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Entropy : Classical vs Quantum

- For classical systems entropy measures the uncertainty of the
microstates.
- In quantum systems we can build reduced density matrix out of
pure states that have a non zero von Neumann entropy.

S(ρB) = −tr [ρB log2 ρB ]

where ρB = trA(ρ) with ρ = |ψ〉〈ψ| the density matrix of the full
system.
- This is called entanglement entropy (EE) and is purely a
quantum property, different from the thermal entropy.



Area Law and Locality

- A general quantum many body state can have extensive entropy
which implies we require a enormous amount of information to
specify it.
- However most systems have local interactions and have ground
states that only obey the area law implying the need for fewer
parameters to study the state.
- Early signs of this law seen in black hole entropy and the
holographic principle. (Bekenstein 1974, 2004; Hawking 1974)
- Gapped systems in one dimensions are shown to obey the area
law. (Hastings, 2007)

S(ρI ) ≤ Smax = c0ξ log(6ξ) log(d)26ξ log(d)

where ξ = max( 2v
∆E , ξC ) and ξC ∼ O(1).



Numerical Simulation of Many Body Systems

- A classical system of n particles require O(n) parameters to
describe it whereas the analogous quantum system requires an
exponentially large number, 2O(n).
- If the state has little entanglement then we can expect it to be
described by fewer parameters.
- In one dimensions this has been shown using the methods of the
density-matrix renormalization group (DMRG). (White 1992;
Schollwöck 2005)
- Such finitely correlated states can be approximated by a
matrix-product state (MPS).



Violations of the Area Law

- For a N-site chain of harmonic oscillators given by

H =
1

2

∑
i ,j∈L

(piPi , jpj + xiXi , jxj) ,

with X and P real, symmetric and positive matrices. The
entanglement entropy of the half chain is

S(ρI ) ≤
1

2
log2

(
||X || 12
∆E

)
,

with ∆E the energy gap and ||.|| the operator norm.
- In the large N limit we obtain the Klein-Gordon field Hamiltonian
and the bound on the EE becomes

S(ρI ) ≤
1

2
log2

(
2N

m

)
,

where m is the mass of the scalar field. So logarithmic divergence !



More violations .....

- For quantum critical systems it was seen that the EE grows
logarithmically in the subsystem size. This is seen for fermionic
quasifree models with periodic boundary conditions.

H =
1

2

∑
i ,j∈L

(
f †i Ai , j fj − fiAi , j f

†
j + fiBi , j fj − f †i Bi , j f

†
j

)
.

The EE for B = 0 scales as

S(ρI ) = ξ log2(n) + O(1)

- A more complicated translationally invariant system with local
HIlbert space having dimension 21 is shown to have volume law
behavior for EE. (S. Irani, 2009)



Do local interactions imply an area law for EE ?
Can we do better than a logarithmic violation ?



Motzkin Spin Chain (P. Shor et. al. 2014)

- The local Hilbert space is given by
{u1, u2, · · · , us , 0, d1, d2, · · · , d s}, where u, d and 0 are dubbed
“up”, “down” and “flat” steps respectively.
- The system lives on a 1D chain and we can geometrically
interpret the above steps as being along the (1, 1), (1,−1) and
(1, 0) directions respectively. s denotes the color of the step.
- For a 2n-step/link chain the many body states are 2D paths.
Motzkin walks are paths which start at (0, 0), end at (2n, 0), and
always stays in the positive quadrant.
- The uniform superposition of such paths form the ground state of
the Motzkin spin chain and has a half chain EE

S = 2 log2(s)

√
2σn

π
+

1

2
log2(2πσn) + O(1),

with σ =
√
s

2
√
s+1

and γ is Euler constant.



Local Hilbert Space : Colored Motzkin

| ↑〉

| ↓〉

≡

≡

| ↑k〉

| ↓k〉

≡

≡

| →〉 ≡



Motzkin Spin Chain Hamiltonian : HMotzkin

- The local, frustration free Hamiltonian is built out of projectors
to local equivalence moves∣∣∣Dk

〉
=

1√
2

[∣∣∣0dk
〉
−
∣∣∣dk0

〉]
∣∣∣Uk

〉
=

1√
2

[∣∣∣0uk〉− ∣∣∣uk0
〉]

∣∣∣F k
〉

=
1√
2

[
|00〉 −

∣∣∣ukdk
〉]

Πj ,j+1 =
s∑

k=1

[∣∣∣Dk
〉
j ,j+1

〈
Dk
∣∣∣+
∣∣∣Uk

〉
j ,j+1

〈
Uk
∣∣∣+
∣∣∣F k
〉
j ,j+1

〈
F k
∣∣∣]



Local Equivalences : Colored Motzkin Chain



HMotzkin.....

-The boundary term is

Πboundary =
s∑

k=1

[∣∣∣dk
〉

1

〈
dk
∣∣∣+
∣∣∣uk〉

2n

〈
uk
∣∣∣]

- A color balancing term

Πcross
j ,j+1 =

∑
k 6=i

∣∣∣ukd i
〉
j ,j+1

〈
ukd i

∣∣∣
- Finally

HMotzkin = Πboundary +
2n−1∑
j=1

[
Πj ,j+1 + Πcross

j ,j+1

]
.

This is essentially a spin 1 chain. Model is gapless with gap scaling
as n−c with c ≥ 2.



Fredkin Spin Chain (V. Korepin et. al. 2016)

- The local Hilbert space is spanned by {|↑〉, |↓〉}.
- Geometrically we have only “up” and “down” steps and no “flat”
steps. The “up” step points along (1, 1) and the “down” step
points along (1,−1).
- The states on the global Hilbert space are mapped to 2D Dyck
walks which again start at (0, 0) and end at (2n, 0) without leaving
the first quadrant.
- Notice that this is an uncolored local Hilbert space and the EE
scales as

S =
1

2
log(L) + O(1)



Local Hilbert Space : Colored Fredkin Chain

| ↑〉

| ↓〉

≡

≡

| ↑k〉

| ↓k〉

≡

≡



Fredkin Spin Chain Hamiltonian : HFredkin

- The local, frustration free Hamiltonian is built out of projectors
to local equivalence moves

|Uj〉 =
1√
2

[|↑j , ↑j+1, ↓j+2〉 − |↑j , ↓j+1, ↑j+2〉] ,

|Dj〉 =
1√
2

[|↑j , ↓j+1, ↓j+2〉 − |↓j , ↑j+1, ↓j+2〉] .

Πj , j+1, j+2 = |Uj〉〈Uj |+ |Dj〉〈Dj |
Boundary term is

Hboundary = [|↓1〉〈↓1|+ |↑2n〉〈↑2n|]

HFredkin = Hboundary +
2n−2∑
j=1

Πj , j+1, j+2.

- This is a spin 1
2 chain. Has global U(1) symmetry.



Local Equivalences : Colored Fredkin Chain

∼ ∼

∼ ∼



Colored Fredkin Spin Chain : Hcolored ,Fredkin

- Include s colors to each of the local basis states. The local
equivalence moves now become∣∣∣Uc1, c2, c3

j

〉
=

1√
2

[∣∣∣↑c1
j , ↑c2

j+1, ↓c3
j+2

〉
−
∣∣∣↑c2

j , ↓c3
j+1, ↑c1

j+2

〉]
,∣∣∣Dc1, c2, c3

j

〉
=

1√
2

[∣∣∣↑c2
j , ↓c3

j+1, ↓c1
j+2

〉
−
∣∣∣↓c1

j , ↑c2
j+1, ↓c3

j+2

〉]
.

Bj ,j+1 =
∣∣∣↑c1

j , ↓c2
j+1

〉〈
↑c1
j , ↓c2

j+1

∣∣∣
Cj ,j+1 = Π

1√
2
[|↑c1

j , ↓
c1
j+1〉−|↑c2

j , ↓
c2
j+1〉].

S ∼ 2√
π

log(s)

√
(n + r)(n − r)

n
+ +

1

2
ln

(n + r)(n − r)

n
+ O(1).



Deformed Motzkin Chain (Z. Zhang et. al. 2016)

∣∣∣Dk
〉

=
1√

1 + t2

[∣∣∣0dk
〉
− t
∣∣∣dk0

〉]
∣∣∣Uk

〉
=

1√
1 + t2

[∣∣∣0uk〉− t
∣∣∣uk0

〉]
∣∣∣F k
〉

=
1√

1 + t2

[
|00〉 − t

∣∣∣ukdk
〉]

- Ground state is now weighted Motzkin path.
- For t > 1 in the colored case the EE scales as the volume n log s
and for t = 1 we have the

√
n scaling for the half chain.



Deformed Fredkin Chain (O. Salberger et. al. 2016)

-Introduce a deforming parameter t in the local equivalence move∣∣∣Uc1, c2, c3

j

〉
=

1√
1 + t2

[∣∣∣↑c1
j , ↑c2

j+1, ↓c3
j+2

〉
− t
∣∣∣↑c2

j , ↓c3
j+1, ↑c1

j+2

〉]
,∣∣∣Dc1, c2, c3

j

〉
=

1√
1 + t2

[∣∣∣↑c2
j , ↓c3

j+1, ↓c1
j+2

〉
− t
∣∣∣↓c1

j , ↑c2
j+1, ↓c3

j+2

〉]
.

- Ground state is now weighted Dyck path.
- For t > 1 in the colored case the EE scales as the volume n log s
and for t = 1 we have the

√
n scaling for the half chain.



A Modification of the Motzkin Spin Chain (F.Sugino, PP,
2017)

- Change the local Hilbert space to {|xa,b〉; a, b ∈ {1, 2, 3}}. The
“up” steps pointing along (1, 1) occur when a < b, “down” steps
pointing along (1,−1) occur when a > b and the “flat” steps
pointing along (1, 0) occur when a = b. These new indices can be
thought of as arrow indices or more mathematically they are known
as semigroup indices.
- This introduces different kinds of paths, fully connected, partially
connected and disconnected paths.
- The maximum heights reached in a path is now smaller.



Different Kinds of Paths

1 1 1

1 1 1

1 1 1 1 1 1

2 2 2

2 2 2 2

2 2 2 2 2 2

3

3 3



Maximum Heights

1 100 22 33 44 55

|u〉

|u〉

|u〉

|u〉

|u〉
hmax = 5 hmax = 3

1

12

23

3



∼

∼

∼

∼

∼ ∼

+1
2

xa,b xa,b

xa,b xa,b

xa,a

xa,a

xb,b

xb,b

x1,1 x1,1

x2,2 x2,2

x1,2

x1,2

x1,3

x1,3

x1,3

x2,1

x2,1

x3,1

x3,1

x3,1

x2,3

x2,3

x3,2

x3,2

a < b , a, b ∈ {1, 2, 3}

a > b , a, b ∈ {1, 2, 3}



Projectors to the Modified Local Equivalence Moves

Uj ,j+1 =
3∑

a,b=1;a<b

Π
1√
2

[∣∣∣(xa,b)j ,(xb,b)j+1

〉
−
∣∣∣(xa,a)j ,(xa,b)j+1

〉]
,

Dj ,j+1 =
3∑

a,b=1;a>b

Π
1√
2

[∣∣∣(xa,b)j ,(xb,b)j+1

〉
−
∣∣∣(xa,a)j ,(xa,b)j+1

〉]
,

Fj ,j+1 = Π

√
2
3 [|(x1,1)j ,(x1,1)j+1〉− 1

2 (|(x1,2)j ,(x2,1)j+1〉+|(x1,3)j ,(x3,1)j+1〉)]

+Π
1√
2
[|(x2,2)j ,(x2,2)j+1〉−|(x2,3)j ,(x3,2)j+1〉],

Wj ,j+1 = Π
1√
2
[|(x1,2)j ,(x2,1)j+1〉−|(x1,3)j ,(x3,1)j+1〉]

+µΠ
1√
2
[|(x3,1)j ,(x1,3)j+1〉−|(x3,2)j ,(x2,3)j+1〉].



Boundary, Balancing and Bulk, Disconnected Terms

Hleft = Π|(x2,1)1〉 + Π|(x3,1)1〉 + Π|(x3,2)1〉,
Hright = Π|(x1,2)n〉 + Π|(x1,3)n〉 + Π|(x2,3)n〉.

Bj ,j+1 = Π|(x1,3)j ,(x3,2)j+1〉 + Π|(x2,3)j ,(x3,1)j+1〉.

Hbulk, disconnected =
n−1∑
j=1

3∑
a,b,c,d=1;b 6=c

Π

∣∣∣(xa,b)j ,(xc,d)
j+1

〉
.

HS3
1 ,Motzkin = Hleft +Hright +Hbulk +λ

2n−1∑
j=1

Bj ,j+1+Hbulk, disconnected .



Ground States

-This system has a ground state degeneracy (GSD) of 5 given by
the equivalence classes, {11}, {12}, {21}, {22} and {33}.
- We can use techniques from enumerative combinatorics to
compute the normalization of these states.

+ +

+

x1,1 x1,2

x1,3x1,3

x2,1

x3,1 x3,2

Pn−1, 1→1 Pn−2−i, 1→1

Pn−2−i, 1→1 Pn−2−i, 2→1

Pi, 2→2

Pi, 3→3 Pi, 3→3



Quantum Phase Transition

λ0

µ

Sn = O(1)

S
n
∝

lo
g
(n
)



Colored S3
1 Motzkin Chain

- We introduce a color degree of freedom to each of the basis

states,
∣∣∣xka,b〉, k ∈ {1, 2}.

Hbalanced = µ

n∑
i=1

Cj +
n−1∑
j=1

[
Uj ,j+1 + Dj ,j+1 + F balanced

j ,j+1

+W balanced
j ,j+1 + Rbalanced

j ,j+1 + Hleft + Hright

]
with new equivalence moves

Cj =
3∑

a=1

Π
1√
2
[|(x1

a,a)j〉−|(x2
a,a)j〉],

Rbalanced
j ,j+1 =

3∑
a,b,c=1; b>a,c

[
Π|(x1

a,b)j ,(x
2
b,c )j+1〉 + Π|(x2

a,b)j ,(x
1
b,c )j+1〉] .



Quantum Phase Transition

HS3
1 , colored Motzkin = Hbalanced + Hbulk,disconnected .

SA, 1→1 = (2 ln 2)

√
2σn

π
+

1

2
ln n +

1

2
ln(2πσ) + γ − 1

2
+ ln

3

21/3

+(terms vanishing as n→∞)

Sn ∝ log(n) Sn ∝ √
n

µ
µ = 0



Modified Fredkin Chain (F.Sugino, PP, V.Korepin, 2018)

∼

∼

∼ ∼

1 1 1

1 1 1

1 1 1 1 1

2 2 2 2

2 2 2 2

2

2

3

3

3 3 3 3 3



Modified Fredkin Chain Hamiltonian

Uj ,j+1,j+2 = Π
1√
2
[|(x1,2)j ,(x2,3)j+1,(x3,2)j+2〉−|(x1,2)j ,(x2,1)j+1,(x1,2)j+2〉]

Dj ,j+1,j+2 = Π
1√
2
[|(x2,3)j ,(x3,2)j+1,(x2,1)j+2〉−|(x2,1)j ,(x1,2)j+1,(x2,1)j+2〉]

Wj ,j+1 = Π
1√
2
[|(x1,2)j ,(x2,1)j+1〉−|(x1,3)j ,(x3,1)j+1〉]

+λ1Π
1√
2
[|(x3,1)j ,(x1,3)j+1〉−|(x3,2)j ,(x2,3)j+1〉],

HF = Hleft+Hbulk, connected+Hright+λ2

n−1∑
j=1

Bj ,j+1+Hbulk, disconnected .



Quantum Phase Transition

-The GSD is 4, we no longer have the {33} equivalence class.
λ1 = λ2 = 0 is a special phase where there is an extensive GSD in
each equivalence class.
- When λ1, λ2 > 0 the Hamiltonian is no longer frustration free
and is not shown in the figure.

0

λ1

λ2

S
n
∝

lo
g
n

Sn = O(1)



Excitations

- There are three kinds of excitations in these systems, fully
connected, partially connected and disconnected excitations.
- The partially connected excitations are localized both in the low
energy and high energy sector.

|x2,3〉i 〈x1,2|B|Pn, 1→1〉 =

hmax,i∑
h=0

[∣∣∣P(0→h)
i−1, 1→1

〉
⊗ |x2,3〉i ⊗

∣∣∣P(h+1→0)
n−i , 2→1

〉]
.



Partially Connected Excitations

A low energy example

1 1 1 1 1 1 1 1

2 2 23 3 3

+

A high energy example

r n− r

Pn−r, 1→1

1 1 1 1

2 2 2 2



Localization

- The partially connected excitations are localized as can be seen
by computing connected 2-point correlation functions.

〈pce|θi (t)θj(0)|pce〉 − 〈pce|θi (t)|pce〉〈pce|θj(0)|pce〉 = 0,

θi (0) = |xa1,b1〉i 〈xa2,b2 |, a1 6= a2 and b1 6= b2,

θi (0) =
∑
a,b

ka,b|xa,b〉i 〈xa,b|, a, b ∈ {1, 2, 3}.



Modified Colored Fredkin Chain

∼
a a

b b

c c
1 1 2 2

Hbalanced =
n−1∑
j=1

[µCj ,j+1 + Wj ,j+1 + Rj ,j+1]

+
n−2∑
j=1

[Uj ,j+1,j+2 + Dj ,j+1,j+2] + Hleft + Hright ,



Quantum Phase Transition

SA, 1→1 =
2 ln 2

3

√
(n + r)(n − r)

πn
+

1

2
ln

(n + r)(n − r)

n

+
1

2
ln
π

4
+ γ − 1

2
− 1

3
ln 2 + (terms vanishing as n→∞).

- Same as colored Fredkin chain with s = 2
1
3 !

Sn ∝ log(n) Sn ∝ √
n

µ
µ = 0



Outlook

- These models can be generalized for an arbitrary number of
arrow indices and colors. In general they are higher spin models.
- Extend to higher dimensional random walks.
- Continuum limits.
- EE scaling in local models as np with p a fraction other than 1

2 ?



I wish Bal a Happy 80th and many more fun filled
years in physics !

- -
Thank you !
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