Curvature in Hamiltonian Mechanics
 Talk at BalFest80, Dublin Institute for Advanced Studies, 24th January 2018.

S. G. Rajeev
Department of Physics and Astronomy
Department of Mathematics
University of Rochester

May 10, 2018

The story begins with Hamilton in 1837

- In the paper W. R. Hamilton, Trans. Roy. Irish Acad., 17, 1-144 (1837) he considered infinitesimal pertrubations of the eikonal (Hamilton-Jacobi) equation. This would describe the propagation of nearby rays.
- These ideas have been extended by L. Klimes, Journal of Electromagnetic Waves and Applications, 27,1589(2013).
- Some decades later Riemann discovered the notion of curvature
- Jacobi found the equation for infinitesimal perturbation of geodesics: the geodesic deviation equation.

The story begins with Hamilton in 1837

- In the paper W. R. Hamilton, Trans. Roy. Irish Acad., 17, 1-144 (1837) he considered infinitesimal pertrubations of the eikonal (Hamilton-Jacobi) equation. This would describe the propagation of nearby rays.
- These ideas have been extended by L. Klimes, Journal of Electromagnetic Waves and Applications, 27,1589(2013).
- Some decades later Riemann discovered the notion of curvature
- Jacobi found the equation for infinitesimal perturbation of geodesics: the geodesic deviation equation.

Riemannian Geometry is a Special Case of Hamiltonian

 Mechanics- Geodesics are the solutions of Hamilton's equations with $H=\frac{1}{2} g^{i j} p_{i} p_{j}$
- Is there a generalization of Riemannian geometry to more general hamiltonians?
- We want notions of volume, distance and curvature.
- Boltzmann gives a natural volume measure on phase space: $e^{-H} d^{n} p d^{n} q$. It reduces to Riemannian volume measure on configuration space in that special case:

$$
d^{n} q \int e^{-\frac{1}{2} g^{i j} p_{i} p_{j}} \frac{d^{n} p}{(2 \pi)^{\frac{n}{2}}}=\sqrt{g} d^{n} q
$$

- The "reduced action" or "eikonal" $\sigma_{E}\left(Q, Q^{\prime}\right)=\int_{Q}^{Q^{\prime}} p_{i} d q^{i}$ along a trajectory of energy E is a generalization of distance. But, in general it depends on E; is not positive; or a symmetric function $\sigma\left(Q, Q^{\prime}\right) \neq \sigma\left(Q^{\prime}, Q\right)$.
- Curvature is hardest to generalize.

Riemannian Geometry is a Special Case of Hamiltonian

 Mechanics- Geodesics are the solutions of Hamilton's equations with $H=\frac{1}{2} g^{i j} p_{i} p_{j}$
- Is there a generalization of Riemannian geometry to more general hamiltonians?
- We want notions of volume, distance and curvature.
- Boltzmann gives a natural volume measure on phase space: $e^{-H} d^{n} p d^{n} q$. It reduces to Riemannian volume measure on configuration space in that special case:

$$
d^{n} q \int e^{-\frac{1}{2} g^{i j} p_{i} p_{j}} \frac{d^{n} p}{(2 \pi)^{\frac{n}{2}}}=\sqrt{g} d^{n} q
$$

- The "reduced action" or "eikonal" $\sigma_{E}\left(Q, Q^{\prime}\right)=\int_{Q}^{Q^{\prime}} p_{i} d q^{i}$ along a trajectory of energy E is a generalization of distance. But, in general it depends on E; is not positive; or a symmetric function $\sigma\left(Q, Q^{\prime}\right) \neq \sigma\left(Q^{\prime}, Q\right)$.
- Curvature is hardest to generalize.

Curvature Depends on Choice of Lagrangian Submanifold

- There is a no notion of curvature in symplectic geometry: Darboux says there are local co-ordinates with $\omega=d p_{i} \wedge d q^{i}$
- Even given a hamiltonian there cannot be a notion of curvature: Birkhoff says that near a stable equilibrium point $H(q, p)=\frac{1}{2} \sum_{k}\left[p_{k}+\omega_{k}^{2} q_{k}^{2}\right]+\mathrm{O}(N)$ for any $N \geq 3$.
- Given a manifold Γ, a symplectic form ω on it, a hamiltonian H and a Lagrangian sybmanifold M, we will find a a notion of curvature.
- Curvature is a local notion. So we can identify $\Gamma=T^{*} M$ and use canonical co-ordinates.

Curvature Depends on Choice of Lagrangian Submanifold

- There is a no notion of curvature in symplectic geometry: Darboux says there are local co-ordinates with $\omega=d p_{i} \wedge d q^{i}$
- Even given a hamiltonian there cannot be a notion of curvature: Birkhoff says that near a stable equilibrium point $H(q, p)=\frac{1}{2} \sum_{k}\left[p_{k}+\omega_{k}^{2} q_{k}^{2}\right]+\mathrm{O}(N)$ for any $N \geq 3$.
- Given a manifold Γ, a symplectic form ω on it, a hamiltonian H and a Lagrangian sybmanifold M, we will find a a notion of curvature.
- Curvature is a local notion. So we can identify $\Gamma=T^{*} M$ and use canonical co-ordinates.

Second Variation of Action

- The solutions of Hamilton's equation (orbits) are extrema of the action

$$
S=\int p_{i} \dot{q}^{i} d t-\int H(q(t), p(t)) d t
$$

- An infinitesimal deviation of an orbit $q^{i} \mapsto q^{i}+\epsilon \xi^{i}, p_{i} \mapsto p_{i}+\epsilon \pi_{i}$ satisfies the associated equations

$$
\dot{\xi}^{i}=H_{j}^{i} \xi^{j}+H^{i j} \pi_{j}, \quad \dot{\pi}_{i}=-H_{i j} \xi^{j}-H_{i}^{j} \pi_{j}
$$

where $H^{i j}=\frac{\partial H}{\partial p_{i} \partial p_{j}}, H_{j}^{i}=\frac{\partial H}{\partial p_{i} \partial q^{i}}, H_{i j}=\frac{\partial^{2} H}{\partial q^{i} \partial q^{j}}$.

- These are extrema of the second variation:

$$
\mathcal{S}=\int\left[\pi_{i} \dot{\xi}^{i}-\mathcal{H}\right] d t, \quad \mathcal{H}=\frac{1}{2}\left[H_{i j} \xi^{i} \xi^{j}+2 H_{i}^{j} \xi^{i} \pi_{j}+H^{i j} \pi_{i} \pi_{j}\right]
$$

Second Variation of Action

- The solutions of Hamilton's equation (orbits) are extrema of the action

$$
S=\int p_{i} \dot{q}^{i} d t-\int H(q(t), p(t)) d t
$$

- An infinitesimal deviation of an orbit $q^{i} \mapsto q^{i}+\epsilon \xi^{i}, p_{i} \mapsto p_{i}+\epsilon \pi_{i}$ satisfies the associated equations

$$
\dot{\xi}^{i}=H_{j}^{i} \xi^{j}+H^{i j} \pi_{j}, \quad \dot{\pi}_{i}=-H_{i j} \xi^{j}-H_{i}^{j} \pi_{j}
$$

where $H^{i j}=\frac{\partial H}{\partial p_{i} \partial p_{j}}, H_{j}^{i}=\frac{\partial H}{\partial p_{i} \partial q^{i}}, H_{i j}=\frac{\partial^{2} H}{\partial q^{i} \partial q^{j}}$.

- These are extrema of the second variation:

$$
\mathcal{S}=\int\left[\pi_{i} \dot{\xi}^{i}-\mathcal{H}\right] d t, \quad \mathcal{H}=\frac{1}{2}\left[H_{i j} \xi^{i} \xi^{j}+2 H_{i}^{j} \xi^{i} \pi_{j}+H^{i j} \pi_{i} \pi_{j}\right]
$$

Lagrangian Version of the Second Variation

- We will assume from now on that the second derivative of H w.r.t. p has an inverse :

$$
H^{i j} G_{j k}=\delta_{k}^{i}
$$

- This $G_{j k}(q, p)$ depends on both position and momentum! In Riemannian geometry, it reduces to the metric tensor.
- Then we can eliminate π_{i} to get a "Lagrangian" version of the action for deviations

$$
\mathcal{S}_{1}=\int\left[\frac{1}{2} G_{i j} \dot{\xi}^{i} \dot{\xi}^{j}-\dot{\xi}^{i} \xi^{j} G_{i k} H_{j}^{k}+\frac{1}{2} \xi^{i} \xi^{j}\left\{-H_{i j}+H_{i}^{k} H_{j}^{\prime} G_{k l}\right\}\right] d t
$$

- Although $H^{i j}$ and $G_{j k}$ transform as tensors, H_{j}^{i} and $H_{i j}$ do not. For example, if we transform $q^{i} \rightarrow \tilde{q}^{i}(q), \tilde{p}_{i}=\frac{\partial q^{k}}{\partial \tilde{q}^{i}} p_{k}$,
$\tilde{H}_{j}^{i}=\frac{\partial q^{b}}{\partial \tilde{q}^{j}} \frac{\partial \tilde{q}^{i}}{\partial q^{a}} H_{b}^{a}+\frac{\partial q^{c}}{\partial \tilde{q}^{j}} \frac{\partial^{2} \tilde{q}^{i}}{\partial q^{c} \partial q^{a}} H^{a}+\frac{\partial q^{c}}{\partial \tilde{q}^{j}} \frac{\partial \tilde{q}^{i}}{\partial q^{a}} \frac{\partial^{2} \tilde{q}^{k}}{\partial q^{c} \partial q^{b}} H^{a b} \tilde{p}_{k}$ etc.

Lagrangian Version of the Second Variation

- We will assume from now on that the second derivative of H w.r.t. p has an inverse :

$$
H^{i j} G_{j k}=\delta_{k}^{i}
$$

- This $G_{j k}(q, p)$ depends on both position and momentum! In Riemannian geometry, it reduces to the metric tensor.
- Then we can eliminate π_{i} to get a "Lagrangian" version of the action for deviations

$$
\mathcal{S}_{1}=\int\left[\frac{1}{2} G_{i j} \dot{\xi}^{i} \dot{\xi}^{j}-\dot{\xi}^{i} \xi^{j} G_{i k} H_{j}^{k}+\frac{1}{2} \xi^{i} \xi^{j}\left\{-H_{i j}+H_{i}^{k} H_{j}^{\prime} G_{k l}\right\}\right] d t
$$

- Although $H^{i j}$ and $G_{j k}$ transform as tensors, H_{j}^{i} and $H_{i j}$ do not. For example, if we transform $q^{i} \rightarrow \tilde{q}^{i}(q), \tilde{p}_{i}=\frac{\partial q^{k}}{\partial \tilde{q}^{i}} p_{k}$,
$\tilde{H}_{j}^{i}=\frac{\partial q^{b}}{\partial \tilde{q}^{j}} \frac{\partial \tilde{q}^{i}}{\partial q^{a}} H_{b}^{a}+\frac{\partial q^{c}}{\partial \tilde{q}^{j}} \frac{\partial^{2} \tilde{q}^{i}}{\partial q^{c} \partial q^{a}} H^{a}+\frac{\partial q^{c}}{\partial \tilde{q}^{j}} \frac{\partial \tilde{q}^{i}}{\partial q^{a}} \frac{\partial^{2} \tilde{q}^{k}}{\partial q^{c} \partial q^{b}} H^{a b} \tilde{p}_{k}$ etc.

Covariant Time Derivative

- By explicit calculation, we can verify that the following quantity transforms as a tensor:

$$
\stackrel{\circ}{\xi}_{\xi}^{k}=\dot{\xi}^{k}+\gamma_{j}^{k} \xi^{j}
$$

where

$$
\gamma_{j}^{k}=\frac{1}{2}\left[-H_{j}^{k}+H^{k m} G_{j l} H_{m}^{\prime}+H^{k l} \dot{G}_{l j}\right]
$$

- We do not attempt to define a covariant derivative in a general direction, only along the orbit.
- The second variation can be written as (after some integration by parts etc.)

$$
\mathcal{S}_{1}=\int\left[\frac{1}{2} G_{i j}(q, p) \stackrel{\circ}{\circ} \dot{\xi} \stackrel{j}{\xi}-\frac{1}{2} \xi^{i} \xi^{j} \mathcal{R}_{i j}(q, p)\right] d t
$$

Covariant Time Derivative

- By explicit calculation, we can verify that the following quantity transforms as a tensor:

$$
\stackrel{\circ}{\xi}_{\xi}^{k}=\dot{\xi}^{k}+\gamma_{j}^{k} \xi^{j}
$$

where

$$
\gamma_{j}^{k}=\frac{1}{2}\left[-H_{j}^{k}+H^{k m} G_{j l} H_{m}^{\prime}+H^{k l} \dot{G}_{l j}\right]
$$

- We do not attempt to define a covariant derivative in a general direction, only along the orbit.
- The second variation can be written as (after some integration by parts etc.)

$$
\mathcal{S}_{1}=\int\left[\frac{1}{2} G_{i j}(q, p) \stackrel{\circ}{\circ} \dot{\xi} \stackrel{j}{\xi}-\frac{1}{2} \xi^{i} \xi^{j} \mathcal{R}_{i j}(q, p)\right] d t
$$

Curvature

- The tensor $\mathcal{R}_{i j}(q, p)$ appearing here is the generalization of the Riemann tensor. By explict calculation, we see that it depends on up to four derivatives of the hamiltonian:

$$
\begin{aligned}
\mathcal{R}_{i j} & =G_{k l} \gamma_{i}^{k} \gamma_{j}^{\prime}-\frac{1}{2}\left\{H, G_{i k} H_{j}^{k}+G_{j k} H_{i}^{k}\right\} \\
& -\frac{1}{2}\left\{H,\left\{H, G_{i j}\right\}\right\}+H_{i j}-H_{i}^{k} H_{j}^{\prime} G_{k l}
\end{aligned}
$$

- In Riemannian geometry its dependence on momentum is quardatic and

$$
\mathcal{R}_{i j}(q, p)=-g_{i m} p^{k} p^{\prime} R_{k l j}^{m}(q)
$$

- In general there will be lower and higher order terms in the momenta.

Curvature

- The tensor $\mathcal{R}_{i j}(q, p)$ appearing here is the generalization of the Riemann tensor. By explict calculation, we see that it depends on up to four derivatives of the hamiltonian:

$$
\begin{aligned}
\mathcal{R}_{i j} & =G_{k l} \gamma_{i}^{k} \gamma_{j}^{\prime}-\frac{1}{2}\left\{H, G_{i k} H_{j}^{k}+G_{j k} H_{i}^{k}\right\} \\
& -\frac{1}{2}\left\{H,\left\{H, G_{i j}\right\}\right\}+H_{i j}-H_{i}^{k} H_{j}^{\prime} G_{k l}
\end{aligned}
$$

- In Riemannian geometry its dependence on momentum is quardatic and

$$
\mathcal{R}_{i j}(q, p)=-g_{i m} p^{k} p^{\prime} R_{k l j}^{m}(q)
$$

- In general there will be lower and higher order terms in the momenta.

Analogue of Ricci Tensor and the Einstein-Hilbert Action

- The contraction $\mathcal{R}(q, p)=H^{i j} \mathcal{R}_{i j}(q, p)$ is the analogue of the Ricci tensor.
- Again, in Riemannian geometry it is a quadratic function of momenta, $\mathcal{R}=p^{k} p^{\prime} R_{k l}$.
- By integrating this quantity over all of phase space we get an action principle for the hamiltonian:

$$
L(H)=\int H^{i j} \mathcal{R}_{i j}(q, p) e^{-H} d^{n} q \frac{d^{n} p}{(2 \pi)^{n}}
$$

- In Riemannian geometry, this reduces to the Einstein-Hilbert action

$$
L(H)=\int p^{k} p^{\prime} R_{k l}(q) e^{-\frac{1}{2} g^{i j} p_{i} p_{j}} d^{n} q \frac{d^{n} p}{(2 \pi)^{n}}=\int g^{i j} R_{i j} d^{n} q .
$$

- This leads to some higher tensor gravity theory generalizing General Relativity.
- We do not know yet if it is ghost free. Might be worth studying further.

Analogue of Ricci Tensor and the Einstein-Hilbert Action

- The contraction $\mathcal{R}(q, p)=H^{i j} \mathcal{R}_{i j}(q, p)$ is the analogue of the Ricci tensor.
- Again, in Riemannian geometry it is a quadratic function of momenta, $\mathcal{R}=p^{k} p^{\prime} R_{k l}$.
- By integrating this quantity over all of phase space we get an action principle for the hamiltonian:

$$
L(H)=\int H^{i j} \mathcal{R}_{i j}(q, p) e^{-H} d^{n} q \frac{d^{n} p}{(2 \pi)^{n}}
$$

- In Riemannian geometry, this reduces to the Einstein-Hilbert action

$$
L(H)=\int p^{k} p^{\prime} R_{k l}(q) e^{-\frac{1}{2} g^{i j} p_{i} p_{j}} d^{n} q \frac{d^{n} p}{(2 \pi)^{n}}=\int g^{i j} R_{i j} d^{n} q .
$$

- This leads to some higher tensor gravity theory generalizing General Relativity.
- We do not know yet if it is ghost free. Might be worth studying further.

Einstein-Maxwell-Dilaton Theory

- We can consider the special case

$$
H=\frac{1}{2} g^{k l}\left[p_{k}-A_{k}\right]\left[p_{l}-A_{l}\right]+\phi
$$

- The above variational principle reduces to

$$
L(g, A, \phi)=\int\left[R+\frac{1}{4} F_{i k} F_{j l} g^{k l} g^{i j}+\Delta \phi\right] e^{-\phi} \sqrt{g} d^{n} q
$$

- After the field redefiniton $\tilde{g}_{i j}=e^{2 \alpha \phi} g_{i j}, \quad \alpha=-\frac{1}{n-2}$ this becomes recognizable:

$$
\int\left[\sqrt{\tilde{g}} \tilde{R}+\frac{1}{4} F_{i k} F_{j l} \tilde{g}^{k l} \tilde{g}^{i j} \sqrt{\tilde{g}} e^{-\frac{2}{n-2} \phi}+\frac{2 n-1}{n-2} \sqrt{\tilde{g}} \tilde{g}^{i j} \partial_{i} \phi \partial_{j} \phi\right] d^{n} q
$$

- The field ϕ can now be identified with the dilaton; \tilde{g} is the metric of GR and $F_{k l}=\partial_{k} A_{l}-\partial_{l} A_{k}$ is the Maxwell tensor.

Einstein-Maxwell-Dilaton Theory

- We can consider the special case

$$
H=\frac{1}{2} g^{k l}\left[p_{k}-A_{k}\right]\left[p_{l}-A_{l}\right]+\phi
$$

- The above variational principle reduces to

$$
L(g, A, \phi)=\int\left[R+\frac{1}{4} F_{i k} F_{j l} g^{k l} g^{i j}+\Delta \phi\right] e^{-\phi} \sqrt{g} d^{n} q
$$

- After the field redefiniton $\tilde{g}_{i j}=e^{2 \alpha \phi} g_{i j}, \quad \alpha=-\frac{1}{n-2}$ this becomes recognizable:

$$
\int\left[\sqrt{\tilde{g}} \tilde{R}+\frac{1}{4} F_{i k} F_{j l} \tilde{g}^{k l} \tilde{g}^{i j} \sqrt{\tilde{g}} e^{-\frac{2}{n-2} \phi}+\frac{2 n-1}{n-2} \sqrt{\tilde{g}} \tilde{g}^{i j} \partial_{i} \phi \partial_{j} \phi\right] d^{n} q
$$

- The field ϕ can now be identified with the dilaton; \tilde{g} is the metric of GR and $F_{k l}=\partial_{k} A_{l}-\partial_{l} A_{k}$ is the Maxwell tensor.

Other Special Cases

- With flat metric and no electro-magnetic field $H=\frac{1}{2} p_{k} p_{k}+\phi(q)$ the curvature is just the Hessian of ϕ.

$$
\mathcal{R}_{i j}=\frac{\partial^{2} \phi}{\partial q^{i} \partial q^{j}}
$$

- In particular, the simple harmonic oscillar has constant positive curvature.
- If you add a constant magnetic field

$$
\mathcal{R}_{i j}=\frac{1}{4} F_{i k} F_{j k}+\partial_{i} \partial_{j} \phi
$$

- A Penning trap is a subtle case. The potential ϕ is harmonic, so cannot have a stable equilibrium . A strong enough magnetic field oriented along the unstable direction of ϕ can restore stability.
- A sufficient condition or stability is that $\mathcal{R}_{i j}$ above is a positive matrix. It is not necessary, however.

Other Special Cases

- With flat metric and no electro-magnetic field $H=\frac{1}{2} p_{k} p_{k}+\phi(q)$ the curvature is just the Hessian of ϕ.

$$
\mathcal{R}_{i j}=\frac{\partial^{2} \phi}{\partial q^{i} \partial q^{j}}
$$

- In particular, the simple harmonic oscillar has constant positive curvature.
- If you add a constant magnetic field

$$
\mathcal{R}_{i j}=\frac{1}{4} F_{i k} F_{j k}+\partial_{i} \partial_{j} \phi
$$

- A Penning trap is a subtle case. The potential ϕ is harmonic, so cannot have a stable equilibrium . A strong enough magnetic field oriented along the unstable direction of ϕ can restore stability.
- A sufficient condition or stability is that $\mathcal{R}_{i j}$ above is a positive matrix. It is not necessary, however.

Thank You Bal!

- What is unique about Bal as a scientist is audacity: he would jump into any problem that interested him, swimming against the current if necessary.
- The week I arrived in Syracuse, Bal placed two stacks of papers on my desk: one on the Skyrme model and another on String Theory.
- Both were totally out of fashion in the early Eighties. But my mid-Eighties, they were all the rage; partly because of Witten's charismatic leadership.
- The timing could not have been better for me. I worked on those two themes for a decade with Bal and others (Schechter, Nair,Michelson, Bowick..).
- Ever grateful to Bal, who made my career possible.

Thank You Bal!

- What is unique about Bal as a scientist is audacity: he would jump into any problem that interested him, swimming against the current if necessary.
- The week I arrived in Syracuse, Bal placed two stacks of papers on my desk: one on the Skyrme model and another on String Theory.
- Both were totally out of fashion in the early Eighties. But my mid-Eighties, they were all the rage; partly because of Witten's charismatic leadership.
- The timing could not have been better for me. I worked on those two themes for a decade with Bal and others (Schechter, Nair,Michelson, Bowick..).
- Ever grateful to Bal, who made my career possible.

