BOUNDARIES WITHOUT BOUNDARIES

Paolo Facchi
Università di Bari \& INFN, Italy

Work with:
G. Garnero, G. Marmo, J. Samuel, S. Sinha

Bari, Napoli, Bangalore

Fields, Particles and Information Geometry BALFEST80
DIAS, Dublin, 24 January 2018

Outline

- Quantum boundary conditions
- Boundaries by reduction: from a circle to an interval
- A quantum particle on a circle: Laplacian
- Unitary folding
- Momentum on a half-line
- Momentum on an interval

A quantum particle on a segment

$$
H=T=\frac{p^{2}}{2 m}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \quad D(T)=\mathcal{D}(0,1)
$$

What happens at the boundary?

$$
D\left(T^{*}\right)=\left\{\psi \in L^{2}(0,1), \psi^{\prime \prime} \in L^{2}(0,1)\right\}=H^{2}[0,1]
$$

Quantum Boundary Conditions

$$
\begin{gathered}
T_{U} \psi=-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime} \quad U \in \mathrm{U}(2) \\
i(I+U) \varphi=(I-U) \dot{\varphi} \\
\varphi=\binom{\psi(0)}{\psi(1)} \quad \dot{\varphi}=\binom{\psi^{\prime}(0)}{-\psi^{\prime}(1)}
\end{gathered}
$$

M. Asorey, A. Ibort, G. Marmo, Int. J. Mod. Phys. A 20, 1001 (2005)

Quantum Boundary Conditions

Self-adjoint extensions

Unitary matrices at the boundary

$$
i(I+U) \varphi=(I-U) \dot{\varphi} \quad U \in \mathrm{U}(2)
$$

M. Asorey, A. Ibort, G. Marmo, Int. J. Mod. Phys. A 20, 1001 (2005)

Examples

$$
i(I+U)\binom{\psi(0)}{\psi(1)}=(I-U)\binom{\psi^{\prime}(0)}{-\psi^{\prime}(1)}
$$

Dirichlet

$$
U=I \quad \psi(0)=0=\psi(1)
$$

Robin

Neumann
$U=-I$

$$
\psi^{\prime}(0)=0=\psi^{\prime}(1)
$$

Examples

$$
i(I+U)\binom{\psi(0)}{\psi(1)}=(I-U)\binom{\psi^{\prime}(0)}{-\psi^{\prime}(1)}
$$

Dirichlet+Robin

$$
\begin{gathered}
U=\left(\begin{array}{cc}
1 & 0 \\
0 & -\mathrm{e}^{-\mathrm{i} \alpha}
\end{array}\right) \\
\alpha \in \mathbb{R}
\end{gathered}
$$

Antiperiodic

$$
U=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left\{\begin{array}{l}
\psi(0)=-\psi(1) \\
\psi^{\prime}(0)=-\psi^{\prime}(1)
\end{array}\right.
$$

$$
\begin{gathered}
\text { Periodic } \\
U=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \\
\left\{\begin{array}{l}
\psi(0)=\psi(1) \\
\psi^{\prime}(0)=\psi^{\prime}(1)
\end{array}\right.
\end{gathered}
$$

Boundaries without boundaries

Generate quantum boundary conditions starting from a particle on a manifold without boundaries?

P.F., G. Garnero, G. Marmo, J. Samuel, S. Sinha, arXiv:1711.03029 [quant-ph]

Reduction by symmetry

$$
\begin{aligned}
& \Pi: \mathbb{S} \rightarrow \mathbb{S} \\
& \Pi\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right) \\
& \Pi(x)=-x \\
& \mathbb{S}_{+}=\mathbb{S} / \Pi=[0, \pi] \\
& \text { Manifold with boundary }
\end{aligned}
$$

QBC by reduction

$$
\begin{aligned}
& \Pi(x)=-x \\
& P: L^{2}(\mathbb{S}) \rightarrow L^{2}(\mathbb{S}) \\
& (P \psi)(x)=\psi(\Pi(x))=\psi(-x)
\end{aligned}
$$

parity operator

$$
\begin{aligned}
& L^{2}(\mathbb{S})=\mathcal{H}_{+} \oplus \mathcal{H}_{-} \\
& \mathcal{H}_{ \pm}=\left\{\psi \in L^{2}(-\pi, \pi) \mid \psi(-x)= \pm \psi(x)\right\}
\end{aligned}
$$

even/odd functions

QBC by reduction

Free particle Hamiltonian
$H=\frac{p^{2}}{2 m}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}$
domain of self-adjointness

$$
\begin{array}{r}
\mathrm{H}^{2}(\mathbb{S})=\left\{\psi \in \mathrm{H}^{2}[-\pi, \pi]: \psi(-\pi)=\psi(\pi), \psi^{\prime}(-\pi)=\psi^{\prime}(\pi)\right\} \\
\\
\text { second Sobolev space }
\end{array}
$$

$H P=P H \quad$ commutes with parity
$L^{2}(\mathbb{S})=\mathcal{H}_{+} \oplus \mathcal{H}_{-} \quad$ invariant subspaces

QBC by reduction

$\mathrm{H}^{2}(\mathbb{S})=\left\{\psi \in \mathrm{H}^{2}[-\pi, \pi]: \psi(-\pi)=\psi(\pi), \psi^{\prime}(-\pi)=\psi^{\prime}(\pi)\right\} \quad$ circle restriction to even functions:
$D\left(\left.H\right|_{\mathcal{H}_{+}}\right)=\mathrm{H}^{2}(\mathbb{S}) \cap \mathcal{H}_{+}=\left\{\psi \in \mathrm{H}^{2}[-\pi, \pi] \cap \mathcal{H}_{+}: \psi^{\prime}(-\pi)=0=\psi^{\prime}(\pi)\right\}$

$$
\begin{array}{ll}
U_{+}: \mathcal{H}_{+} \rightarrow L^{2}(0, \pi) & \text { interval } \\
\phi(x)=\left(U_{+} \psi\right)(x)=\sqrt{2} \psi(x) & x \in[0, \pi] \\
H_{+}:=\left.U_{+} H\right|_{\mathcal{H}_{+}} U_{+}^{\dagger}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} & \text { on } L^{2}(0, \pi) \\
D\left(H_{+}\right)=\left\{\psi \in \mathrm{H}^{2}[0, \pi]: \psi^{\prime}(0)=0=\psi^{\prime}(\pi)\right\}
\end{array}
$$

QBC by reduction

$\mathrm{H}^{2}(\mathbb{S})=\left\{\psi \in \mathrm{H}^{2}[-\pi, \pi]: \psi(-\pi)=\psi(\pi), \psi^{\prime}(-\pi)=\psi^{\prime}(\pi)\right\} \quad$ circle restriction to odd functions:

$$
D\left(\left.H\right|_{\mathcal{H}_{-}}\right)=\mathrm{H}^{2}(\mathbb{S}) \cap \mathcal{H}_{-}=\left\{\psi \in \mathrm{H}^{2}[-\pi, \pi] \cap \mathcal{H}_{-}: \psi(-\pi)=0=\psi(\pi)\right\}
$$

$$
\begin{array}{ll}
U_{-}: \mathcal{H}_{-} \rightarrow L^{2}(0, \pi) & \text { interval } \\
\phi(x)=\left(U_{-} \psi\right)(x)=\sqrt{2} \psi(x) & x \in[0, \pi] \\
H_{-}=\left.U_{-} H\right|_{\mathcal{H}_{-}} U_{-}^{\dagger}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} & \text { on } L^{2}(0, \pi) \\
D\left(H_{-}\right)=\left\{\psi \in \mathrm{H}^{2}[0, \pi]: \psi(0)=0=\psi(\pi)\right\}
\end{array}
$$

Dirichlet

QBC by reduction

$$
H=\frac{p^{2}}{2 m}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
$$

restriction to even functions
restriction to odd functions

Neumann
Dirichlet

Other boundary conditions?

General QBC

spatial metric

$$
\mathrm{d} s^{2}=\mathrm{d} x^{2}
$$

Hamiltonian

$$
H=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
$$

Neumann bc

$$
\psi^{\prime}(0)=0=\psi^{\prime}(\pi)
$$

Change of coordinates on $[0, \pi]$

$$
y=F(x)=\int_{0}^{x} f(t) \mathrm{d} t \quad f \geq 0 \quad \int_{0}^{\pi} f(t) \mathrm{d} t=\pi
$$

General QBC

spatial metric
$\mathrm{d} s^{2}=\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2} \mathrm{~d} y^{2}=\frac{1}{[f(y)]^{2}} \mathrm{~d} y^{2}$
unitary transformation

$\phi(y)=\left(U_{f} \psi\right)(y)=\frac{1}{\sqrt{g(y)}} \psi\left(F^{-1}(y)\right), \quad g(y)=f\left(F^{-1}(y)\right)$
Transformed Hamiltonian

$$
H_{f}=U_{f} H U_{f}^{\dagger}=-g^{2} \frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} y^{2}}-g g^{\prime} \frac{\hbar^{2}}{m} \frac{\mathrm{~d}}{\mathrm{~d} y}+V, \quad V=\frac{\hbar^{2}}{8 m}\left[\left(g^{\prime}\right)^{2}+2 g g^{\prime \prime}\right]
$$

General QBC

boundary conditions $\left\{\begin{array}{l}\phi^{\prime}(0)=\nu_{0} \phi(0), \\ \phi^{\prime}(\pi)=-\nu_{\pi} \phi(\pi),\end{array}\right.$

$$
\nu_{0}=-\frac{1}{2} \frac{f^{\prime}(0)}{[f(0)]^{2}}, \quad \nu_{\pi}=\frac{1}{2} \frac{f^{\prime}(\pi)}{[f(\pi)]^{2}}
$$

Robin!

But transformed Hamiltonian \neq kinetic energy

Change the metric only in a boundary layer!

From Neumann to Robin

$$
\begin{gathered}
H_{f}=U_{f} H U_{f}^{\dagger}=-g^{2} \frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} y^{2}}-g g^{\prime} \frac{\hbar^{2}}{m} \frac{\mathrm{~d}}{\mathrm{~d} y}+V, \\
V=\frac{\hbar^{2}}{8 m}\left[\left(g^{\prime}\right)^{2}+2 g g^{\prime \prime}\right] \quad \nu_{0}=-\frac{1}{2} \frac{f^{\prime}(0)}{[f(0)]^{2}}, \quad \nu_{\pi}=\frac{1}{2} \frac{f^{\prime}(\pi)}{[f(\pi)]^{2}} \\
\text { sequence of functions } \\
f_{\varepsilon}(x) \rightarrow k \quad x \in(0, \pi) \\
1 \\
1
\end{gathered}
$$

Symmetry?

Crucial ingredient for reduction:

$$
\begin{array}{ll}
H P=P H & \text { Hamiltonian commutes with parity } \\
L^{2}(\mathbb{S})=\mathcal{H}_{+} \oplus \mathcal{H}_{-} & \text {invariant subspaces }
\end{array}
$$

What if $[H, P] \neq 0$ and there are no invariant subspaces?

Replace projections by unitaries: folding

Folding

Replace projections
by unitaries

Ancillary spin

Momentum on the half-line

$$
p=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x} \quad \text { on } L^{2}\left(\mathbb{R}_{+}\right)
$$

it admits no self-adjoint extensions!

Momentum on the half-line

Consider the momentum on the full line

$$
p=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}
$$

$D(p)=\mathrm{H}^{1}(\mathbb{R})=\left\{\psi \in L^{2}(\mathbb{R}) \mid \psi^{\prime} \in L^{2}(\mathbb{R})\right\} \quad$ first Sobolev space

It is self-adjoint.

Need a unitary mapping onto the half-line

Folding

Ancillary spin

Unitary:
$U: L^{2}(\mathbb{R}) \quad \rightarrow \quad L^{2}\left(\mathbb{R}_{+}\right) \otimes \mathbb{C}^{2}$

$\psi(x) \quad \mapsto \quad \Phi(y)=\binom{\phi_{+}(y)}{\phi_{-}(y)}=(U \psi)(y)=\binom{\psi(y)}{\psi(-y)}$

Momentum on the half-line

$$
U: L^{2}(\mathbb{R}) \quad \rightarrow \quad L^{2}\left(\mathbb{R}_{+}\right) \otimes \mathbb{C}^{2}
$$

Image of the momentum:

$$
\begin{aligned}
& \tilde{p}=U p U^{\dagger} \\
& \tilde{p}=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} y} \otimes \sigma_{z} \quad \text { Dirac operator }
\end{aligned}
$$

$$
D(\tilde{p})=\left\{\Phi \in \mathrm{H}^{1}\left(\mathbb{R}_{+}\right) \otimes \mathbb{C}^{2} \mid \Phi(0)=\sigma_{x} \Phi(0)\right\} \quad \mathrm{QBC}
$$

Momentum on the half-line

$$
\begin{aligned}
& \tilde{p}=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} y} \otimes \sigma_{z} \\
& \Phi(0)=\sigma_{x} \Phi(0)
\end{aligned}
$$

- spin-1 / 2 particle: Both momentum and spin flips when bouncing off the boundary. Helicity is conserved;
- spinless particle + detector: the detector clicks when the particle bounces off the boundary.

Entanglement vs self-adjointness

Factorized initial state

$$
\phi \otimes \frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}}
$$

Entanglement generation!
Evolution:

$e^{-i t p \otimes \sigma_{z}}\left(\phi(x) \otimes \frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}}\right)=\phi(x-t) \otimes \frac{|\uparrow\rangle}{\sqrt{2}}+\phi(x+t) \otimes \frac{|\downarrow\rangle}{\sqrt{2}}$

Momentum on an interval

Consider the momentum on the circle

$$
\begin{aligned}
& p=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x} \\
& D(p)=\mathrm{H}^{1}(\mathbb{S})=\left\{\psi \in \mathrm{H}^{1}[-\pi, \pi] \mid \psi(-\pi)=\psi(\pi)\right\}
\end{aligned}
$$

first Sobolev space
It is self-adjoint.

Need a unitary mapping onto the interval

Momentum on an interval

Unitary

$U: L^{2}(\mathbb{S}) \quad \rightarrow \quad L^{2}(0, \pi) \otimes \mathbb{C}^{2}$

$$
\psi(x) \quad \mapsto \quad(U \psi)(y)=\binom{\psi(y)}{\psi(-y)}
$$

Ancillary spin

Momentum on an interval

Unitary
$U: L^{2}(\mathbb{S}) \quad \rightarrow \quad L^{2}(0, \pi) \otimes \mathbb{C}^{2}$

Image of the momentum
$\tilde{p}=U p U^{\dagger}$
$\tilde{p}=-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} y} \otimes \sigma_{z}$

Quantum boundary conditions
$D(\tilde{p})=\left\{\Phi \in \mathrm{H}^{1}[0, \pi] \otimes \mathbb{C}^{2} \mid \Phi(0)=\sigma_{x} \Phi(0), \Phi(\pi)=\sigma_{x} \Phi(\pi)\right\}$

