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HAPPY BIRTHDAY BAL!

And many more happy, healthy, productive years



INTRODUCTION

Fuzzy spaces (noncommutative spaces) can be modeled by the lowest

Landau level of a quantum Hall system.

Thermofield dynamics gives a way of discussing mixed states in terms

of a pure state description. Presumably they are important for gravity.

(ISRAEL; MALDACENA; JACOBSON; + others)

Can we put these together to get some insights into gravity

on even + 1 dimensional noncommutative spacetimes?

The result is a bit different from the one based on the spectral action

principle (CONNES, CHAMSEDDINE, ...).

Some of the material is joint work with D. KARABALI; LEI JIUSI.
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SUMMARY

Thermofield dynamics can be expressed in terms of a field theory for a

quantum Hall system, with a particular limit to be taken at the end.

We can think of gauge fields enter as a way of defining the large N limit

for fuzzy spaces.

Double the Hilbert space modeling the fuzzy space toHN ⊗ H̃N , with

left chirality gravitational fields (SO(3)L in 3d) onHN and right chirality

fields (SO(3)R) on H̃N .

This leads to

S = − 1
4π

∫ [
Tr
(

A dA + 2
3 A3)

L
− Tr

(
A dA + 2

3 A3)
R

]
= Einstein - Hilbert action
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SUMMARY (cont’d.)

For Minkowski signature, we can use SO(2, 1)L × SO(2, 1)R.

One can also use appropriate representations of the Virasoro algebra

(on the orbits d̂iff S1/S1 which admit a Kähler structure).

The large c limit of the latter leads back to SO(2, 1)L × SO(2, 1)R.

Introduction of quantum matter is not yet clear, but classically, particle

dynamics can be described via the Einstein-Infeld-Hoffmann method

(work with LEI JIUSI).
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THERMOFIELD DYNAMICS

For a system with Hilbert spaceH, the expectation value of observable

O is

〈O〉 = Tr(ρO) =
1
Z

Tr
(

e−βHO
)
, Z = Tr

(
e−βH)

We double the Hilbert space toH⊗ H̃ and introduce the pure state

(called thermofield vacuum)

|Ω〉 =
1√
Z

∑
n

e−
1
2 βEn |n, ñ〉

Then we get

〈Ω| O |Ω〉 =
1
Z

∑
m,n

e−
1
2 β(En + Em) 〈m|O|n〉 〈m̃|ñ〉 = Tr(ρO)

The Hamiltonian is taken as

Ȟ = H + H̃ = H ⊗ 1− 1⊗H , =⇒ Ȟ |Ω〉 = 0
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THERMOFIELD DYNAMICS (cont’d.)

The formalism of thermofield dynamics is very useful for considering

time-dependent (nonequilibrium) effects at finite temperature.

For a quantum system, the density matrix evolves by the Liouville

equation

i
∂ρ

∂t
= H ρ− ρH

We can write an “action” for this,

S =

∫
dt Tr

[
ρ0
(

U † i∂t U −U †H U
)]

where U ’s are to be varied, and ρ = U ρ0 U †.

Our first step is to write thermofield dynamics as a field theory

functional integral with an action similar to this.
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THERMOFIELD DYNAMICS (cont’d.)

The transition amplitude for observables B, C is given by

〈T Bt1 Ct2〉 =
∑

(
√
ρ)m̃m〈m|T

[
Bt1 Ct2 e−iHt] |n〉 (

√
ρ)nñ 〈ñ| eiH T t |m̃〉

For the tilde part, we have H → −H T as expected for conjugation for

unitary matrices.

Introduce coherent states for some suitable orbit G/H of some Lie

group G, fn(z), hn(w) such that∫
M

dµ(z̄, z) f ∗n fm = δnm,

∫
M

dµ(w̄,w) h∗n hm = δnm

M = G/H
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THERMOFIELD DYNAMICS (cont’d.)

There are many choices for the space of z, z̄ (and w, w̄); the simplest is

to use CPN−1 ∼ SU (N )/U (N − 1).

The states can be taken for this case as

fN =
1√

1 + z̄ · z
, fi =

zi√
1 + z̄ · z

, i = 1, 2, · · · , (N − 1)

Another choice could be coherent states for CP1 ∼ SU (2)/U (1). We

can use the rank r representation with

fn(z, z̄) =

[
(r + 1)!

n! (r − n)!

] 1
2 zn

(1 + z̄z)r/2
, n = 0, 1, · · · , r

One can use similar formulae for hn(w, w̄).
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THERMOFIELD DYNAMICS (cont’d.)

The thermofield vacuum is given by Ω =
∑

h∗m
√
ρmn fn.

There is a way of using C∗-algebras to formulate thermofield dynamics.

A key result from Tomita-Takesaki theory:

There is an antilinear operation J , called ‘modular conjugation’, and a

‘modular operator’ ∆.

These are easily and explicitly realized in terms of the coherent states as

J · fn = h∗n, J · hn = f ∗n , J · λ fn = λ∗ h∗n

J · Ω = Ω

For the thermal state ∆ = e−βȞ .
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THERMOFIELD DYNAMICS (cont’d.)

The coherent states are of the form 〈n|U |w〉 for a highest weight state

|w〉 (which has H -invariance) and U is a unitary representation of G.

The diagonal coherent state representation of operators also allows us

to introduce A0(z, z̄) = H (z, z̄) such that

Hkl =

∫
M

dµ(z, z̄) f ∗k A0(z, z̄) fl

and similarly for the tilde part (and for other operators).

Introduce fermionic fields ψ, χ onM,

ψ(z, z̄, t) =
∑

k

ak fk , ψ∗(z, z̄, t) =
∑

k

a∗k f ∗k

χ(w, w̄, t) =
∑

k

bk hk , χ∗(w, w̄, t) =
∑

k

b∗k h∗k
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THERMOFIELD DYNAMICS (cont’d.)

The transition amplitude can now be written as

F = N
∫

[dψdψ∗ dχdχ∗] eiS Bt1 Ct2 Ω∗(t) Ω(0)

Ω(ψ∗, χ∗) =

∫
M

dµzdµw ψ∗(z)χ∗(w) (zk
√
ρkl wl)

Bt1 =

∫
dµ ψ∗B(z, z̄, t1)ψ

The action is given by

S =

∫
dt
∫
M
ψ∗
(

i ∂0 − A0(z, z̄) +
D2 + E0

2m

)
ψ

+

∫
dt
∫
M̃
χ∗
(

i ∂0 − A0(w, w̄) +
D2 + E0

2m

)
χ

M̃ has orientation opposite toM, E0 is the lowest eigenvalue of−D2.
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THERMOFIELD DYNAMICS (cont’d.)

We consider general fields by regarding the holomorphic states as the

lowest Landau level of a mock quantum Hall system (for a constant

background), with m→ 0 eventually (work with KARABALI).

We can generalize to many copies of these fields. Take the states to be

of the form |k〉 = |α I〉 ∈ H1 ⊗H2 and define a set of fermion fields

ψI =
∑
α aαI zα.

We then write

S =

∫
dt
∫
M

ψ∗I

(
i ∂0δIJ − (A0(z, z̄)IJ +

D2 + E0

2m
δIJ

)
ψJ

+

∫
dt
∫
M̃

χ∗I

(
i ∂0δIJ − (A0(w, w̄))IJ +

D2 + E0

2m
δIJ

)
χJ

I, J label some internal symmetry or degrees of freedom.
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INTERPRETING TFD

Start with a large physical system and consider creation of particles by

a perturbation
∑

i a†i C†i within the system.

Amplitude of interest is

A =
∑
〈ai1 Ci1 ai2 Ci2 · · ·U (t , t1) B U (t1) · · ·a†j1

C†j1
a†j2

C†j2
〉

∼
∑
〈ai1 ai2 · · ·U (t , t1) B U (t1) · · ·a†j1

a†j2
〉 〈Ci1 Ci2 · · ·C

†
j1

C†j2
〉

a a · · · ∼ particles we study, B ∼ some measurement

We need, at least approximately, this factorization/decomposition of

amplitudes to isolate the subsystem under study.

If ai evolves as Uik(t) ak , then Ci must evolve with U∗ik Ck so that the

perturbation aiCi corresponds to zero energy change.
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INTERPRETING TFD (cont’d.)

This means that we can regard

a-part of A ←evolution inH of the subsytem

C-part of A →evolution in H̃ ∼ H∗

Cs interact with many things (environment), so generally

〈Ci1 Ci2 · · ·C
†
j1

C†j2
〉 ∼ (

√
ρ)∗αα̃ 〈α̃|eiH T t |β̃〉 (√ρ)ββ̃

α = (i1i2 · · · ), β = (j1j2 · · · ).

A reduces to the thermofield amplitude.
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INTERPRETING TFD (cont’d.)

If the apparatus is large enough, we may ignore correlations for the Cs

and they may be taken as c-numbers (∼ η, η̄). The amplitude reduces to

A ∼ 〈0|(η̄a) · · · (η̄a) e−iH(t−t1) B e−iHt1 (a†η) · · · (a†η)|0〉

η, η̄ ∼ sources.

The key point is that the particle “creation operators” are of the form

a†C† ∼
∫
ψ̄χ (of net zero energy)

This implies there is parity reversal betweenH and H̃.
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NC SPACES & QHE

For quantum Hall effect on a compact spaceM, the lowest Landau

level defines a Hilbert spaceHN .

Observables restricted to the lowest Landau level ∈ MatN .

So the lowest Landau level of QHE can be used to model a fuzzy space,

giving usMF ≡ (HN ,MatN ,∆N ).

Phase spaces with symplectic structure ω and ω + dA correspond to the

same Hilbert space, ∫ ( ω
2π

)k
=

∫ (
ω + dA

2π

)k

There is ambiguity in which phase space we obtain as N →∞.
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NC SPACES & QHE (cont’d.)

Starting fromHN , this shows up in the wave functions used to take the

large N limit via the symbols

O(x, t) =
1
N

∑
m,l

Ψm(x) Ômn(t) Ψ∗n(x)

The wave functions Ψ∗l (x) are sensitive to A.

The spatial components of the gauge fields characterize how the large

N limit is taken.

Further, for a space G/H , the “magnetic” fields for QHE are in H , which

generates part of the isometry group (G) of the space.

Spatial components of gauge fields ∼ Gravitational perturbations
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GATHERING POINTS

For gravity on a noncommutative space ( even + 1 dimensional)

• Use lowest Landau level of QHE to model the space.

• Use thermofield dynamics for amplitude calculations, because the

state describing space itself is highly entangled.

• Gauge fields for the frame fields and spin connection emerge as

part of defining the large N or “classical” limit.

• Gravitational fields couple toH and H̃ with parity reversal, so we

modelH by left chiral fermions, H̃ by right chiral fermions.

• The action for TFD in terms of the fermion fields allows for a

straightforward calculation of the effective action in the large N or

“classical” limit.
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GRAVITATIONAL ACTION IN 2+1

For the gravitational part ofH⊗ H̃, SO(3)L fields couple toH while

SO(3)R fields couple to H̃R. i.e., AL ∼ SO(3)L, AR ∼ SO(3)R.

The large N action is

S = k(C .S.L − C .S.R) = − k
4π l

∫
d3x det e

[
R − 2

l2

]
+ total derivative

Aa
L,R =

(
− 1

2ε
a

bc ω
bc ± (ea/l)

)
, k = (l/4G) = 1

Ai are auxiliary fields introduced for simplicity of representing the

transformation. It is also not clear what A0 should be for gravity.

So we could try to “optimize” the large N limit by eliminating them via

equations of motion.

Optimization of large N limit = Field equations for gravity
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GRAVITATIONAL ACTION IN 4+1

We can do a similar analysis in 4+ 1 dimensions to obtain the effective

action

S = k (C .S.L − C .S.R)

= −i
k

24π2 l

∫
Tr
[

3 e R2 +
2
l2 e3 R +

3
5 l4 e5 +

e De De
l2

]
This is, of course, not Einstein gravity.
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PARTICLE DYNAMICS

Regard point-particles as singularities of the solutions for the

gravitational field as in Einstein-Infeld-Hoffmann.

General solution is of the form A = g−1dg where g can have point-like

singularities at ~xα (nonsingular onM−{~xα}).

A = g−1 a g + g−1 dg , da =
N∑
α=1

qα δ(2)(x − xα), a0 = 0

The action reduces to

S = − k
4π

∫
dt
∑
α

[
qLαTr(M0 g−1

Lα ġLα)− qRαTr(N0 g−1
Rα ġRα)

]
M0, N0 = diagonal generators of SO(3)L, SO(3)R.
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PARTICLE DYNAMICS (cont’d.)

This gives multiparticle dynamics as representations of the isometry

group with

mass = m = (k/8πl) (qL + qR) = (qR + qL)/32πG

spin = s = (k/4) (qL − qR)

In 4+1 dimensions, we need to consider point-like instantons for

particle dynamics. For canonical embedding of SU (2) in the SO(4, 2),

we get the co-adjoint orbit action with

m =
k

2 l
(Q(1)

α −Q(2)
α )

Q(1)
α , Q(2)

α = instanton numbers. (General case is being studied (with LEI

JIUSI). )
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COMMENTS ON VIRASORO ORBITS

Unitary representations of Virasoro group, for c > 1, are obtained by

quantizing d̂iff S1/S1 and d̂iff S1/SL(2,R) (BOWICK& RAJEEV; WITTEN; others).

Introduce the unitary operator U = exp(
∑

n w̄n Ln −wnL−n) with

U 1dU =
∑

n

(
EnL−n − Ēn Ln + (E0 − Ē0) L0 + (E − Ē)1

)
Using homogeneity of the orbit, we can choose (w̄n,wn) as functions of

complex coordinates (s̄n, sn) such that

En = En
k dsk = (1, 0)-form, Ēn = (0, 1)-form

(E0−Ē0) L0 +(E −Ē)1 = − 1
2

∑
n

(snds̄n− s̄ndsn)
[

2nL0 +
c

12
(n3 − n)

]
+ · · ·
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COMMENTS ON VIRASORO ORBITS (cont’d.)

Further there is a left-invariant symplectic structure (WITTEN). If we use

an integration measure dµ for this, we can define coherent state wave

functions Ψa such that

Ψa = 〈0|U †|a〉, L0|0〉 = h |0〉, Ln|0〉 = 0∫
dµΨ∗a Ψb = δab (Normalization)∫

dµU |0〉〈0|U † = 1 (Completeness)

Define the symbol for an operator as

(A) = 〈0|U † A U |0〉

Then we can obtain the ∗-product

(AB) = (A) ∗ (B)
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COMMENTS ON VIRASORO ORBITS (cont’d.)

Using completeness

(AB) = 〈0|U †ABU |0〉 = 〈0|U †A(U1U †)BU |0〉

U1U † = U
(
|0〉〈0|+ L−1|0〉

1
2h
〈0|L1 +

∑
|i〉(M (2))−1

ij 〈j|+ · · ·
)

U †

U L−n|0〉 = (E−1)k
n

(
∂

∂sk
− E0

k h
)

U |0〉

〈0|Ln U † = (Ē−1)k
n

(
∂

∂s̄k
− Ē0

k h
)
〈0|U †

Key results:

• h, c characterize the orbits.

• When c →∞, with h finite, the results reduce to the case of just

SL(2,R).

26 / 28



COMMENTS

A similar analysis can be done for any even + 1 dimensions, although

it is not Einstein gravity.

The level number is 1 so far, we need multiplicity (l/8G) for a large level

number.

Continuation to Minkowski space seems possible using the field theory

representation for the TFD.

One can use the orbits of the Virasoro group to carry out a similar

construction. (Large c, h needed to simplify the action; may connect to

WITTEN, MALONEY, + others)

Point-particles with nontrivial dynamics or coupling of matter fields is

being explored.
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THANK YOU


