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Background

A correspondence (a duality) between spaces and algebras of functions on
these spaces

The idea of noncommutative geometry: forget the commutativity of the alge-
bras of functions and replace them by appropriate classes of noncommutative
associative algebras. These are considered as algebras of functions on some
(virtual) noncommutative spaces

For instance, the natural algebras of functions on finite-dimensional vector
spaces are the algebras of polynomial functions generated by the coordinates.
In these polynomial algebras the coordinates commute.

Given a class of nhoncommutative associative algebras generalizing the poly-
nomial algebras, one may consider regular algebras generated by coordinates
in which they satisfy other relations than the commutation between them and
defing thereby noncommutative vector spaces.

In the following, a noncommutative RY correspond to a regular complex -
algebra generated by hermitian elements z*, k¢ {1,...,N}.



Abstract

noncommutative generalizations of R x RV

noncommutative generalizations of  §ViT/Na=1 gnd SN+
noncommutative generalizations of  §Vi—1 x §Ne—1

a quaternionic noncommutative torus  S% x,S3, u€S?=SU(2)/U(1)
spherical manifolds : volume forms from top Chern—Connes characters
noncommutative principal bundles

spectral triples



The -deformation

C2 = Noncommutative space dual to the

x-algebra Ay generated by normal elements z1, z> with relations

2120 = ewzgzl, 2125 = e_szzl
= center generated by 21z} = ||21]|? and 2225 = ||22]|?
: 2 _ (2)2 — R2 2
Real version C; = (R“); = R“ Xy R
14 :.2 1 .2 A
z1 = 2] +ixr], 22 =x5+ iz3, (xp)" =
and {(1) + normality of z;.} < (2)
izl = oz} ryrh = whr)
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xixy = RypxoT]
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2-torus and 3-sphere

R® xg R?/(||lz1]|? — 1, [|lz2||* — 1) = Tj

R? xg R?/([lz1]|* + [[z2]* — 1) = &7

nice examples of singular spaces



The quadratic x-algebra Ag

The x-algebra Apr is generated by two sets of hermitian elements azi‘ with

Ae{l,..., N1} and z§ with a € {1,..., N2} with relations

J75 N B B
1

At — —
ry — 1T ) $2$2 CC2$2

L7

rirs = RAO‘zUQ:Bl
for suitable R3% € C. In view of the hermiticity of the z7,z5 we impose
Ry RIS = 582

Thus Ag is a graded quadratic algebra Ay = @nA}g

which is connected: A% = C1 ;

the elements z7,z9 form a basis of A} ;

by the requirement (4):

(3)

(4)

the elements zz" with A < p, z%z5 with a < 8 and z}z% form a basis of A2,



The Koszul dual A,

A quadratic algebra is an algebra A of the form
A=T(E)/(R)

where E is a finite-dimensional vector space and (R) denotes the ideal of the
tensor algebra generated by R C ER E.

The Koszul dual A' of A is the quadratic algebra
A =T(E*)/(R")
where R+ C E* ® E* is the orthogonal of R.

Our A, is generated by the dual bases 6},02 of the z7,z5 with relations

0102 = —0201 ; 0202 = —0202

(5)
2p1 — Aapnln2
0201 = —RX*0102



An R-matrix

Define ¢ for a € {1,..., N1+ No} by )=z}, 2™V =29

Then the relations (3) together with z§x} = }_zgia:*fg;g reads

a,.b __ qab,_.c..d
x'r’ = R x°x

In view of (3) and (4) one gets:

i oA 5 )
RT/@L = 5p oF, Rlﬁ = 5% Og,
Ao . pA A _ DA
R, = Rgy, Rius = R,

M — PN AL
RLE = Ra’é = Ryg =0,
ay __ poy oy
Rw = RM = Rﬁu = 0,

Ao __ pAa _ pAla
R =R) =R)% =0,
A A A
R& = RY =R = 0.

(6)



Yang-Baxter condition

The matrix R is involutive, i.e. R2=1® 1 or

RURS = i3,

We next impose the Yang-Baxter condition for R

(R® ]l)(]l X R)(R & ]l)abc = (]I ®R)(R® ]l)(]l ® R)abc



Yang-Baxter condition - cont.d
This breaks in a series of conditions:

The cubic YB equations are equivalent to quadratic relations:

[ RORY) = RYRS, (AaB)
! BOR) =R)R” (BN (7)
| BpRi, =Ry R, (aB)
and
[ RSR) = RISR) (M)
{ RyRy =RIR; (aA) (8)
| BSRs, = RyRy, Qap)

for the R} and }_%gi (the components abc of (7) are in the (...)).



Noncommutative product of RV and R:

From now on it is assumed that the matrix R of relations (3) for the algebra
Apr satisfies conditions (4), (7) and (8)

The classical (commutative) solution R = Ry is

(Ro)ji = 6,93

and the corresponding algebra Apg, is the algebra of polynomial functions on
the product RM x RN

This is the reason we define the noncommutative product of R and R:

RY x p R

to be the "“dual’ of the algebra Agr for general R.



Regularity properties of Agr and A%,

Since the relations of Ai can be written in the form (6) with R involutive
and satisfying the Yang-Baxter equation,

it follows from general results (Gurevich, Wambst) that Apg is very regular.

In particular Agr is a Koszul algebra of global dimension N1 4+ N> having the
Gorenstein property (an appropriate version of the Poincaré duality property)

In our case, this implies that, in terms of the 2 and the dual basis 6,:
the z®...z% for a1 < --- < a, and p € N is a basis of Ag

while the 0,4, ...0,, for a1 <---<ap and p € {1,...,N1 + N2} is a basis of Aj,.

AS a consequence the Poincaré series are classical :

P =" dim(Ap)en = o d Py =@Q+)%T" (9
W= ampe = () e Pa@= 040N (9)



Regqgularity properties cont.d

The algebra Apg is even a Calabi—Yau algebra:
any generator of the top one-dimensional space ((A%R)n,+n,)*

is a cyclic potential for the algebra Agr (Ginzburg)

( a cyclic pre-regular multilinear form )



Noncommutative product of Euclidean spaces

Theorem. The following conditions (i) (ii) and (iii) are equivalent :

(i) SSM(ga)2 =S50 (@2 + 302 (29)? is central in  Apg,
(i) S, ()2 and N (29)? are in the center of Ap, (10)

(i) YAL; Ry Ra. = 818, and 301 RYSRAL = 5)dp,

We take R to satisfy also (10) and define the the noncommutative product
of the Euclidean space RV with the Euclidean space R™ to be dual of Ap.

Clearly, the relations (11) are satisfied by the classical R = Rg;

Ap generalizes the algebra of polynomial functions on the product RN x R»:



Restrictions on the structure of R

By using (4) and (10) one obtains

o E=ysi _
R)) = RS = Ry, = (RO} (11)

In turn this implies that relations (7) and (8) reduce to

A d _ P ppo A wy _— Ay
RBgRgu — R’YPRBM and RVS Rﬁp T R%X Rﬁv (12)

that is the first relation of (7) and the first relation of (8).

Corollary. Relations (3) define (the algebra of) a noncommutative product
of a Ni-dimensional with a No-dimensional Euclidean spaces if and only if the
R} satisfy relations (11) and (12).



Noncommutative product of spheres

The elements S0, (23)2 = ||lz1]|2 and 3222 (29)? = ||x2||? of Ag being central
one may consider the quotient algebra

Ar/({l21l2 = 1Llz2l2 = 1}) & SVl

This defines by duality the noncommutative product of the classical spheres
SNi—1 gnd S$N=—1,

Indeed, for R = Ry, the above quotient is the restriction to SM—1 x §N—1 of
the polynomial functions on RM+N:,



Noncommutative spheres

With ||z||2 denoting the central element 3242 (22)2 = ||21||2 4 ||z2|2, one may
also consider the quotient of Ag

Ar/([|z]|* - 1) < (Mg

This defines (dualy) the noncommutative (N1 4+ No — 1)-sphere (SM+M—1), (3
subspace of the noncommutative product of RM with RM)

This is a noncommutative spherical manifold in the sense of Connes—Landi
and Connes—Dubois-Violette (see below).



The (generalized) Clifford algebra C4(Ag)

The x-algebra C¢(Ag) is generated by two sets of hermitian elements "'} with

Ae{1,...,N1} and ' 2 with a € {1,..., N2} with relations

( Mirl 4+ rirs =261

M2r2 + 22 = 26,41

7\

21 Aarlr2 —
M+ R Tra=0

\

Proposition In the algebra C¢(Ar) ® Ar one has :

(M ®z1)? =1® ||lz1]%, (M ®23)° = 1Q |22
and

Mez))(Mezd)+ (Mez)(Mez) =0

(13)



Structure of CY(ARg)

Last proposition is equivalent to
(F@)*=1® |z|? (14)

with M(z) =M@z =Tl @z} + M2 @28 and |z)|2 = S0V (g0)2.

a=1

The algebra C4(Agr) is nonhomogeneous quadratic with A;z as homogeneous
part. It is not N-graded but only Z>-graded and filtered with

F" = F"(CL(ARr)) = {elements of degree in ' < n}
One has a surjective canonical homomorphism of graded algebra
can: Ap — gr(CL(AR)) = @penF"/F 1 (15)

which induce the isomorphism of vector spaces
(AR)t = F1/F°



Structure of C4(Agr) - cont.d

The fact that ||z]|2 = Y («%)? is central in Ar and the Koszulity of A} imply
the following PBW property (via the duality of Positselski).

Proposition The homomorphism (15) is an isomorphism of graded algebras.

Thus CU(Ag) is a Koszul nonhomogeneous quadratic algebra since A’R is
Koszul, (cf. Dubois-Violette). This implies

dim C2(Ag) = dim A}, = 2N +N-

One has the following isomorphisms :

C¢(N1) ~ subalgebra of C¢(A) generated by the '}

CY(N>) ~ subalgebra of C¢(A) generated by the 2

and
CL(AR) ~ CL(N1 + N>) (16)



The general solution

Let us introduce a two-index () with XA € {1,...,N1} and a € {1,...,Na}.
Then the conditions (11) can be read as symmetry conditions:

R(:)(H) p— R(Z)(i) = }_%(a)( ) = (R_l)(;)(Z)

B B
While, the quadratic conditions in (12) can be written as

RO, RO,y = RO\ R RC) .\ RO

() By =Ry Riy and () BO ¢y = ROy ROy,

Theorem The general solution is of the form
M — QAB | i AMB
Ry, = SW + |AW
with [S,A] =0 S% 4+ A% =1y, ® 1y,.

S and A are real matrices with S standing for symmetric while A antisymmetric
for exchange in indices A <+ p and a <



The ansatz A B C D

Nontrivial realizations of the Rgg are given by the following.

Proposition Let A and C be two commuting real N; x Ni-matrices with A
symmetric and C antisymmetric and let B and D be two commuting real
N> X No-matrices with B symmetric and D antisymmetric. Assume that

A?®@ B>+ C*® D* = 1y, ® 1y,

then the Rgfj given by
A0 . AN DO N aTe’
RY: = ANBS +1C)Dj (17)

satisfy the assumptions (11), (12).



Enter the quaternions

An SO(4)-invariant decomposition of M4(R)

g=21+zfe, e H +— 2= (2022223 eR? Euclidean

a right and a left action

erq < J,g+)x, qer < —J,g_)x
J]g;ty) - :F((SO,u&w — 5OV5k:u) - Ském6£5T

J]gj:)‘]f(j:) — _5k:£]l + Zskﬁm']r(ni)7 J]g-i_)']g(_) — JE(_)JIE—H

Mi(R) = R* @ R* = R1® A{)R* & A7_jR* & SHR*

Orthornormal basis 1, J,§+), Je(_>, J£+)JS(_)

(+) = antisymmetric self-dual, (—) = antisymmetric anti-self dual.



Noncommutative quaternionic planes

Use last theorem for Ny = N =4

A=1 B=u1, C=JF D=uJF 425"

with (u°)? + (u!)? 4+ (u?)?2 = 1. This gives:
Ry = u0830% + (I (I + w258 (18)

By using the Jﬁ) one defines an action of H.

The choice of the direction 1 and of the plane (1 2) is immaterial since one
can change them into an arbitrary direction n and an arbitrary plane which

contains nn by a rotation of SOgﬂ.

The exchange (+) < (—) is induced for instance by the exchange 2% < —z°
and therefore does not change the algebra Ag for R given by (18).



Noncommutative quaternionic planes cont.d
The solution given by (18) generalizes C; for C — H;

For the 6-deformation the parameter is in fact
St/S° = U1(C) /UL(R) = P1(R).
The parameter here
ucs?=S3/st =u,(H)/U;(C) = P(C)

and for ©® =1 (= u! =u? = 0), this gives the classical H?.



Noncommutative quaternionic tori

The N.C. product of H by H corresponding to Apg is denoted Hﬁ

Tori obtained by the quotient by the ideal generated by {||z1]|? — 1, ||z2||? — 1}:

A(Ty) = AR/ < [Jaa]l® = 1, [Jz2|* = 1 >

TH ~ §3 %, S3

u

an SU(2) x SU(2) action



Additional strata: other N.C. products of 4-dim. Euclidean spaces
Other Ar with N1 = N> = 4 using the ansatz A B C D with J,gi)

1. A=1, B=cos(0)1, C=JP D=sin(0)J .

The direction 1 for J& (resp J?)) can be changed by acting with SOgi)
(resp. SOSF)). For # = 0 it corresponds to the classical R* x R%.

2. A=C-(wJF), B=D- (D),
C=JF, D=u'Jf+u2JF with ((u1)? 4 (12)2)(1 4 72a?) = 1.

3. A=C- (v*JF), B=D.(whJ}),
c=J* D=usF with u2 4 5202 =

Solutions 2 and 3 do not contain the classical R* x R?.

These solutions are noncommutative for any parameters and cannot be con-
nected with solution 1 and with H2.



Spherical conditions
A projection p € Ma.(A(S2Y)) |
1
p:E(]l+ra£Ca+r$)

chi(p) = 0O, 0<k<n-1 ch,(p) the volume form

A unitary U € Mgnfl(A(S]%"_l)) :
U=12"4+ ;2

(U) =0, 0<k<n-1 ch 1(U) the volume form

0o =,
r,=

A matter of computation for the present examples



Principal bundles
Consider the two quaternions.
r1 = zhe, o = z5e,
with commutation relations governed by a matrix Rgg. When restricting to
the sphere S%, we get a normalised vector valued function

) = ("”2) (6,4) = [lo ]+ ool = 1

x1

and thus a projection: ( p = p* = p2 )
Toxs  xToxk
P—WHW—( 2 1)7

T1T5 T1T]

Define coordinate functions Y = Y%y 4+ Y¥*e, and Y*# by

Y* = |[aa]|? = [|z1]|* and Y = xox]
so that

1 4
=l wi=5 ("5 1 )



The condition p? = p leads to

YY*4+(YH?=1 and Y'Y+ (YH?=1
YY*=Y* and Y*Y*=Y*%Y"

Thus the coordinate function Y# is central while comparing the first two
conditions requires YY* = Y*Y and that this is a multiple of the identity.
These translates to the following conditions

3
> (VYR —YrYR) =0,
p=0

_(YO*Yk: . Yk*YO) + 5kmnym*yn =0,
YOYy* — vy O* &g YY™ = 0
for k,r,m = 1,2,3 and totally antisymmetric tensor ci,,.

Then the first condition at top of the page reduces to a four-sphere relation

3 3
DYEYEL (Y =1=) Y*Yr4 (Y =1 (19)



The elements Y# generate the x-algebra A(S ) of a 4-sphere 84
The algebra inclusion A(S%) — A(S%) is a principal SU(2) bundle:

A unit quaternion w € Hy ~ SU(2) act on S, as

(1)) = ) w = (”“’) .

Tiw

leaving the projection p and then the algebra A(S ) invariant.

If H= A(SU(2)) we have dually a co-action § of H on A(S%) with algebra of
co-invariant element again the subalgebra A(S ).

Then the canonical map

X A(SR) ®.aessy A(SR) = A(SE) ® H, x(p' ®p) = p'6(p)
iS bijective.

Indeed,
X((W] @y 19)) = @16(1Y) = (¥, ¥) @w =10 w,

showing surjectivity of x. This is enough since ... ( H is classical ).



The next fibration

A similar ( if more involved ) algebra inclusion

A(S) — A(SE
(coming from an octonionic matrix Rgfj)

which is a S’-bundle



Spectral geometry

coming up



thank you



