions [10].
There has been an increasing interest in classifying the self-adjoint extensions

of elliptic operators in terms of boundary conditions. In particular, it was
proved [5, 11, 12] that the set of the self-adjoint extensions of the Laplace
operator on a manifold with boundary is in one-to-one correspondence with the20

set of unitary operators on the boundary. The situation can be easily specialized
for the one dimensional case.

Consider the interval ⌦ = (0,⇡) and let L2(⌦) be the Hilbert space of square
integrable functions on ⌦. The Hamiltonian (1) reads

H =
p
2

2m
= �

~2
2m

d2

dx2
. (2)

As already stressed, this operator is not self-adjoint, but admits infinitely
many self-adjoint extensions, each of which is parametrized by a two dimensional
unitary matrix [5]. Well-known boundary conditions are Dirichlet:

 (0) = 0,  (⇡) = 0, (3)

and Neumann:
 
0(0) = 0,  

0(⇡) = 0, (4)

where  0 = d /dx. These are examples of local boundary conditions, which
do not mix the values at the endpoints of the interval. The most general local
boundary conditions are given by Robin:25

 
0(0) = µ0 (0)  

0(⇡) = �µ⇡ (⇡), µ0, µ⇡ 2 R. (5)

Notice that for µ = 0 one recovers Neumann, while for µ ! 1 one gets Dirichlet.
In general, Robin boundary conditions mix the values of the function  with
that of its derivative  0 at the boundary points x = 0 and x = ⇡.

A family of non-local boundary conditions is provided by

 (0) = e
i↵
 (⇡),  

0(0) = e
i↵
 
0(⇡), ↵ 2 R, (6)

which are known as twisted (or pseudo-) periodic boundary conditions. As a
particular case, one recovers periodic and anti-periodic boundary conditions for30

↵ = 0 and ↵ = ⇡, respectively.

2



General QBC

spatial metric

while, for non-local boundary conditions the current leaving one boundary point
can be compensated by the one entering from the other side:

j(0)� j(⇡) = 0, (34)

where the minus sign reflects the reversed orientation of the current. Moreover,
non-local boundary conditions cannot be obtained from parity reduction, since
currents are odd under parity transformations:

P j P = � j, (35)

and as such the current at each boundary point is bound to vanish.
In order to get non-local boundary conditions we have to lift the action to

the fiber and consider the combination of charge and parity transformation, say
CP , rather than P solely:

(CP ) (x) =  ̄(�x), (36)

Indeed, CP acts not only on the base manifold but also on the U(1) fiber and
can reverse the orientation on both of them. The net e↵ect is that j is even
under CP , namely

(CP ) j (CP ) = j, (37)

so that we can have non-vanishing currents at each boundary point. From the
former equation we can infer that non-local boundary conditions can emerge as
a consequence of charge-parity transformations.

Within local boundary conditions we are going to prove that Robin boundary205

conditions (5) can be generated by means of parity reduction, as long as we
consider the Levi-Civita connection rather than a gauge connection (compare
with equation (26)).

We will prove that by changing the metric only in a small boundary layer
we can get Robin boundary conditions starting from Neumann boundary con-210

ditions. This construction can be physically realized for a vibrating string by
introducing a localized non uniformity at the ends of the string.

The relevant quantities in our problem are the spatial metric,

ds2 = dx2
, (38)

and the Hamiltonian,

H = �
~2
2m

d2

dx2
, (39)

defined on D(H+) = { 2 H2[0,⇡] :  0(0) = 0 =  
0(⇡)} with Neumann bound-

ary conditions.
Consider the following change of coordinates on the interval [0,⇡]:

x 7! y = F (x) y = F (x) =

Z x

0
f(t)dt, (40)
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Neumann bc

Change of coordinates on
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where
f � 0

is a positive function on [0,⇡], such that
Z ⇡

0
f(t)dt = ⇡

. It is easy to see that this change of coordinates leaves the endpoints of the
interval unchanged, while the metric reads

ds2 =

✓
dx

dy

◆2

dy2 =
1

[f(y)]2
dy2. (41)

The new wavefunction � changes according to the unitary transformation:

Uf : L2((0,⇡), dx) ! L
2((0,⇡), dy), (42)

�(y) = (Uf  )(y) =
1p
g(y)

 (F�1(y)), g(y) = f(F�1(y)), (43)

because, from a local point of view, a local change of coordinates cannot change
the probability: | |

2dx = |�|
2d y. Under this unitary transformation, the mo-

mentum operator p = �i~ d/dx becomes

pf = Uf pU
†

f = gp�
i~
2
g
0
. (44)

Accordingly, the transformed Hamiltonian reads

Hf = Uf H U
†

f = �g
2 ~2
2m

d2

dy2
� gg

0
~2
m

d

dy
+ V, (45)

where

V =
~2
8m

⇥
(g0)2 + 2gg00

⇤
. (46)

Next, we would like to understand how the Neumann boundary conditions215

change under this coordinate transformation. In order to do so we compute the
first derivative of  (x) =

p
f(x)�(y(x)):

 
0(x) =

1

2
p
f(x)

f
0(x)�(F (x)) + f(x)

p
f(x)�0(F (x)). (47)

Then, at the boundary, where the functions have to vanish, we find that

�
0(F (x)) = �

1

2[f(x)]2
f
0(x)�(F (x)), (48)

that is to say (
�
0(0) = ⌫0 �(0),

�
0(⇡) = �⌫⇡ �(⇡),

(49)
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and where we used the relations: y(0) = 0 and y(⇡) = ⇡.
By a change of coordinates, as in equation (40), we managed to induce Robin

boundary conditions starting from Neumann boundary conditions. However,220

also the original physical problem—a free quantum particle in a one-dimensional
box—was changed, since, after the transformation in equation (43) we obtained
a new Hamiltonian (45) with a varying mass and a potential energy term V (y).

In order to overcome this drawback, we will consider a sequence of functions
f"(x), " > 0, which tends to a constant function in the limit " ! 0, namely
f"(x) ! k, pointwise for all x 2 (0,⇡). In principle k may even diverge, but, as
we are going to see in the following, this would represent an unphysical situation.
With this assumption the Hamiltonian Hf" in equation (45), converges in the
bulk to the free particle Hamiltonian, with a renormalized mass M = m/k

2,
that is

Hf" ! �
~2
2m

k
2 d2

dy2
= �

~2
2M

d2

dy2
. (50)

Moreover we suppose that the following limits for the "-dependent Robin con-
stants exist:225

lim
"!0

⌫0 = µ0 > 0, (51)

lim
"!0

⌫⇡ = µ⇡ > 0. (52)

For example, consider the following change of coordinates as shown in figure 4:
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Symmetry?

Crucial ingredient for reduction:

.
S+ = S/⇧ = [0,⇡]

0 ⇡ � ⇡

Now, we will represent the action of ⇧ on square integrable functions on S,
and show how boundary conditions are going to emerge after this process.80

The action of ⇧ on functions can be implemented by a pull-back

P : L2(S) ! L
2(S), (P )(x) =  (⇧(x)) =  (�x). (11)

Moreover P
2 = I, so that the eigenspaces of the parity operator P belong to

the eigenvalues ±1.
The action of P splits the Hilbert space L2(S) into two mutually orthogonal

subspaces H+ and H�, defined by

L
2(S) = H+ �H�

H± = { 2 L
2(S) |P = ± }. (12)

Notice that L2(S) can be identified with L
2(�⇡,⇡), the Hilbert space of square

integrable functions on the interval (�⇡,⇡). Under such identification we get

H± = { 2 L
2(�⇡,⇡) | (�x) = ± (x)}, (13)

that is, the set of even and odd functions on (�⇡,⇡), respectively.
Consider now the Hamiltonian of a free particle on a circle (2). Since S is

a compact manifold without boundary, the Laplace operator is essentially self-
adjoint on C

1(S) = C
1

c (S), the smooth function on the circle [19]. The domain
of self-adjointness is the second Sobolev space H2(S), which, in coordinates reads

H2(S) = { 2 H2[�⇡,⇡] :  (�⇡) =  (⇡) ,  0(�⇡) =  
0(⇡)}. (14)

Here, H2[�⇡,⇡] is the set of square-integrable functions, with square-integrable
(first and) second distribution derivative.85

Interestingly, the parity operator P and the operator H commute on H2(S):

H P = P H. (15)

This is a crucial ingredient in our construction, which we remind consists in
obtaining a self-adjoint operator on the quotient space, say the interval [0,⇡],
starting from the operator H on the unit circle.

From the commutation relation HP = PH it follows that whenever the
operator H acts on H+ (respectively on H�) then, its image remains in H+90

(respectively in H�). Thus, the restriction of H to one of the two subspaces
gives rise to a self-adjoint operator. We are going to show that the restrictions of
H to these parity eigenspaces can be identified with two self-adjoint Hamiltonian
operators on the interval [0,⇡].
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.
S+ = S/⇧ = [0,⇡]

0 ⇡ � ⇡

Now, we will represent the action of ⇧ on square integrable functions on S,
and show how boundary conditions are going to emerge after this process.80

The action of ⇧ on functions can be implemented by a pull-back

P : L2(S) ! L
2(S), (P )(x) =  (⇧(x)) =  (�x). (11)

Moreover P
2 = I, so that the eigenspaces of the parity operator P belong to

the eigenvalues ±1.
The action of P splits the Hilbert space L2(S) into two mutually orthogonal

subspaces H+ and H�, defined by

L
2(S) = H+ �H�

H± = { 2 L
2(S) |P = ± }. (12)

Notice that L2(S) can be identified with L
2(�⇡,⇡), the Hilbert space of square

integrable functions on the interval (�⇡,⇡). Under such identification we get

H± = { 2 L
2(�⇡,⇡) | (�x) = ± (x)}, (13)

that is, the set of even and odd functions on (�⇡,⇡), respectively.
Consider now the Hamiltonian of a free particle on a circle (2). Since S is

a compact manifold without boundary, the Laplace operator is essentially self-
adjoint on C

1(S) = C
1

c (S), the smooth function on the circle [19]. The domain
of self-adjointness is the second Sobolev space H2(S), which, in coordinates reads

H2(S) = { 2 H2[�⇡,⇡] :  (�⇡) =  (⇡) ,  0(�⇡) =  
0(⇡)}. (14)

Here, H2[�⇡,⇡] is the set of square-integrable functions, with square-integrable
(first and) second distribution derivative.85

Interestingly, the parity operator P and the operator H commute on H2(S):

H P = P H. (15)

This is a crucial ingredient in our construction, which we remind consists in
obtaining a self-adjoint operator on the quotient space, say the interval [0,⇡],
starting from the operator H on the unit circle.

From the commutation relation HP = PH it follows that whenever the
operator H acts on H+ (respectively on H�) then, its image remains in H+90

(respectively in H�). Thus, the restriction of H to one of the two subspaces
gives rise to a self-adjoint operator. We are going to show that the restrictions of
H to these parity eigenspaces can be identified with two self-adjoint Hamiltonian
operators on the interval [0,⇡].

5

invariant subspaces

What if                   and there are no invariant subspaces?

.
S+ = S/⇧ = [0,⇡]

0 ⇡ � ⇡ x 2 [0,⇡]

Now, we will represent the action of ⇧ on squre integrable functions on S,
and show how boundary conditions are going to emerge after this process.80

The action of ⇧ on functions can be implemented by a pull-back

P : L2(S) ! L
2(S), (P )(x) =  (⇧(x)) =  (�x). (11)

Moreover P
2 = I, so that the eigenspaces of the parity operator P belong to

the eigenvalues ±1.
The action of P splits the Hilbert space L2(S) into two mutually orthogonal

subspaces H+ and H�, defined by

L
2(S) = H+ �H�

H± = { 2 L
2(S) |P = ± }. (12)

Notice that L2(S) can be identified with L
2(�⇡,⇡), the Hilbert space of square

integrable functions on the interval (�⇡,⇡). Under such identification we get

H± = { 2 L
2(�⇡,⇡) | (�x) = ± (x)}, (13)

that is, the set of even and odd functions on (�⇡,⇡), respectively.
Consider now the Hamiltonian of a free particle on a circle (2). Since S is

a compact manifold without boundary, the Laplace operator is essentially self-
adjoint on C

1(S) = C
1

c (S), the smooth function on the circle [19]. The domain
of self-adjointness is the second Sobolev space H2(S), which, in coordinates reads

H2(S) = { 2 H2[�⇡,⇡] :  (�⇡) =  (⇡) ,  0(�⇡) =  
0(⇡)}. (14)

Here, H2[�⇡,⇡] is the set of square-integrable functions, with square-integrable
(first and) second distribution derivative.85

Interestingly, the parity operator P and the operator H commute on H2(S):

H P = P H. (15)

This is a crucial ingredient in our construction, which we remind consists in
obtaining a self-adjoint operator on the quotient space, say the interval [0,⇡],
starting from the operator H on the unit circle.

[H,P ] 6= 0

From the commutation relation HP = PH it follows that whenever the90

operator H acts on H+ (respectively on H�) then, its image remains in H+
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Momentum on the half-line

(e.g. the interval). Then, we have considered the L
2 space over the original

manifold and taken a subspace (e.g. the space of even/odd wave functions)
which is invariant under the action of the Hamiltonian (e.g. the Laplacian)245

and can be identified with the L
2 space over the quotient manifold. Thus a

projection of the original quantum dynamics onto that subspace has provided
the quantum dynamics on the manifold with boundary, equipped with specific
quantum boundary conditions (e.g. Neumann/Dirichlet).

In the following sections we are going to show how to generate quantum250

boundary conditions by means of a folding procedure. At variance with the
previous strategy, here we will establish a unitary map, instead of a projection,
between suitable L

2 spaces over the original and the folded base manifolds.
We will show that the requirement of unitarity implies the emergence of an
additional spin degree of freedom in the quantum dynamics on the manifold255

with boundary.
In this section we consider the folding of a line into a half-line, and in the

following section we will consider again the case of a circle. As a starting
operator we will always take the momentum operator, which does not have self-
adjoint realizations on the half-line and on the interval (with local boundary260

conditions), and thus cannot generate unitary dynamics. We will show how the
emerging spin degree of freedom will be of help to restore unitarity.

Consider the momentum operator on the real line,

p = �i~ d

dx
, (57)

defined on its domain of self-adjointness,

D(p) = H1(R) = { 2 L
2(R) |  0

2 L
2(R) }, (58)

where H1(R) is the first Sobolev space, of square integrable functions with
square-integrable distributional derivative.

Let R+ = {x 2 R : x � 0} be the positive half-line. We are going to265

construct a natural unitary map between L
2(R) and L

2(R+) ⌦ C2. Next, we
will use this map to find out the operator on L

2(R+) ⌦ C2 into which the
original momentum operator on L

2(R) is transformed. This procedure maps a
self-adjoint operator in L

2(R) into a self-adjoint operator in L
2(R+)⌦C2. This

fact is extremely interesting from a physical perspective, because, as mentioned270

above, the momentum operator admits no self-adjoint extensions on the half-
line, say on L

2(R+), since there is a net probability flux through the boundary
at the origin, which cannot be compensated [10].

The above procedure, nevertheless, will produce a self-adjoint momentum
operator on the half-line at the price of the introduction of an ancillary space,275

C2. Such an operator can be physically interpreted as a Dirac operator for a
spin-1/2 particle on the half-line R+.

We define the map

U : L2(R) ! L
2(R+)⌦ C2

,

 (x) 7! �(y) =

✓
�+(y)
��(y)

◆
= (U )(y) =

✓
 (y)
 (�y)

◆
. (59)
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(e.g. the interval). Then, we have considered the L
2 space over the original

manifold and taken a subspace (e.g. the space of even/odd wave functions)
which is invariant under the action of the Hamiltonian (e.g. the Laplacian)245

and can be identified with the L
2 space over the quotient manifold. Thus a

projection of the original quantum dynamics onto that subspace has provided
the quantum dynamics on the manifold with boundary, equipped with specific
quantum boundary conditions (e.g. Neumann/Dirichlet).

In the following sections we are going to show how to generate quantum250

boundary conditions by means of a folding procedure. At variance with the
previous strategy, here we will establish a unitary map, instead of a projection,
between suitable L

2 spaces over the original and the folded base manifolds.
We will show that the requirement of unitarity implies the emergence of an
additional spin degree of freedom in the quantum dynamics on the manifold255

with boundary.
In this section we consider the folding of a line into a half-line, and in the

following section we will consider again the case of a circle. As a starting
operator we will always take the momentum operator, which does not have self-
adjoint realizations on the half-line and on the interval (with local boundary260

conditions), and thus cannot generate unitary dynamics. We will show how the
emerging spin degree of freedom will be of help to restore unitarity.

Consider the momentum operator on the real line,

p = �i~ d

dx
, (57)

defined on its domain of self-adjointness,

D(p) = H1(R) = { 2 L
2(R) |  0

2 L
2(R) }, (58)

where H1(R) is the first Sobolev space, of square integrable functions with
square-integrable distributional derivative.

Let R+ = {x 2 R : x � 0} be the positive half-line. We are going to265

construct a natural unitary map between L
2(R) and L

2(R+) ⌦ C2. Next, we
will use this map to find out the operator on L

2(R+) ⌦ C2 into which the
original momentum operator on L

2(R) is transformed. This procedure maps a
self-adjoint operator in L

2(R) into a self-adjoint operator in L
2(R+)⌦C2. This

fact is extremely interesting from a physical perspective, because, as mentioned270

above, the momentum operator admits no self-adjoint extensions on the half-
line, say on L

2(R+), since there is a net probability flux through the boundary
at the origin, which cannot be compensated [10].

The above procedure, nevertheless, will produce a self-adjoint momentum
operator on the half-line at the price of the introduction of an ancillary space,275

C2. Such an operator can be physically interpreted as a Dirac operator for a
spin-1/2 particle on the half-line R+.

We define the map

U : L2(R) ! L
2(R+)⌦ C2

,

 (x) 7! �(y) =

✓
�+(y)
��(y)

◆
= (U )(y) =

✓
 (y)
 (�y)

◆
. (59)
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Momentum on the half-line

(e.g. the interval). Then, we have considered the L
2 space over the original

manifold and taken a subspace (e.g. the space of even/odd wave functions)
which is invariant under the action of the Hamiltonian (e.g. the Laplacian)245

and can be identified with the L
2 space over the quotient manifold. Thus a

projection of the original quantum dynamics onto that subspace has provided
the quantum dynamics on the manifold with boundary, equipped with specific
quantum boundary conditions (e.g. Neumann/Dirichlet).

In the following sections we are going to show how to generate quantum250

boundary conditions by means of a folding procedure. At variance with the
previous strategy, here we will establish a unitary map, instead of a projection,
between suitable L

2 spaces over the original and the folded base manifolds.
We will show that the requirement of unitarity implies the emergence of an
additional spin degree of freedom in the quantum dynamics on the manifold255

with boundary.
In this section we consider the folding of a line into a half-line, and in the

following section we will consider again the case of a circle. As a starting
operator we will always take the momentum operator, which does not have self-
adjoint realizations on the half-line and on the interval (with local boundary260

conditions), and thus cannot generate unitary dynamics. We will show how the
emerging spin degree of freedom will be of help to restore unitarity.

Consider the momentum operator on the real line,

p = �i~ d

dx
, (57)

defined on its domain of self-adjointness,

D(p) = H1(R) = { 2 L
2(R) |  0

2 L
2(R) }, (58)

where H1(R) is the first Sobolev space, of square integrable functions with
square-integrable distributional derivative.

Let R+ = {x 2 R : x � 0} be the positive half-line. We are going to265

construct a natural unitary map between L
2(R) and L

2(R+) ⌦ C2. Next, we
will use this map to find out the operator on L

2(R+) ⌦ C2 into which the
original momentum operator on L

2(R) is transformed. This procedure maps a
self-adjoint operator in L

2(R) into a self-adjoint operator in L
2(R+)⌦C2. This

fact is extremely interesting from a physical perspective, because, as mentioned270

above, the momentum operator admits no self-adjoint extensions on the half-
line, say on L

2(R+), since there is a net probability flux through the boundary
at the origin, which cannot be compensated [10].

The above procedure, nevertheless, will produce a self-adjoint momentum
operator on the half-line at the price of the introduction of an ancillary space,275

C2. Such an operator can be physically interpreted as a Dirac operator for a
spin-1/2 particle on the half-line R+.

We define the map

U : L2(R) ! L
2(R+)⌦ C2

,

 (x) 7! �(y) =

✓
�+(y)
��(y)

◆
= (U )(y) =

✓
 (y)
 (�y)

◆
. (59)
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It is self-adjoint.

Consider the momentum on the full line

(e.g. the interval). Then, we have considered the L
2 space over the original

manifold and taken a subspace (e.g. the space of even/odd wave functions)
which is invariant under the action of the Hamiltonian (e.g. the Laplacian)245

and can be identified with the L
2 space over the quotient manifold. Thus a

projection of the original quantum dynamics onto that subspace has provided
the quantum dynamics on the manifold with boundary, equipped with specific
quantum boundary conditions (e.g. Neumann/Dirichlet).

In the following sections we are going to show how to generate quantum250

boundary conditions by means of a folding procedure. At variance with the
previous strategy, here we will establish a unitary map, instead of a projection,
between suitable L

2 spaces over the original and the folded base manifolds.
We will show that the requirement of unitarity implies the emergence of an
additional spin degree of freedom in the quantum dynamics on the manifold255

with boundary.
In this section we consider the folding of a line into a half-line, and in the

following section we will consider again the case of a circle. As a starting
operator we will always take the momentum operator, which does not have self-
adjoint realizations on the half-line and on the interval (with local boundary260

conditions), and thus cannot generate unitary dynamics. We will show how the
emerging spin degree of freedom will be of help to restore unitarity.

Consider the momentum operator on the real line,

p = �i~ d

dx
, (57)

defined on its domain of self-adjointness,

D(p) = H1(R) = { 2 L
2(R) |  0

2 L
2(R) }, (58)

where H1(R) is the first Sobolev space, of square integrable functions with
square-integrable distributional derivative.

Let R+ = {x 2 R : x � 0} be the positive half-line. We are going to265

construct a natural unitary map between L
2(R) and L

2(R+) ⌦ C2. Next, we
will use this map to find out the operator on L

2(R+) ⌦ C2 into which the
original momentum operator on L

2(R) is transformed. This procedure maps a
self-adjoint operator in L

2(R) into a self-adjoint operator in L
2(R+)⌦C2. This

fact is extremely interesting from a physical perspective, because, as mentioned270

above, the momentum operator admits no self-adjoint extensions on the half-
line, say on L

2(R+), since there is a net probability flux through the boundary
at the origin, which cannot be compensated [10].

The above procedure, nevertheless, will produce a self-adjoint momentum
operator on the half-line at the price of the introduction of an ancillary space,275

C2. Such an operator can be physically interpreted as a Dirac operator for a
spin-1/2 particle on the half-line R+.

We define the map

U : L2(R) ! L
2(R+)⌦ C2

,

 (x) 7! �(y) =

✓
�+(y)
��(y)

◆
= (U )(y) =

✓
 (y)
 (�y)

◆
. (59)
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(e.g. the interval). Then, we have considered the L
2 space over the original

manifold and taken a subspace (e.g. the space of even/odd wave functions)
which is invariant under the action of the Hamiltonian (e.g. the Laplacian)245

and can be identified with the L
2 space over the quotient manifold. Thus a

projection of the original quantum dynamics onto that subspace has provided
the quantum dynamics on the manifold with boundary, equipped with specific
quantum boundary conditions (e.g. Neumann/Dirichlet).

In the following sections we are going to show how to generate quantum250

boundary conditions by means of a folding procedure. At variance with the
previous strategy, here we will establish a unitary map, instead of a projection,
between suitable L

2 spaces over the original and the folded base manifolds.
We will show that the requirement of unitarity implies the emergence of an
additional spin degree of freedom in the quantum dynamics on the manifold255

with boundary.
In this section we consider the folding of a line into a half-line, and in the

following section we will consider again the case of a circle. As a starting
operator we will always take the momentum operator, which does not have self-
adjoint realizations on the half-line and on the interval (with local boundary260

conditions), and thus cannot generate unitary dynamics. We will show how the
emerging spin degree of freedom will be of help to restore unitarity.

Consider the momentum operator on the real line,

p = �i~ d

dx
, (57)

defined on its domain of self-adjointness,

D(p) = H1(R) = { 2 L
2(R) |  0

2 L
2(R) }, (58)

where H1(R) is the first Sobolev space, of square integrable functions with
square-integrable distributional derivative.

Let R+ = {x 2 R : x � 0} be the positive half-line. We are going to265

construct a natural unitary map between L
2(R) and L

2(R+) ⌦ C2. Next, we
will use this map to find out the operator on L

2(R+) ⌦ C2 into which the
original momentum operator on L

2(R) is transformed. This procedure maps a
self-adjoint operator in L

2(R) into a self-adjoint operator in L
2(R+)⌦C2. This

fact is extremely interesting from a physical perspective, because, as mentioned270

above, the momentum operator admits no self-adjoint extensions on the half-
line, say on L

2(R+), since there is a net probability flux through the boundary
at the origin, which cannot be compensated [10].

The above procedure, nevertheless, will produce a self-adjoint momentum
operator on the half-line at the price of the introduction of an ancillary space,275

C2. Such an operator can be physically interpreted as a Dirac operator for a
spin-1/2 particle on the half-line R+.

We define the map

U : L2(R) ! L
2(R+)⌦ C2

,

 (x) 7! �(y) =

✓
�+(y)
��(y)

◆
= (U )(y) =

✓
 (y)
 (�y)

◆
. (59)
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(e.g. the interval). Then, we have considered the L
2 space over the original

manifold and taken a subspace (e.g. the space of even/odd wave functions)
which is invariant under the action of the Hamiltonian (e.g. the Laplacian)245

and can be identified with the L
2 space over the quotient manifold. Thus a

projection of the original quantum dynamics onto that subspace has provided
the quantum dynamics on the manifold with boundary, equipped with specific
quantum boundary conditions (e.g. Neumann/Dirichlet).

In the following sections we are going to show how to generate quantum250

boundary conditions by means of a folding procedure. At variance with the
previous strategy, here we will establish a unitary map, instead of a projection,
between suitable L

2 spaces over the original and the folded base manifolds.
We will show that the requirement of unitarity implies the emergence of an
additional spin degree of freedom in the quantum dynamics on the manifold255

with boundary.
In this section we consider the folding of a line into a half-line, and in the

following section we will consider again the case of a circle. As a starting
operator we will always take the momentum operator, which does not have self-
adjoint realizations on the half-line and on the interval (with local boundary260

conditions), and thus cannot generate unitary dynamics. We will show how the
emerging spin degree of freedom will be of help to restore unitarity.

Consider the momentum operator on the real line,

p = �i~ d

dx
, (57)

defined on its domain of self-adjointness,

D(p) = H1(R) = { 2 L
2(R) |  0

2 L
2(R) }, (58)

where H1(R) is the first Sobolev space, of square integrable functions with
square-integrable distributional derivative.

Let R+ = {x 2 R : x � 0} be the positive half-line. We are going to265

construct a natural unitary map between L
2(R) and L

2(R+) ⌦ C2. Next, we
will use this map to find out the operator on L

2(R+) ⌦ C2 into which the
original momentum operator on L

2(R) is transformed. This procedure maps a
self-adjoint operator in L

2(R) into a self-adjoint operator in L
2(R+)⌦C2. This

fact is extremely interesting from a physical perspective, because, as mentioned270

above, the momentum operator admits no self-adjoint extensions on the half-
line, say on L

2(R+), since there is a net probability flux through the boundary
at the origin, which cannot be compensated [10].

The above procedure, nevertheless, will produce a self-adjoint momentum
operator on the half-line at the price of the introduction of an ancillary space,275

C2. Such an operator can be physically interpreted as a Dirac operator for a
spin-1/2 particle on the half-line R+.

We define the map

U : L2(R) ! L
2(R+)⌦ C2

,

 (x) 7! �(y) =

✓
�+(y)
��(y)

◆
= (U )(y) =

✓
 (y)
 (�y)

◆
. (59)
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(e.g. the interval). Then, we have considered the L
2 space over the original

manifold and taken a subspace (e.g. the space of even/odd wave functions)
which is invariant under the action of the Hamiltonian (e.g. the Laplacian)245

and can be identified with the L
2 space over the quotient manifold. Thus a

projection of the original quantum dynamics onto that subspace has provided
the quantum dynamics on the manifold with boundary, equipped with specific
quantum boundary conditions (e.g. Neumann/Dirichlet).

In the following sections we are going to show how to generate quantum250

boundary conditions by means of a folding procedure. At variance with the
previous strategy, here we will establish a unitary map, instead of a projection,
between suitable L

2 spaces over the original and the folded base manifolds.
We will show that the requirement of unitarity implies the emergence of an
additional spin degree of freedom in the quantum dynamics on the manifold255

with boundary.
In this section we consider the folding of a line into a half-line, and in the

following section we will consider again the case of a circle. As a starting
operator we will always take the momentum operator, which does not have self-
adjoint realizations on the half-line and on the interval (with local boundary260

conditions), and thus cannot generate unitary dynamics. We will show how the
emerging spin degree of freedom will be of help to restore unitarity.

Consider the momentum operator on the real line,

p = �i~ d

dx
, (57)

defined on its domain of self-adjointness,

D(p) = H1(R) = { 2 L
2(R) |  0

2 L
2(R) }, (58)

where H1(R) is the first Sobolev space, of square integrable functions with
square-integrable distributional derivative.

Let R+ = {x 2 R : x � 0} be the positive half-line. We are going to265

construct a natural unitary map between L
2(R) and L

2(R+) ⌦ C2. Next, we
will use this map to find out the operator on L

2(R+) ⌦ C2 into which the
original momentum operator on L

2(R) is transformed. This procedure maps a
self-adjoint operator in L

2(R) into a self-adjoint operator in L
2(R+)⌦C2. This

fact is extremely interesting from a physical perspective, because, as mentioned270

above, the momentum operator admits no self-adjoint extensions on the half-
line, say on L

2(R+), since there is a net probability flux through the boundary
at the origin, which cannot be compensated [10].

The above procedure, nevertheless, will produce a self-adjoint momentum
operator on the half-line at the price of the introduction of an ancillary space,275

C2. Such an operator can be physically interpreted as a Dirac operator for a
spin-1/2 particle on the half-line R+.

We define the map

U : L2(R) ! L
2(R+)⌦ C2

,

 (x) 7! �(y) =

✓
�+(y)
��(y)

◆
= (U )(y) =

✓
 (y)
 (�y)

◆
. (59)
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whence

p̃�(y) = UpU
†

✓
�+(y)
��(y)

◆
= �i~

✓
�
0

+(y)
��

0

�
(y)

◆
. (63)

Therefore,

p̃ = �i~ d

dy
⌦ �z D(p̃) = {� 2 H1(R+)⌦ C2

|�(0) = �x�(0) }, (64)

where �x and �z are the first and the third Pauli matrix, respectively.285

In other words, we started with the momentum operator p of a quantum
particle on the line L2(R). Then, we punctured the line at the origin and folded
it, resulting into two copies of L2(R+), that is L2(R+)⌦C2. See Fig. 3. Next, we
showed that the momentum on the real line transforms into a Dirac operator
on the half-line with a definite quantum boundary condition which makes it290

self-adjoint.
It is instructive to look at the above procedure in the opposite way, which

would represent a dilation process: Suppose we start with the momentum op-
erator on the half-line, i.e. in L

2(R+), which admits no self-adjoint extensions,
because its deficiency indices are di↵erent [10]. Then, in the spirit of Naimark’s295

dilation theorem [20], one can instead enlarge the Hilbert space and look at
an extension of the problem one has started with, which is significantly dif-
ferent. In other words, through a dilation procedure, we can get the operator
p̃, which is a Naimark extension of the momentum on the half-line and has a
di↵erent physical interpretation, as the Dirac operator of a spin-1/2 particle on300

the half-line.
From a physical point of view the new operator p̃ could represent a spin-1/2

particle interacting with a wall, which flips both the momentum and the spin
of the particle, through the operator �x in the boundary conditions (64), and
thus preserves its helicity. An alternative interpretation is given by a spinless305

particle on the half-line which collides with a detector at the boundary. The
detector has two possible states and corresponds to the two-level system. When
the particle hits the boundary, it will bounce with a corresponding flip of its
momentum, and the detector will click.

In this construction the self-adjointness of the resulting operator relies on310

the ancillary spin.
Indeed, the dynamics on the space L2(R+)⌦C2 is unitary, but this cannot be

the case on the spatial component L2(R+), since its generator, the momentum
operator, is not self-adjoint on the half-line. The momentum operator on the line
is not projectable onto the half-line, and this results in the projected operator315

losing self-adjointness.
This issue can be detected by considering the projection of the space L2(R+)⌦

C2, which is unitarily equivalent to L
2(R), onto its spatial component L2(R+).

This projection, obtained by tracing out the spin component C2, maps separa-
ble pure states into pure states, while entangled states are mapped into mixed320

states. Therefore, if the unitary dynamics on L
2(R+) ⌦ C2 generates entan-

glement, its projection cannot be unitary. This establishes an interesting link
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Figure 3: Action of the unitary operator U defined in (59). The splitting of the wavefunction

 into the two spinorial components, �+ and ��, is represented.

where x 2 R and y 2 R+. Its adjoint reads

U
† : L2(R+)⌦ C2

! L
2(R),

�(y) =

✓
�+(y)
��(y)

◆
7!  (x) = (U †�)(x) =

(
�+(x) if x 2 R+

��(�x) if x 2 R�

. (60)

It can be easily verified that U is unitary, namely UU
† = U

†
U = I.280

Since the wave functions  in D(p) = H1(R) are continuous, one has that
 (0+) =  (0�). Therefore, the domain of the transformed operator p̃ = UpU

†

is
D(p̃) = UD(p) = {� 2 H1(R+)⌦ C2

|�+(0) = ��(0) }. (61)

It is clear from the above expression that a boundary condition has naturally
emerged after this unitary transformation.

Let us now look at the explicit form of the operator p̃ = UpU
†. We get

(pU †�)(x) = pU
†

✓
�+

��

◆
(x) = p

(
�+(x) if x 2 R+

��(�x) if x 2 R�

= �i~
(
�
0

+(x) if x 2 R+

��
0

�
(�x) if x 2 R�

, (62)
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Entanglement vs self-adjointness
between entanglement generation of a unitary evolution and the lack of self-
adjointness of the projected generator.

That is just the case of the example under consideration. Indeed, suppose
that the initial state of the system is

�⌦
|"i+ |#i

p
2

, (65)

where � 2 L
2(R+) is a normalized wave packet which vanishes in a neighbour-

hood of the origin x = 0, and {|"i, |#i} is the eigenbasis of �z. Then the evolved
state for su�ciently small times t reads

e
�itp⌦�z

✓
�(x)⌦

|"i+ |#i
p
2

◆
= �(x� t)⌦

|"i
p
2
+ �(x+ t)⌦

|#i
p
2
, (66)

and the spatial degrees of freedom gets manifestly entangled with the spinorial325

ones for positive times.

6. Momentum operator on the circle

In this section we would like to provide the reader with another example of
the folding procedure. We are going to study the momentum of a particle on a
circle S and, as in the previous section, we will map this problem into a unitarily330

equivalent one. As a consequence, boundary conditions will be generated in the
transformed system.

We recall the natural identifications:

L
2(S) = L

2(�⇡,⇡) = L
2(�⇡, 0)� L

2(0,⇡), (67)

that will turn out to be useful in the following discussion. Consider the momen-
tum operator of a particle on a circle

p = �i~ d

dx
, D(p) = H1(S) = { 2 H1[�⇡,⇡] |  (�⇡) =  (⇡) }. (68)

By using the identifications (67) and the continuity of the functions in the
first Sobolev space H1, the domain of p can be rewritten as

D(p) = { 2 H1[�⇡, 0]�H1[0,⇡] |  (0�) =  (0+) ,  (�⇡) =  (⇡)}. (69)

We are going to unitarily map this problem on L
2(0,⇡) ⌦ C2. Indeed the

following map is unitary, as pictorially shown in figure 4:

U : L2(S) ! L
2(0,⇡)⌦ C2

, (70)

 (x) 7! (U )(y) =

✓
�+(y)
��(y)

◆
=

✓
 (y)
 (�y)

◆
, (71)
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Momentum on an interval

(e.g. the interval). Then, we have considered the L
2 space over the original

manifold and taken a subspace (e.g. the space of even/odd wave functions)
which is invariant under the action of the Hamiltonian (e.g. the Laplacian)245

and can be identified with the L
2 space over the quotient manifold. Thus a

projection of the original quantum dynamics onto that subspace has provided
the quantum dynamics on the manifold with boundary, equipped with specific
quantum boundary conditions (e.g. Neumann/Dirichlet).

In the following sections we are going to show how to generate quantum250

boundary conditions by means of a folding procedure. At variance with the
previous strategy, here we will establish a unitary map, instead of a projection,
between suitable L

2 spaces over the original and the folded base manifolds.
We will show that the requirement of unitarity implies the emergence of an
additional spin degree of freedom in the quantum dynamics on the manifold255

with boundary.
In this section we consider the folding of a line into a half-line, and in the

following section we will consider again the case of a circle. As a starting
operator we will always take the momentum operator, which does not have self-
adjoint realizations on the half-line and on the interval (with local boundary260

conditions), and thus cannot generate unitary dynamics. We will show how the
emerging spin degree of freedom will be of help to restore unitarity.

Consider the momentum operator on the real line,

p = �i~ d

dx
, (57)

defined on its domain of self-adjointness,

D(p) = H1(R) = { 2 L
2(R) |  0

2 L
2(R) }, (58)

where H1(R) is the first Sobolev space, of square integrable functions with
square-integrable distributional derivative.

Let R+ = {x 2 R : x � 0} be the positive half-line. We are going to265

construct a natural unitary map between L
2(R) and L

2(R+) ⌦ C2. Next, we
will use this map to find out the operator on L

2(R+) ⌦ C2 into which the
original momentum operator on L

2(R) is transformed. This procedure maps a
self-adjoint operator in L

2(R) into a self-adjoint operator in L
2(R+)⌦C2. This

fact is extremely interesting from a physical perspective, because, as mentioned270

above, the momentum operator admits no self-adjoint extensions on the half-
line, say on L

2(R+), since there is a net probability flux through the boundary
at the origin, which cannot be compensated [10].

The above procedure, nevertheless, will produce a self-adjoint momentum
operator on the half-line at the price of the introduction of an ancillary space,275

C2. Such an operator can be physically interpreted as a Dirac operator for a
spin-1/2 particle on the half-line R+.

We define the map

U : L2(R) ! L
2(R+)⌦ C2

,

 (x) 7! �(y) =

✓
�+(y)
��(y)

◆
= (U )(y) =

✓
 (y)
 (�y)

◆
. (59)
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It is self-adjoint.

Consider the momentum on the circle

first Sobolev space

Need a unitary mapping onto the interval
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Ancillary spin
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Figure 4: Action of the unitary operator U on L2
(S) defined in (71). The splitting of the

wavefunction  into the two spinorial components, �+ and ��, is represented (on the right).

On the left the folding procedure on the interval [0,⇡] is pictorially shown.

U : L2(S) ! L
2(0,⇡)⌦ C2

, (72)

 (x) 7! (U )(y) =

✓
 (y)
 (�y)

◆
, (73)

where x 2 [�⇡,⇡] and y 2 [0,⇡]. Its inverse reads335

U
† : L2(0,⇡)⌦ C2

! L
2(S),

U
†

✓
�+(y)
��(y)

◆
=

(
�+(x) if x 2 [0,⇡]

��(�x) if x 2 [�⇡, 0]
. (74)

The domain of the transformed operator p̃ = UpU
† is

D(p̃) = UD(p) = {� 2 H1[0,⇡]⌦ C2
|�+(0) = ��(0) , �+(⇡) = ��(⇡)}. (75)

and p̃ acts as

p̃

✓
�+(y)
��(y)

◆
= �i~

✓
�
0

+(y)
��

0

�
(y)

◆
. (76)

Therefore, we get

p̃ = �i
d

dy
⌦�z, D(p̃) = {� 2 H1[0,⇡]⌦C2

|�(0) = �x �(0) , �(⇡) = �x �(⇡)}.

(77)
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whence

p̃�(y) = UpU
†

✓
�+(y)
��(y)

◆
= �i~

✓
�
0

+(y)
��

0

�
(y)

◆
. (63)

Therefore,

p̃ = �i~ d

dy
⌦ �z D(p̃) = {� 2 H1(R+)⌦ C2

|�(0) = �x�(0) }, (64)

where �x and �z are the first and the third Pauli matrix, respectively.285

In other words, we started with the momentum operator p of a quantum
particle on the line L2(R). Then, we punctured the line at the origin and folded
it, resulting into two copies of L2(R+), that is L2(R+)⌦C2. See Fig. 3. Next, we
showed that the momentum on the real line transforms into a Dirac operator
on the half-line with a definite quantum boundary condition which makes it290

self-adjoint.
It is instructive to look at the above procedure in the opposite way, which

would represent a dilation process: Suppose we start with the momentum op-
erator on the half-line, i.e. in L

2(R+), which admits no self-adjoint extensions,
because its deficiency indices are di↵erent [10]. Then, in the spirit of Naimark’s295

dilation theorem [20], one can instead enlarge the Hilbert space and look at
an extension of the problem one has started with, which is significantly dif-
ferent. In other words, through a dilation procedure, we can get the operator
p̃, which is a Naimark extension of the momentum on the half-line and has a
di↵erent physical interpretation, as the Dirac operator of a spin-1/2 particle on300

the half-line.
From a physical point of view the new operator p̃ could represent a spin-1/2

particle interacting with a wall, which flips both the momentum and the spin
of the particle, through the operator �x in the boundary conditions (64), and
thus preserves its helicity. An alternative interpretation is given by a spinless305

particle on the half-line which collides with a detector at the boundary. The
detector has two possible states and corresponds to the two-level system. When
the particle hits the boundary, it will bounce with a corresponding flip of its
momentum, and the detector will click.

In this construction the self-adjointness of the resulting operator relies on310

the ancillary spin.
Indeed, the dynamics on the space L2(R+)⌦C2 is unitary, but this cannot be

the case on the spatial component L2(R+), since its generator, the momentum
operator, is not self-adjoint on the half-line. The momentum operator on the line
is not projectable onto the half-line, and this results in the projected operator315

losing self-adjointness.
This issue can be detected by considering the projection of the space L2(R+)⌦

C2, which is unitarily equivalent to L
2(R), onto its spatial component L2(R+).

This projection, obtained by tracing out the spin component C2, maps separa-
ble pure states into pure states, while entangled states are mapped into mixed320

states. Therefore, if the unitary dynamics on L
2(R+) ⌦ C2 generates entan-

glement, its projection cannot be unitary. This establishes an interesting link
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Figure 3: Action of the unitary operator U defined in (59). The splitting of the wavefunction

 into the two spinorial components, �+ and ��, is represented.

where x 2 R and y 2 R+. Its adjoint reads

U
† : L2(R+)⌦ C2

! L
2(R),

�(y) =

✓
�+(y)
��(y)

◆
7!  (x) = (U †�)(x) =

(
�+(x) if x 2 R+

��(�x) if x 2 R�

. (60)

It can be easily verified that U is unitary, namely UU
† = U

†
U = I.280

Since the wave functions  in D(p) = H1(R) are continuous, one has that
 (0+) =  (0�). Therefore, the domain of the transformed operator p̃ = UpU

†

is
D(p̃) = UD(p) = {� 2 H1(R+)⌦ C2

|�+(0) = ��(0) }. (61)

It is clear from the above expression that a boundary condition has naturally
emerged after this unitary transformation.

Let us now look at the explicit form of the operator p̃ = UpU
†. We get

(pU †�)(x) = pU
†

✓
�+

��

◆
(x) = p

(
�+(x) if x 2 R+

��(�x) if x 2 R�

= �i~
(
�
0

+(x) if x 2 R+

��
0

�
(�x) if x 2 R�

, (62)
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between entanglement generation of a unitary evolution and the lack of self-
adjointness of the projected generator.

That is just the case of the example under consideration. Indeed, suppose
that the initial state of the system is

�⌦
|"i+ |#i

p
2

, (65)

where � 2 L
2(R+) is a normalized wave packet which vanishes in a neighbour-

hood of the origin x = 0, and {|"i, |#i} is the eigenbasis of �z. Then the evolved
state for su�ciently small times t reads

e
�itp⌦�z

✓
�(x)⌦

|"i+ |#i
p
2

◆
= �(x� t)⌦

|"i
p
2
+ �(x+ t)⌦

|#i
p
2
, (66)

and the spatial degrees of freedom gets manifestly entangled with the spinorial325

ones for positive times.

6. Momentum operator on the circle

In this section we would like to provide the reader with another example of
the folding procedure. We are going to study the momentum of a particle on a
circle S and, as in the previous section, we will map this problem into a unitarily330

equivalent one. As a consequence, boundary conditions will be generated in the
transformed system.

We recall the natural identifications:

L
2(S) = L

2(�⇡,⇡) = L
2(�⇡, 0)� L

2(0,⇡), (67)

that will turn out to be useful in the following discussion. Consider the momen-
tum operator of a particle on a circle

p = �i~ d

dx
, D(p) = H1(S) = { 2 H1[�⇡,⇡] |  (�⇡) =  (⇡) }. (68)

By using the identifications (67) and the continuity of the functions in the
first Sobolev space H1, the domain of p can be rewritten as

D(p) = { 2 H1[�⇡, 0]�H1[0,⇡] |  (0�) =  (0+) ,  (�⇡) =  (⇡)}. (69)

We are going to unitarily map this problem on L
2(0,⇡) ⌦ C2. Indeed the

following map is unitary, as pictorially shown in figure 4:

U : L2(S) ! L
2(0,⇡)⌦ C2

, (70)

 (x) 7! (U )(y) =

✓
�+(y)
��(y)

◆
=

✓
 (y)
 (�y)

◆
, (71)
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Figure 4: Action of the unitary operator U on L2
(S) defined in (71). The splitting of the

wavefunction  into the two spinorial components, �+ and ��, is represented (on the right).

On the left the folding procedure on the interval [0,⇡] is pictorially shown.

U : L2(S) ! L
2(0,⇡)⌦ C2

, (72)

 (x) 7! (U )(y) =

✓
 (y)
 (�y)

◆
, (73)

where x 2 [�⇡,⇡] and y 2 [0,⇡]. Its inverse reads335

U
† : L2(0,⇡)⌦ C2

! L
2(S),

U
†

✓
�+(y)
��(y)

◆
=

(
�+(x) if x 2 [0,⇡]

��(�x) if x 2 [�⇡, 0]
. (74)

The domain of the transformed operator p̃ = UpU
† is

D(p̃) = UD(p) = {� 2 H1[0,⇡]⌦ C2
|�+(0) = ��(0) , �+(⇡) = ��(⇡)}. (75)

and p̃ acts as

p̃

✓
�+(y)
��(y)

◆
= �i~

✓
�
0

+(y)
��

0

�
(y)

◆
. (76)

Therefore, we get

p̃ = �i
d

dy
⌦�z, D(p̃) = {� 2 H1[0,⇡]⌦C2

|�(0) = �x �(0) , �(⇡) = �x �(⇡)}.

(77)
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S+ = S/⇧ = [0,⇡]

0 ⇡ � ⇡

Now, we will represent the action of ⇧ on square integrable functions on S,
and show how boundary conditions are going to emerge after this process.80

The action of ⇧ on functions can be implemented by a pull-back

P : L2(S) ! L
2(S), (P )(x) =  (⇧(x)) =  (�x). (11)

Moreover P
2 = I, so that the eigenspaces of the parity operator P belong to

the eigenvalues ±1.
The action of P splits the Hilbert space L2(S) into two mutually orthogonal

subspaces H+ and H�, defined by

H± = { 2 L
2(S) |P = ± }. (12)

Notice that L2(S) can be identified with L
2(�⇡,⇡), the Hilbert space of square

integrable functions on the interval (�⇡,⇡). Under such identification we get

H± = { 2 L
2(�⇡,⇡) | (�x) = ± (x)}, (13)

that is, the set of even and odd functions on (�⇡,⇡), respectively.
Consider now the Hamiltonian of a free particle on a circle (2). Since S is

a compact manifold without boundary, the Laplace operator is essentially self-
adjoint on C

1(S) = C
1

c (S), the smooth function on the circle [19]. The domain
of self-adjointness is the second Sobolev space H2(S), which, in coordinates reads

H2(S) = { 2 H2[�⇡,⇡] :  (�⇡) =  (⇡) ,  0(�⇡) =  
0(⇡)}. (14)

Here, H2[�⇡,⇡] is the set of square-integrable functions, with square-integrable
(first and) second distribution derivative.85

Interestingly, the parity operator P and the operator H commute on H2(S):

H P = P H. (15)

This is a crucial ingredient in our construction, which we remind consists in
obtaining a self-adjoint operator on the quotient space, say the interval [0,⇡],
starting from the operator H on the unit circle.

From the commutation relation HP = PH it follows that whenever the
operator H acts on H+ (respectively on H�) then, its image remains in H+90

(respectively in H�). Thus, the restriction of H to one of the two subspaces
gives rise to a self-adjoint operator. We are going to show that the restrictions of
H to these parity eigenspaces can be identified with two self-adjoint Hamiltonian
operators on the interval [0,⇡].

From (13) and (14), one has

D(H|H+) = H2(S) \H+ = { 2 H2[�⇡,⇡] \H+ :  0(�⇡) = 0 =  
0(⇡)}. (16)
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