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The story begins with Hamilton in 1837

I In the paper W. R. Hamilton, Trans. Roy. Irish Acad., 17,
1–144 (1837) he considered infinitesimal pertrubations of the
eikonal (Hamilton-Jacobi) equation. This would describe the
propagation of nearby rays.

I These ideas have been extended by L. Klimes, Journal of
Electromagnetic Waves and Applications, 27,1589(2013).

I Some decades later Riemann discovered the notion of
curvature

I Jacobi found the equation for infinitesimal perturbation of
geodesics: the geodesic deviation equation.
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Riemannian Geometry is a Special Case of Hamiltonian
Mechanics

I Geodesics are the solutions of Hamilton’s equations with
H = 1

2g
ijpipj

I Is there a generalization of Riemannian geometry to more
general hamiltonians?

I We want notions of volume, distance and curvature.
I Boltzmann gives a natural volume measure on phase space:

e−Hdnpdnq. It reduces to Riemannian volume measure on
configuration space in that special case:

dnq
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=
√
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I The “reduced action” or “eikonal” σE (Q,Q ′) =
∫ Q′

Q pidq
i

along a trajectory of energy E is a generalization of distance.
But, in general it depends on E ; is not positive; or a
symmetric function σ(Q,Q ′) 6= σ(Q ′,Q).

I Curvature is hardest to generalize.
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Curvature Depends on Choice of Lagrangian Submanifold

I There is a no notion of curvature in symplectic geometry:
Darboux says there are local co-ordinates with ω = dpi ∧ dqi

I Even given a hamiltonian there cannot be a notion of
curvature: Birkhoff says that near a stable equilibrium point
H(q, p) = 1

2
∑

k

[
pk + ω2

kq
2
k

]
+ O(N) for any N ≥ 3.

I Given a manifold Γ, a symplectic form ω on it, a hamiltonian
H and a Lagrangian sybmanifold M , we will find a a notion
of curvature.

I Curvature is a local notion. So we can identify Γ = T ∗M and
use canonical co-ordinates.
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Second Variation of Action

I The solutions of Hamilton’s equation (orbits) are extrema of
the action

S =

∫
pi q̇

idt −
∫

H(q(t), p(t))dt

I An infinitesimal deviation of an orbit
qi 7→ qi + εξi , pi 7→ pi + επi satisfies the associated equations

ξ̇i = H i
j ξ

j + H ijπj , π̇i = −Hijξ
j − H j

i πj

where H ij = ∂H
∂pi∂pj

,H i
j = ∂H

∂pi∂qj
,Hij = ∂2H

∂qi∂qj
.

I These are extrema of the second variation:

S =

∫ [
πi ξ̇

i −H
]
dt, H =

1
2

[
Hijξ

iξj + 2H j
i ξ

iπj + H ijπiπj

]
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Lagrangian Version of the Second Variation
I We will assume from now on that the second derivative of H

w.r.t. p has an inverse :

H ijGjk = δik

I This Gjk(q, p) depends on both position and momentum! In
Riemannian geometry, it reduces to the metric tensor.

I Then we can eliminate πi to get a “Lagrangian” version of the
action for deviations

S1 =

∫ [
1
2
Gij ξ̇

i ξ̇j − ξ̇iξjGikH
k
j +

1
2
ξiξj

{
−Hij + Hk

i H
l
jGkl

}]
dt

I Although H ijand Gjk transform as tensors, H i
j and Hij do not.

For example, if we transform qi → q̃i (q),p̃i = ∂qk

∂q̃i
pk ,

H̃ i
j =

∂qb

∂q̃j
∂q̃i

∂qa
Ha
b +

∂qc

∂q̃j
∂2q̃i

∂qc∂qa
Ha +

∂qc

∂q̃j
∂q̃i

∂qa
∂2q̃k

∂qc∂qb
Habp̃k

etc.
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Covariant Time Derivative

I By explicit calculation, we can verify that the following
quantity transforms as a tensor:

◦
ξ
k

= ξ̇k + γkj ξ
j

where
γkj =

1
2

[
−Hk

j + HkmGjlH
l
m + Hkl Ġlj

]
I We do not attempt to define a covariant derivative in a

general direction, only along the orbit.
I The second variation can be written as (after some integration

by parts etc.)

S1 =

∫ [
1
2
Gij(q, p)

◦
ξ
i ◦
ξ
j

− 1
2
ξiξjRij(q, p)

]
dt
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Curvature

I The tensor Rij(q, p) appearing here is the generalization of
the Riemann tensor . By explict calculation, we see that it
depends on up to four derivatives of the hamiltonian:

Rij = Gklγ
k
i γ

l
j −

1
2

{
H,GikH

k
j + GjkH

k
i

}
−1
2
{H, {H,Gij}}+ Hij − Hk

i H
l
jGkl

I In Riemannian geometry its dependence on momentum is
quardatic and

Rij(q, p) = −gimpkplRm
klj(q)

I In general there will be lower and higher order terms in the
momenta.
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Analogue of Ricci Tensor and the Einstein-Hilbert Action
I The contraction R(q, p) = H ijRij(q, p) is the analogue of the

Ricci tensor.
I Again, in Riemannian geometry it is a quadratic function of

momenta, R = pkplRkl .
I By integrating this quantity over all of phase space we get an

action principle for the hamiltonian:

L(H) =

∫
H ijRij(q, p)e−Hdnq

dnp

(2π)n

I In Riemannian geometry, this reduces to the Einstein-Hilbert
action

L(H) =

∫
pkplRkl(q)e−

1
2g

ijpipjdnq
dnp

(2π)n
=

∫
g ijRijd

nq.

I This leads to some higher tensor gravity theory generalizing
General Relativity.

I We do not know yet if it is ghost free. Might be worth
studying further.
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Einstein-Maxwell-Dilaton Theory

I We can consider the special case
H = 1

2g
kl [pk − Ak ] [pl − Al ] + φ

I The above variational principle reduces to

L(g ,A, φ) =

∫ [
R +

1
4
FikFjlg

klg ij + ∆φ

]
e−φ
√
gdnq

I After the field redefiniton g̃ij = e2αφgij , α = − 1
n−2 this

becomes recognizable:∫ [√
g̃ R̃ +

1
4
FikFjl g̃

kl g̃ ij
√

g̃ e−
2

n−2φ +
2n − 1
n − 2

√
g̃ g̃ ij∂iφ∂jφ

]
dnq

I The fieldφ can now be identified with the dilaton; g̃ is the
metric of GR and Fkl = ∂kAl − ∂lAk is the Maxwell tensor.
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Other Special Cases
I With flat metric and no electro-magnetic field

H = 1
2pkpk + φ(q) the curvature is just the Hessian of φ.

Rij =
∂2φ

∂qi∂qj

I In particular, the simple harmonic oscillar has constant positive
curvature.

I If you add a constant magnetic field

Rij =
1
4
FikFjk + ∂i∂jφ

I A Penning trap is a subtle case. The potential φ is harmonic,
so cannot have a stable equilibrium . A strong enough
magnetic field oriented along the unstable direction of φ can
restore stability.

I A sufficient condition or stability is that Rij above is a positive
matrix. It is not necessary, however.
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Thank You Bal!

I What is unique about Bal as a scientist is audacity: he would
jump into any problem that interested him, swimming against
the current if necessary.

I The week I arrived in Syracuse, Bal placed two stacks of
papers on my desk: one on the Skyrme model and another on
String Theory.

I Both were totally out of fashion in the early Eighties. But my
mid-Eighties, they were all the rage; partly because of Witten’s
charismatic leadership.

I The timing could not have been better for me. I worked on
those two themes for a decade with Bal and others (Schechter,
Nair,Michelson, Bowick..).

I Ever grateful to Bal, who made my career possible.
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