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Background

A correspondence (a duality) between spaces and algebras of functions on
these spaces

The idea of noncommutative geometry: forget the commutativity of the alge-
bras of functions and replace them by appropriate classes of noncommutative
associative algebras. These are considered as algebras of functions on some
(virtual) noncommutative spaces

For instance, the natural algebras of functions on finite-dimensional vector
spaces are the algebras of polynomial functions generated by the coordinates.
In these polynomial algebras the coordinates commute.

Given a class of noncommutative associative algebras generalizing the poly-
nomial algebras, one may consider regular algebras generated by coordinates
in which they satisfy other relations than the commutation between them and
defing thereby noncommutative vector spaces.

In the following, a noncommutative RN correspond to a regular complex ∗-
algebra generated by hermitian elements xk, k ∈ {1, . . . , N}.



Abstract

• noncommutative generalizations of RN1 × RN2

• noncommutative generalizations of SN1+N2−1 and SN1+N2

• noncommutative generalizations of SN1−1 × SN2−1

• a quaternionic noncommutative torus S3 ×u S3, u ∈ S2 = SU(2)/U(1)

• spherical manifolds : volume forms from top Chern–Connes characters

• noncommutative principal bundles

• spectral triples



The θ-deformation

C2
θ = Noncommutative space dual to the
∗-algebra Aθ generated by normal elements z1, z2 with relations

z1z2 = eiθz2z1, z1z
∗
2 = e−iθz∗2z1 (1)

⇒ center generated by z1z∗1 = ‖z1‖2 and z2z∗2 = ‖z2‖2

Real version C2
θ = (R2)2

θ = R2 ×θ R2

z1 = x1
1 + ix2

1, z2 = x1
2 + ix2

2, (xλk)∗ = xλk

and {(1) + normality of zk} ⇔ (2)

 xλ1x
µ
1 = xµ1x

λ
1 ; xλ2x

µ
2 = xµ2x

λ
2

xλ1x
µ
2 = Rλµ

νρxν2x
ρ
1

(2)

with

Rλµ
νρ = cos(θ) δλρδ

µ
ν + i sin(θ)Cλ

ρD
µ
ν C = −D =

(
0 −1
1 0

)



2-torus and 3-sphere

R2 ×θ R2/(‖x1‖2 − 1, ‖x2‖2 − 1) = T2
θ

R2 ×θ R2/(‖x1‖2 + ‖x2‖2 − 1) = S3
θ

nice examples of singular spaces



The quadratic ∗-algebra AR

The ∗-algebra AR is generated by two sets of hermitian elements xλ1 with
λ ∈ {1, . . . , N1} and xα2 with α ∈ {1, . . . , N2} with relations xλ1x

µ
1 = xµ1x

λ
1 ; xα2x

β
2 = xβ2x

α
2

xλ1x
α
2 = Rλα

βµx
β
2x

µ
1

(3)

for suitable Rλα
βµ ∈ C. In view of the hermiticity of the xλ1, x

α
2 we impose

R
λα
βµR

µβ
γν = δλνδ

α
γ (4)

Thus AR is a graded quadratic algebra AR = ⊕nAnR

which is connected: A0
R = C1l ;

the elements xλ1, x
α
2 form a basis of A1

R ;

by the requirement (4):
the elements xλ1x

µ
1 with λ ≤ µ, xα2x

β
2 with α ≤ β and xλ1x

α
2 form a basis of A2

R.



The Koszul dual A!
R

A quadratic algebra is an algebra A of the form

A = T (E)/(R)

where E is a finite-dimensional vector space and (R) denotes the ideal of the
tensor algebra generated by R ⊂ E ⊗ E.

The Koszul dual A! of A is the quadratic algebra

A! = T (E∗)/(R⊥)

where R⊥ ⊂ E∗ ⊗ E∗ is the orthogonal of R.

Our A!
R is generated by the dual bases θ1

λ, θ
2
α of the xλ1, x

α
2 with relations


θ1
λθ

2
µ = −θ2

µθ
1
λ ; θ2

αθ
2
β = −θ2

βθ
2
α

θ2
βθ

1
µ = −Rλα

βµθ
1
λθ

2
α

(5)



An R-matrix

Define xa for a ∈ {1, . . . , N1 +N2} by xλ = xλ1, xα+N1 = xα2.

Then the relations (3) together with xα2x
λ
1 = R

λα
βµx

µ
1x

α
2 reads

xaxb = Rab
cdx

cxd (6)

In view of (3) and (4) one gets:

Rλµ
τρ = δλρ δ

µ
τ , Rγδ

αβ = δγβ δ
δ
α

Rλα
βµ = Rλα

βµ, Rαλ
µβ = R

λα
βµ

Rλµ
αν = Rλµ

αβ = Rλµ
νβ = 0,

Rαγ
λβ = Rαγ

λµ = Rαγ
βµ = 0,

Rλα
µν = Rλα

βγ = Rλα
µβ = 0,

Rαλ
µν = Rαλ

βγ = Rαλ
βµ = 0.



Yang-Baxter condition

The matrix R is involutive, i.e. R2 = 1l⊗ 1l or

Rab
cdRcd

ef = δaeδ
b
f

We next impose the Yang-Baxter condition for R

(R⊗ 1l)(1l⊗R)(R⊗ 1l)abc = (1l⊗R)(R⊗ 1l)(1l⊗R)abc



Yang-Baxter condition - cont.d

This breaks in a series of conditions:

The cubic YB equations are equivalent to quadratic relations:

Rλα
γρR

ρβ
δµ = Rλβ

δρR
ρα
γµ (λαβ)

R
λα
γρR

ρβ
δµ = R

λβ
δρR

ρα
γµ (αβλ)

R
λα
γρR

ρβ
δµ = Rλβ

δρR
ρα
γµ (αλβ)

(7)

and



Rλα
γνR

µγ
βρ = Rµα

γρR
λγ
βν (λµα)

R
λα
γνR

µγ
βρ = R

µα
γρR

λγ
βν (αλµ)

Rλα
γνR

µγ
βρ = R

µα
γρR

λγ
βν (λαµ)

(8)

for the Rλα
βµ and R

λα
βµ (the components abc of (7) are in the (. . . )).



Noncommutative product of RN1 and RN2

From now on it is assumed that the matrix R of relations (3) for the algebra
AR satisfies conditions (4), (7) and (8)

The classical (commutative) solution R = R0 is

(R0)λαβµ = δλµδ
α
β

and the corresponding algebra AR0
is the algebra of polynomial functions on

the product RN1 × RN2

This is the reason we define the noncommutative product of RN1 and RN2

RN1 ×R RN2

to be the “dual” of the algebra AR for general R.



Regularity properties of AR and A!
R

Since the relations of AR can be written in the form (6) with R involutive
and satisfying the Yang-Baxter equation,

it follows from general results (Gurevich, Wambst) that AR is very regular.

In particular AR is a Koszul algebra of global dimension N1 + N2 having the
Gorenstein property (an appropriate version of the Poincaré duality property)

In our case, this implies that, in terms of the xa and the dual basis θa:

the xa1 . . . xap for a1 ≤ · · · ≤ ap and p ∈ N is a basis of AR

while the θa1 . . . θap for a1 < · · · < ap and p ∈ {1, . . . , N1 +N2} is a basis of A!
R.

As a consequence the Poincaré series are classical :

PAR
(t) :=

∑
n

dim(AnR)tn =

(
1

1− t

)N1+N2

and PA!
R
(t) = (1 + t)N1+N2 (9)



Regularity properties cont.d

The algebra AR is even a Calabi–Yau algebra:

any generator of the top one-dimensional space ((A!
R)N1+N2

)∗

is a cyclic potential for the algebra AR (Ginzburg)

( a cyclic pre-regular multilinear form )



Noncommutative product of Euclidean spaces

Theorem. The following conditions (i) (ii) and (iii) are equivalent :

(i)
∑N1+N2

a=1 (xa)2 =
∑N1

λ=1(xλ1)2 +
∑N2

α=1(xα2)2 is central in AR,

(ii)
∑N1

λ=1(xλ1)2 and
∑N2

α=1(xα2)2 are in the center of AR,

(iii)
∑N1

λ=1R
λγ
βνR

λβ
αµ = δγαδµν and

∑N2

α=1R
λα
βρR

ρα
γµ = δλµδβγ

(10)

We take R to satisfy also (10) and define the the noncommutative product
of the Euclidean space RN1 with the Euclidean space RN2 to be dual of AR.

Clearly, the relations (11) are satisfied by the classical R = R0;

AR generalizes the algebra of polynomial functions on the product RN1 × RN2



Restrictions on the structure of R

By using (4) and (10) one obtains

Rλβ
αµ = Rµα

βλ = R
µβ
αλ = (R−1)βµλα (11)

In turn this implies that relations (7) and (8) reduce to

Rλα
βρR

ρδ
γµ = Rλδ

γρR
ρα
βµ and Rλα

γνR
µγ
βρ = Rµα

γρR
λγ
βν (12)

that is the first relation of (7) and the first relation of (8).

Corollary. Relations (3) define (the algebra of) a noncommutative product
of a N1-dimensional with a N2-dimensional Euclidean spaces if and only if the
Rλα
βµ satisfy relations (11) and (12).



Noncommutative product of spheres

The elements
∑N1

λ=1(xλ1)2 = ‖x1‖2 and
∑N2

α=1(xα2)2 = ‖x2‖2 of AR being central
one may consider the quotient algebra

AR/({‖x1‖2 − 1l, ‖x2‖2 − 1l}) ↔ SN1−1 ×R SN2−1

This defines by duality the noncommutative product of the classical spheres
SN1−1 and SN2−1.

Indeed, for R = R0, the above quotient is the restriction to SN1−1 × SN2−1 of
the polynomial functions on RN1+N2.



Noncommutative spheres

With ‖x‖2 denoting the central element
∑N1+N2

a=1 (xa)2 = ‖x1‖2 +‖x2‖2, one may
also consider the quotient of AR

AR/(‖x‖2 − 1l) ↔ (SN1+N2−1)R

This defines (dualy) the noncommutative (N1 +N2−1)-sphere (SN1+N2−1)R (a
subspace of the noncommutative product of RN1 with RN2)

This is a noncommutative spherical manifold in the sense of Connes–Landi
and Connes–Dubois-Violette (see below).



The (generalized) Clifford algebra C`(AR)

The ∗-algebra C`(AR) is generated by two sets of hermitian elements Γ1
λ with

λ ∈ {1, . . . , N1} and Γ2
α with α ∈ {1, . . . , N2} with relations


Γ1
λΓ1

µ + Γ1
µΓ1

λ = 2δλµ1l

Γ2
αΓ2

β + Γ2
βΓ2

α = 2δαβ1l

Γ2
βΓ1

µ +Rλα
βµΓ1

λΓ2
α = 0

(13)

Proposition In the algebra C`(AR)⊗AR one has :

(Γ1
λ ⊗ xλ1)2 = 1l⊗ ‖x1‖2, (Γ2

α ⊗ xα2)2 = 1l⊗ ‖x2‖2

and

(Γ1
λ ⊗ xλ1)(Γ2

α ⊗ xα2) + (Γ2
α ⊗ xα2)(Γ1

λ ⊗ xλ1) = 0



Structure of C`(AR)

Last proposition is equivalent to

(Γ(x))2 = 1l⊗ ‖x‖2 (14)

with Γ(x) = Γa ⊗ xa = Γ1
λ ⊗ xλ1 + Γ2

α ⊗ xα2 and ‖x‖2 =
∑N1+N2

a=1 (xa)2.

The algebra C`(AR) is nonhomogeneous quadratic with A!
R as homogeneous

part. It is not N-graded but only Z2-graded and filtered with

Fn = F n(C`(AR)) = {elements of degree in Γ ≤ n}

One has a surjective canonical homomorphism of graded algebra

can : A!
R → gr(C`(A!

R)) = ⊕n∈NFn/Fn−1 (15)

which induce the isomorphism of vector spaces

(A!
R)1 ' F1/F0



Structure of C`(AR) - cont.d

The fact that ‖x‖2 =
∑

(xa)2 is central in AR and the Koszulity of A!
R imply

the following PBW property (via the duality of Positselski).

Proposition The homomorphism (15) is an isomorphism of graded algebras.

Thus C`(AR) is a Koszul nonhomogeneous quadratic algebra since A!
R is

Koszul, (cf. Dubois-Violette). This implies

dimC`(AR) = dimA!
R = 2N1+N2

One has the following isomorphisms : C`(N1) ' subalgebra of C`(A) generated by the Γ1
λ

C`(N2) ' subalgebra of C`(A) generated by the Γ2
α

and

C`(AR) ' C`(N1 +N2) (16)



The general solution

Let us introduce a two-index
(
λ
α

)
with λ ∈ {1, . . . , N1} and α ∈ {1, . . . , N2}.

Then the conditions (11) can be read as symmetry conditions:

R(λ

α)
(µ

β)
= R(µ

β)
(λ

α)
= R

(µ

α)
(λ

β)
= (R−1)(λ

β)
(µ

α).

While, the quadratic conditions in (12) can be written as

R(λ

α)
(ρ

β)
R(ρ

γ)
(µ

δ)
= R(λ

γ)
(ρ

δ)
R

(ρ

α)
(µ

β)
and R(λ

α)
(ν

γ)
R(µ

γ)
(ρ

β)
= R(µ

α)
(ρ

γ)
R(λ

γ)
(ν

β)
.

Theorem The general solution is of the form

Rλβ
αµ = Sλµ

β
α + iAλµ

β
α

with [S,A] = 0 S2 +A2 = 1lN1
⊗ 1lN2

.

S and A are real matrices with S standing for symmetric while A antisymmetric
for exchange in indices λ↔ µ and α↔ β



The ansatz A B C D

Nontrivial realizations of the Rλα
βµ are given by the following.

Proposition Let A and C be two commuting real N1 × N1-matrices with A
symmetric and C antisymmetric and let B and D be two commuting real
N2 ×N2-matrices with B symmetric and D antisymmetric. Assume that

A2 ⊗B2 + C2 ⊗D2 = 1lN1
⊗ 1lN2

then the Rλα
βµ given by

Rλα
βµ = AλµB

α
β + iCλ

µD
α
β (17)

satisfy the assumptions (11), (12).



Enter the quaternions

An SO(4)-invariant decomposition of M4(R)

q = x01 + xkek ∈ H ←→ x = (x0, x1, x2, x3) ∈ R4 Euclidean

a right and a left action

ekq ↔ J(+)
k x, qek ↔ −J(−)

k x

J(±)
kµν = ∓(δ0µδkν − δ0νδkµ)− εk`mδ`µδmν

J(±)
k J(±)

` = −δk`1l +
∑
m

εk`mJ
(±)
m , J(+)

k J(−)
` = J(−)

` J(+)
k

M4(R) = R4 ⊗ R4 = R1l⊕ ∧2
(+)R

4 ⊕ ∧2
(−)R

4 ⊕ S2
0R4

Orthornormal basis 1l, J(+)
k , J(−)

` , J(+)
r J(−)

s

(+) = antisymmetric self-dual, (−) = antisymmetric anti-self dual.



Noncommutative quaternionic planes

Use last theorem for N1 = N2 = 4

A = 1l, B = u01l, C = J(±)
1 , D = u1J(±)

1 + u2J(±)
2

with (u0)2 + (u1)2 + (u2)2 = 1. This gives:

Rλα
βµ = u0δλµδ

α
β + i(J(±)

1 )λµ(u1J(±)
1 + u2J(±)

2 )αβ (18)

By using the J(∓)
k one defines an action of H.

The choice of the direction 1 and of the plane (1 2) is immaterial since one
can change them into an arbitrary direction ~n and an arbitrary plane which
contains ~n by a rotation of SO(±)

3 .

The exchange (+) ↔ (−) is induced for instance by the exchange x0 ↔ −x0

and therefore does not change the algebra AR for R given by (18).



Noncommutative quaternionic planes cont.d

The solution given by (18) generalizes C2
θ for C→ H;

For the θ-deformation the parameter is in fact

S1/S0 = U1(C)/U1(R) = P1(R).

The parameter here

u ∈ S2 = S3/S1 = U1(H)/U1(C) = P1(C)

and for u0 = 1 (⇒ u1 = u2 = 0), this gives the classical H2.



Noncommutative quaternionic tori

The N.C. product of H by H corresponding to AR is denoted H2
u.

Tori obtained by the quotient by the ideal generated by {‖x1‖2−1, ‖x2‖2−1}:

A(TH
u) = A(H2

u)/ < ||x1||2 − 1, ||x2||2 − 1 >

TH
u ' S3 ×u S3

an SU(2)× SU(2) action



Additional strata: other N.C. products of 4-dim. Euclidean spaces

Other AR with N1 = N2 = 4 using the ansatz A B C D with J(±)
k

1. A = 1l, B = cos(θ)1l, C = J(±)
1 , D = sin(θ)J(∓)

1 .

The direction 1 for J(±)
· (resp J∓)

· ) can be changed by acting with SO(±)
3

(resp. SO(∓)
3 ). For θ = 0 it corresponds to the classical R4 × R4.

2. A = C · (vkJ(∓)
k ), B = D · (wkJ(∓)

k ),
C = J±1 , D = u1J±1 + u2J±2 with ((u1)2 + (u2)2)(1 + ~v2 ~w2) = 1.

3. A = C · (vkJ(∓)
k ), B = D · (wkJ±k ),

C = J(±)
1 , D = uJ(∓)

1 with u2 + ~v2 ~w2 = 1.

Solutions 2 and 3 do not contain the classical R4 × R4.

These solutions are noncommutative for any parameters and cannot be con-
nected with solution 1 and with H2

u.



Spherical conditions

A projection p ∈M2n(A(S2n
R )) ,

p =
1

2
(1l + Γa x

a + Γx)

chk(p) = 0, 0 ≤ k ≤ n− 1 chn(p) the volume form

A unitary U ∈M2n−1(A(S2n−1
R )) ,

U = 1lx0 + Σj x
j

ch
k−1

2
(U) = 0, 0 ≤ k ≤ n− 1 ch

n−1
2
(U) the volume form

Γµ =

 0 Σµ

Σµ, 0


A matter of computation for the present examples



Principal bundles

Consider the two quaternions.

x1 = xµ1eµ x2 = xα2eα

with commutation relations governed by a matrix Rλα
βµ. When restricting to

the sphere S7
R, we get a normalised vector valued function

|ψ〉 =

(
x2

x1

)
〈ψ,ψ〉 = ||x1||2 + ||x2||2 = 1l

and thus a projection: ( p = p∗ = p2 )

p = |ψ〉 〈ψ| =
(
x2x∗2 x2x∗1
x1x∗2 x1x∗1

)
,

Define coordinate functions Y = Y 0e0 + Y kek and Y 4 by

Y 4 = ||x2||2 − ||x1||2 and 1
2
Y = x2x

∗
1

so that

p = |ψ〉 〈ψ| =
1

2

(
1 + Y 4 Y
Y ∗ 1− Y 4

)
.



The condition p2 = p leads to

Y Y ∗ + (Y 4)2 = 1 and Y ∗Y + (Y 4)2 = 1

Y Y 4 = Y 4Y and Y ∗Y 4 = Y 4Y ∗.

Thus the coordinate function Y 4 is central while comparing the first two
conditions requires Y Y ∗ = Y ∗Y and that this is a multiple of the identity.
These translates to the following conditions

3∑
µ=0

(Y µ∗Y µ − Y µY µ∗) = 0,

−(Y 0∗Y k − Y k∗Y 0) + εkmnY
m∗Y n = 0,

Y 0Y k∗ − Y kY 0∗ + εkmnY
mY n∗ = 0

for k, r,m = 1,2,3 and totally antisymmetric tensor εkrm.

Then the first condition at top of the page reduces to a four-sphere relation

3∑
µ=0

Y µ∗Y µ + (Y 4)2 = 1 =
3∑

µ=0

Y µ∗Y µ + (Y 4)2 = 1. (19)



The elements Y µ generate the ∗-algebra A(S4
R) of a 4-sphere S4

R.

The algebra inclusion A(S4
R) ↪→ A(S7

R) is a principal SU(2) bundle:

A unit quaternion w ∈ H1 ' SU(2) act on S7
R as

αw(|ψ〉) = |ψ〉w =

(
x2w
x1w

)
.

leaving the projection p and then the algebra A(S4
R) invariant.

If H = A(SU(2)) we have dually a co-action δ of H on A(S7
R) with algebra of

co-invariant element again the subalgebra A(S4
R).

Then the canonical map

χ : A(S7
R)⊗A(S4

R) A(S7
R)→ A(S7

R)⊗H, χ(p′ ⊗ p) = p′δ(p)

is bijective.

Indeed,

χ
(
〈ψ| ⊗A(S4

R) |ψ〉
)

= 〈ψ| δ(|ψ〉) = 〈ψ,ψ〉 ⊗ w = 1l⊗ w,

showing surjectivity of χ. This is enough since ... ( H is classical ).



The next fibration

A similar ( if more involved ) algebra inclusion

A(S8
R) ↪→ A(S15

R )

(coming from an octonionic matrix Rλα
βµ)

which is a S7-bundle



Spectral geometry

coming up



thank you


