Coherent States, Thermofield Dynamics \& Gravity

V. P. NAIR

City College of the CUNY

Quantum Physics: Fields, Particles \& Information Geometry BalFest80

Dublin Institute for Advanced Studies
Dublin, Ireland
January 23, 2018

Happy Birthday Bal!

And many more happy, healthy, productive years

- Fuzzy spaces (noncommutative spaces) can be modeled by the lowest Landau level of a quantum Hall system.
- Thermofield dynamics gives a way of discussing mixed states in terms of a pure state description. Presumably they are important for gravity. (Israel; Maldacena; Jacobson; + others)

Can we put these together to get some insights into gravity on even +1 dimensional noncommutative spacetimes?

- The result is a bit different from the one based on the spectral action principle (Connes, Chamseddine, ...).

Some of the material is joint work with D. Karabali; LEI Jiusi.

- Thermofield dynamics can be expressed in terms of a field theory for a quantum Hall system, with a particular limit to be taken at the end.
- We can think of gauge fields enter as a way of defining the large N limit for fuzzy spaces.
- Double the Hilbert space modeling the fuzzy space to $\mathcal{H}_{N} \otimes \tilde{\mathcal{H}}_{N}$, with left chirality gravitational fields $\left(S O(3)_{L}\right.$ in 3 d) on \mathcal{H}_{N} and right chirality fields $\left(S O(3)_{R}\right)$ on $\tilde{\mathcal{H}}_{N}$.
- This leads to

$$
S=-\frac{1}{4 \pi} \int\left[\operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)_{L}-\operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)_{R}\right]
$$

$=$ Einstein-Hilbert action

- For Minkowski signature, we can use $S O(2,1)_{L} \times S O(2,1)_{R}$.
- One can also use appropriate representations of the Virasoro algebra (on the orbits $\widehat{\operatorname{diff} S^{1}} / S^{1}$ which admit a Kähler structure).
- The large c limit of the latter leads back to $S O(2,1)_{L} \times S O(2,1)_{R}$.
- Introduction of quantum matter is not yet clear, but classically, particle dynamics can be described via the Einstein-Infeld-Hoffmann method (work with LEI Jusi).
- For a system with Hilbert space \mathcal{H}, the expectation value of observable \mathcal{O} is

$$
\langle\mathcal{O}\rangle=\operatorname{Tr}(\rho \mathcal{O})=\frac{1}{Z} \operatorname{Tr}\left(e^{-\beta H} \mathcal{O}\right), \quad Z=\operatorname{Tr}\left(e^{-\beta H}\right)
$$

- We double the Hilbert space to $\mathcal{H} \otimes \tilde{\mathcal{H}}$ and introduce the pure state (called thermofield vacuum)

$$
|\Omega\rangle=\frac{1}{\sqrt{Z}} \sum_{n} e^{-\frac{1}{2} \beta E_{n}}|n, \tilde{n}\rangle
$$

- Then we get

$$
\langle\Omega| \mathcal{O}|\Omega\rangle=\frac{1}{Z} \sum_{m, n} e^{-\frac{1}{2} \beta\left(E_{n}+E_{m}\right)}\langle m| \mathcal{O}|n\rangle\langle\tilde{m} \mid \tilde{n}\rangle=\operatorname{Tr}(\rho \mathcal{O})
$$

- The Hamiltonian is taken as

$$
\check{H}=H+\tilde{H}=H \otimes \mathbb{1}-\mathbb{1} \otimes H, \quad \Longrightarrow \quad \check{H}|\Omega\rangle=0
$$

- The formalism of thermofield dynamics is very useful for considering time-dependent (nonequilibrium) effects at finite temperature.
- For a quantum system, the density matrix evolves by the Liouville equation

$$
i \frac{\partial \rho}{\partial t}=H \rho-\rho H
$$

- We can write an "action" for this,

$$
S=\int d t \operatorname{Tr}\left[\rho_{0}\left(U^{\dagger} i \partial_{t} U-U^{\dagger} H U\right)\right]
$$

where U 's are to be varied, and $\rho=U \rho_{0} U^{\dagger}$.

- Our first step is to write thermofield dynamics as a field theory functional integral with an action similar to this.
- The transition amplitude for observables B, C is given by

$$
\left\langle T B_{t_{1}} C_{t_{2}}\right\rangle=\sum(\sqrt{\rho})_{\tilde{m} m}\langle m| T\left[B_{t_{1}} C_{t_{2}} e^{-i H t}\right]|n\rangle(\sqrt{\rho})_{n \tilde{n}}\langle\tilde{n}| e^{i H^{T} t}|\tilde{m}\rangle
$$

- For the tilde part, we have $H \rightarrow-H^{T}$ as expected for conjugation for unitary matrices.
- Introduce coherent states for some suitable orbit G / H of some Lie group $G, f_{n}(z), h_{n}(w)$ such that

$$
\int_{\mathcal{M}} d \mu(\bar{z}, z) f_{n}^{*} f_{m}=\delta_{n m}, \quad \int_{\mathcal{M}} d \mu(\bar{w}, w) h_{n}^{*} h_{m}=\delta_{n m}
$$

$\mathcal{M}=G / H$

- There are many choices for the space of z, \bar{z} (and w, \bar{w}); the simplest is to use $\mathbb{C P}^{N-1} \sim S U(N) / U(N-1)$.
- The states can be taken for this case as

$$
f_{N}=\frac{1}{\sqrt{1+\bar{z} \cdot z}}, \quad f_{i}=\frac{z_{i}}{\sqrt{1+\bar{z} \cdot z}}, \quad i=1,2, \cdots,(N-1)
$$

- Another choice could be coherent states for $\mathbb{C P}{ }^{1} \sim S U(2) / U(1)$. We can use the rank r representation with

$$
f_{n}(z, \bar{z})=\left[\frac{(r+1)!}{n!(r-n)!}\right]^{\frac{1}{2}} \frac{z^{n}}{(1+\bar{z} z)^{r / 2}}, \quad n=0,1, \cdots, r
$$

- One can use similar formulae for $h_{n}(w, \bar{w})$.
- The thermofield vacuum is given by $\Omega=\sum h_{m}^{*} \sqrt{\rho}_{m n} f_{n}$.
- There is a way of using C^{*}-algebras to formulate thermofield dynamics.
- A key result from Tomita-Takesaki theory:

There is an antilinear operation J, called 'modular conjugation', and a 'modular operator' Δ.

- These are easily and explicitly realized in terms of the coherent states as

$$
\begin{aligned}
J \cdot f_{n}=h_{n}^{*}, \quad J \cdot h_{n} & =f_{n}^{*}, \quad J \cdot \lambda f_{n}=\lambda^{*} h_{n}^{*} \\
J \cdot \Omega & =\Omega
\end{aligned}
$$

- For the thermal state $\Delta=e^{-\beta \check{H}}$.
- The coherent states are of the form $\langle n| U|w\rangle$ for a highest weight state $|w\rangle$ (which has H-invariance) and U is a unitary representation of G.
- The diagonal coherent state representation of operators also allows us to introduce $A_{0}(z, \bar{z})=H(z, \bar{z})$ such that

$$
H_{k l}=\int_{\mathcal{M}} d \mu(z, \bar{z}) f_{k}^{*} A_{0}(z, \bar{z}) f_{l}
$$

and similarly for the tilde part (and for other operators).

- Introduce fermionic fields ψ, χ on \mathcal{M},

$$
\begin{aligned}
\psi(z, \bar{z}, t)=\sum_{k} a_{k} f_{k}, & \psi^{*}(z, \bar{z}, t)=\sum_{k} a_{k}^{*} f_{k}^{*} \\
\chi(w, \bar{w}, t)=\sum_{k} b_{k} h_{k}, & \chi^{*}(w, \bar{w}, t)=\sum_{k} b_{k}^{*} h_{k}^{*}
\end{aligned}
$$

THERMOFIELD DYNAMICS (cont'd.)

- The transition amplitude can now be written as

$$
\begin{aligned}
F & =\mathcal{N} \int\left[d \psi d \psi^{*} d \chi d \chi^{*}\right] e^{i S} B_{t_{1}} C_{t_{2}} \Omega^{*}(t) \Omega(0) \\
\Omega\left(\psi^{*}, \chi^{*}\right) & =\int_{\mathcal{M}} d \mu_{z} d \mu_{w} \psi^{*}(z) \chi^{*}(w)\left(z_{k} \sqrt{\rho}{ }_{k l} w_{l}\right) \\
B_{t_{1}} & =\int d \mu \psi^{*} B\left(z, \bar{z}, t_{1}\right) \psi
\end{aligned}
$$

- The action is given by

$$
\begin{aligned}
S=\int & d \int_{\mathcal{M}} \psi^{*}\left(i \partial_{0}-A_{0}(z, \bar{z})+\frac{D^{2}+E_{0}}{2 m}\right) \psi \\
& +\int d t \int_{\tilde{\mathcal{M}}} \chi^{*}\left(i \partial_{0}-A_{0}(w, \bar{w})+\frac{D^{2}+E_{0}}{2 m}\right) \chi
\end{aligned}
$$

$\tilde{\mathcal{M}}$ has orientation opposite to \mathcal{M}, E_{0} is the lowest eigenvalue of $-D^{2}$.

- We consider general fields by regarding the holomorphic states as the lowest Landau level of a mock quantum Hall system (for a constant background), with $m \rightarrow 0$ eventually (work with Karabali).
- We can generalize to many copies of these fields. Take the states to be of the form $|k\rangle=|\alpha \mathrm{I}\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ and define a set of fermion fields $\psi_{\mathrm{I}}=\sum_{\alpha} a_{\alpha \mathrm{I}} z_{\alpha}$.
- We then write

$$
\begin{aligned}
S=\int & d t \int_{\mathcal{M}} \psi_{\mathrm{I}}^{*}\left(i \partial_{0} \delta_{\mathrm{IJ}}-\left(A_{0}(z, \bar{z})_{\mathrm{IJ}}+\frac{D^{2}+E_{0}}{2 m} \delta_{\mathrm{IJ}}\right) \psi_{\mathrm{J}}\right. \\
& +\int d t \int_{\tilde{\mathcal{M}}} \chi_{\mathrm{I}}^{*}\left(i \partial_{0} \delta_{\mathrm{IJ}}-\left(A_{0}(w, \bar{w})\right)_{\mathrm{IJ}}+\frac{D^{2}+E_{0}}{2 m} \delta_{\mathrm{IJ}}\right) \chi_{\mathrm{J}}
\end{aligned}
$$

I, J label some internal symmetry or degrees of freedom.

- Start with a large physical system and consider creation of particles by a perturbation $\sum_{i} a_{i}^{\dagger} C_{i}^{\dagger}$ within the system.
- Amplitude of interest is

$$
\begin{aligned}
\mathcal{A} & =\sum\left\langle a_{i_{1}} C_{i_{1}} a_{i_{2}} C_{i_{2}} \cdots U\left(t, t_{1}\right) B U\left(t_{1}\right) \cdots a_{j_{1}}^{\dagger} C_{j_{1}}^{\dagger} a_{j_{2}}^{\dagger} C_{j_{2}}^{\dagger}\right\rangle \\
& \sim \sum\left\langle a_{i_{1}} a_{i_{2}} \cdots U\left(t, t_{1}\right) B U\left(t_{1}\right) \cdots a_{j_{1}}^{\dagger} a_{j_{2}}^{\dagger}\right\rangle\left\langle C_{i_{1}} C_{i_{2}} \cdots C_{j_{1}}^{\dagger} C_{j_{2}}^{\dagger}\right\rangle
\end{aligned}
$$

- $a a \cdots \sim$ particles we study, $B \sim$ some measurement
- We need, at least approximately, this factorization/decomposition of amplitudes to isolate the subsystem under study.
- If a_{i} evolves as $U_{i k}(t) a_{k}$, then C_{i} must evolve with $U_{i k}^{*} C_{k}$ so that the perturbation $a_{i} C_{i}$ corresponds to zero energy change.
- This means that we can regard

$$
\begin{aligned}
& \text { a-part of } \mathcal{A} \leftarrow \text { evolution in } \mathcal{H} \text { of the subsytem } \\
& \text { C-part of } \mathcal{A} \rightarrow \text { evolution in } \tilde{\mathcal{H}} \sim \mathcal{H}^{*}
\end{aligned}
$$

- Cs interact with many things (environment), so generally

$$
\begin{aligned}
& \left\langle C_{i_{1}} C_{i_{2}} \cdots C_{j_{1}}^{\dagger} C_{j_{2}}^{\dagger}\right\rangle \sim(\sqrt{\rho})_{\alpha \tilde{\alpha}}^{*}\langle\tilde{\alpha}| e^{i H^{T} t}|\tilde{\beta}\rangle(\sqrt{\rho})_{\beta \tilde{\beta}} \\
& \alpha=\left(i_{1} i_{2} \cdots\right), \quad \beta=\left(j_{1} j_{2} \cdots\right) .
\end{aligned}
$$

- \mathcal{A} reduces to the thermofield amplitude.

INTERPRETING TFD (cont'd.)

- If the apparatus is large enough, we may ignore correlations for the Cs and they may be taken as c-numbers $(\sim \eta, \bar{\eta})$. The amplitude reduces to

$$
\mathcal{A} \sim\langle 0|(\bar{\eta} a) \cdots(\bar{\eta} a) e^{-i H\left(t-t_{1}\right)} B e^{-i H t_{1}}\left(a^{\dagger} \eta\right) \cdots\left(a^{\dagger} \eta\right)|0\rangle
$$

$\eta, \bar{\eta} \sim$ sources.

- The key point is that the particle "creation operators" are of the form

$$
a^{\dagger} C^{\dagger} \sim \int \bar{\psi} \chi \quad \text { (of net zero energy) }
$$

- This implies there is parity reversal between \mathcal{H} and $\tilde{\mathcal{H}}$.

NC Spaces \& QHE

- For quantum Hall effect on a compact space \mathcal{M}, the lowest Landau level defines a Hilbert space \mathcal{H}_{N}.
- Observables restricted to the lowest Landau level $\in \mathrm{Mat}_{N}$.
- So the lowest Landau level of QHE can be used to model a fuzzy space, giving us $\mathcal{M}_{F} \equiv\left(\mathcal{H}_{N}, \operatorname{Mat}_{N}, \Delta_{N}\right)$.
- Phase spaces with symplectic structure ω and $\omega+d A$ correspond to the same Hilbert space,

$$
\int\left(\frac{\omega}{2 \pi}\right)^{k}=\int\left(\frac{\omega+d A}{2 \pi}\right)^{k}
$$

- There is ambiguity in which phase space we obtain as $N \rightarrow \infty$.

NC Spaces \& QHE (cont'd.)

- Starting from \mathcal{H}_{N}, this shows up in the wave functions used to take the large N limit via the symbols

$$
O(x, t)=\frac{1}{N} \sum_{m, l} \Psi_{m}(x) \hat{O}_{m n}(t) \Psi_{n}^{*}(x)
$$

The wave functions $\Psi_{l}^{*}(x)$ are sensitive to A.

- The spatial components of the gauge fields characterize how the large N limit is taken.
- Further, for a space G / H, the "magnetic" fields for QHE are in \underline{H}, which generates part of the isometry group (G) of the space.

$$
\text { Spatial components of gauge fields } \sim \text { Gravitational perturbations }
$$

- For gravity on a noncommutative space (even +1 dimensional)
- Use lowest Landau level of QHE to model the space.
- Use thermofield dynamics for amplitude calculations, because the state describing space itself is highly entangled.
- Gauge fields for the frame fields and spin connection emerge as part of defining the large N or "classical" limit.
- Gravitational fields couple to \mathcal{H} and $\tilde{\mathcal{H}}$ with parity reversal, so we model \mathcal{H} by left chiral fermions, $\tilde{\mathcal{H}}$ by right chiral fermions.
- The action for TFD in terms of the fermion fields allows for a straightforward calculation of the effective action in the large N or "classical" limit.
- For the gravitational part of $\mathcal{H} \otimes \tilde{\mathcal{H}}, S O(3)_{L}$ fields couple to \mathcal{H} while $S O(3)_{R}$ fields couple to $\tilde{\mathcal{H}}_{R}$. i.e., $A_{L} \sim S O(3)_{L}, A_{R} \sim S O(3)_{R}$.
- The large N action is

$$
\begin{gathered}
S=k\left(C . S_{\cdot L}-C . S \cdot R\right)=-\frac{k}{4 \pi l} \int d^{3} x \operatorname{det} e\left[R-\frac{2}{l^{2}}\right]+\text { total derivative } \\
A_{L, R}^{a}=\left(-\frac{1}{2} \epsilon_{b c}^{a} \omega^{b c} \pm\left(e^{a} / l\right)\right), \quad k=(l / 4 G)=1
\end{gathered}
$$

- A_{i} are auxiliary fields introduced for simplicity of representing the transformation. It is also not clear what A_{0} should be for gravity.
- So we could try to "optimize" the large N limit by eliminating them via equations of motion.

Optimization of large N limit $=$ Field equations for gravity

- We can do a similar analysis in 4+ 1 dimensions to obtain the effective action

$$
\begin{aligned}
S & =k\left(C . S \cdot \cdot_{L}-C . S \cdot R\right) \\
& =-i \frac{k}{24 \pi^{2} l} \int \operatorname{Tr}\left[3 e R^{2}+\frac{2}{l^{2}} e^{3} R+\frac{3}{5 l^{4}} e^{5}+\frac{e D e D e}{l^{2}}\right]
\end{aligned}
$$

- This is, of course, not Einstein gravity.
- Regard point-particles as singularities of the solutions for the gravitational field as in Einstein-Infeld-Hoffmann.
- General solution is of the form $A=g^{-1} d g$ where g can have point-like singularities at \vec{x}_{α} (nonsingular on $\mathcal{M}-\left\{\vec{x}_{\alpha}\right\}$).

$$
A=g^{-1} a g+g^{-1} d g, \quad d a=\sum_{\alpha=1}^{N} q_{\alpha} \delta^{(2)}\left(x-x_{\alpha}\right), \quad a_{0}=0
$$

- The action reduces to

$$
S=-\frac{k}{4 \pi} \int d t \sum_{\alpha}\left[q_{L \alpha} \operatorname{Tr}\left(M_{0} g_{L \alpha}^{-1} \dot{g}_{L \alpha}\right)-q_{R \alpha} \operatorname{Tr}\left(N_{0} g_{R \alpha}^{-1} \dot{g}_{R \alpha}\right)\right]
$$

$M_{0}, N_{0}=$ diagonal generators of $S O(3)_{L}, S O(3)_{R}$.

- This gives multiparticle dynamics as representations of the isometry group with

$$
\begin{aligned}
\text { mass } & =m=(k / 8 \pi l)\left(q_{L}+q_{R}\right)=\left(q_{R}+q_{L}\right) / 32 \pi G \\
\operatorname{spin} & =s=(k / 4)\left(q_{L}-q_{R}\right)
\end{aligned}
$$

- In 4+1 dimensions, we need to consider point-like instantons for particle dynamics. For canonical embedding of $S U(2)$ in the $S O(4,2)$, we get the co-adjoint orbit action with

$$
m=\frac{k}{2 l}\left(Q_{\alpha}^{(1)}-Q_{\alpha}^{(2)}\right)
$$

$Q_{\alpha}^{(1)}, Q_{\alpha}^{(2)}=$ instanton numbers. (General case is being studied (with LEI Jiusı).)

- Unitary representations of Virasoro group, for $c>1$, are obtained by quantizing $\widehat{\operatorname{diff} S^{1}} / S^{1}$ and $\widehat{\operatorname{diff} S^{1}} / S L(2, \mathbb{R})$ (Bowick\& RAJEEV; WITTEN; others).
- Introduce the unitary operator $U=\exp \left(\sum_{n} \bar{w}_{n} L_{n}-w_{n} L_{-n}\right)$ with

$$
U^{1} d U=\sum_{n}\left(\mathcal{E}^{n} L_{-n}-\overline{\mathcal{E}}^{n} L_{n}+\left(\mathcal{E}^{0}-\overline{\mathcal{E}}^{0}\right) L_{0}+(\mathcal{E}-\overline{\mathcal{E}}) \mathbb{1}\right)
$$

- Using homogeneity of the orbit, we can choose (\bar{w}_{n}, w_{n}) as functions of complex coordinates (\bar{s}_{n}, s_{n}) such that

$$
\begin{gathered}
\mathcal{E}^{n}=\mathcal{E}_{k}^{n} d s_{k}=(1,0) \text {-form, } \quad \overline{\mathcal{E}}^{n}=(0,1) \text {-form } \\
\left(\mathcal{E}^{0}-\overline{\mathcal{E}}^{0}\right) L_{0}+(\mathcal{E}-\overline{\mathcal{E}}) \mathbb{1}=-\frac{1}{2} \sum_{n}\left(s_{n} d \bar{s}_{n}-\bar{s}_{n} d s_{n}\right)\left[2 n L_{0}+\frac{c}{12}\left(n^{3}-n\right)\right]+\cdots
\end{gathered}
$$

- Further there is a left-invariant symplectic structure (Witten). If we use an integration measure $d \mu$ for this, we can define coherent state wave functions Ψ_{a} such that

$$
\begin{aligned}
\Psi_{a} & =\langle 0| U^{\dagger}|a\rangle, \quad L_{0}|0\rangle=h|0\rangle, \quad L_{n}|0\rangle=0 \\
\int d \mu \Psi_{a}^{*} \Psi_{b} & =\delta_{a b} \quad \text { (Normalization) } \\
\int d \mu U|0\rangle\langle 0| U^{\dagger} & =\mathbb{1} \quad \text { (Completeness) }
\end{aligned}
$$

- Define the symbol for an operator as

$$
(A)=\langle 0| U^{\dagger} A U|0\rangle
$$

Then we can obtain the $*$-product

$$
(A B)=(A) *(B)
$$

- Using completeness

$$
\begin{aligned}
(A B) & =\langle 0| U^{\dagger} A B U|0\rangle=\langle 0| U^{\dagger} A\left(U \mathbb{1} U^{\dagger}\right) B U|0\rangle \\
U \mathbb{1} U^{\dagger} & =U\left(|0\rangle\langle 0|+L_{-1}|0\rangle \frac{1}{2 h}\langle 0| L_{1}+\sum|i\rangle\left(M^{(2)}\right)_{i j}^{-1}\langle j|+\cdots\right) U^{\dagger} \\
U L_{-n}|0\rangle & =\left(\mathcal{E}^{-1}\right)_{n}^{k}\left(\frac{\partial}{\partial s_{k}}-\mathcal{E}_{k}^{0} h\right) U|0\rangle \\
\langle 0| L_{n} U^{\dagger} & =\left(\overline{\mathcal{E}}^{-1}\right)_{n}^{k}\left(\frac{\partial}{\partial \bar{s}_{k}}-\overline{\mathcal{E}}_{k}^{0} h\right)\langle 0| U^{\dagger}
\end{aligned}
$$

- Key results:
- h, c characterize the orbits.
- When $c \rightarrow \infty$, with h finite, the results reduce to the case of just $S L(2, \mathbb{R})$.
- A similar analysis can be done for any even +1 dimensions, although it is not Einstein gravity.
- The level number is 1 so far, we need multiplicity $(l / 8 G)$ for a large level number.
- Continuation to Minkowski space seems possible using the field theory representation for the TFD.
- One can use the orbits of the Virasoro group to carry out a similar construction. (Large c, h needed to simplify the action; may connect to
Witten, Maloney, + others)
- Point-particles with nontrivial dynamics or coupling of matter fields is being explored.

Thank You

