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Introduction



About this talk

• Partially based on arXiv 1712.05069

• Sebastián Calderón

• Ling Sequera

• Souad Tabban
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Motivation

Universality, criticality ?←→ Topology
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Shale-Stinespring theorem



Shale-Stinespring theorem

The Weyl (or bosonic) algebra



Canonical commutation relations (CCR): [q̂, p̂] = i~1.

Define operators U(a) and V (b), for a, b ∈ R, acting on wave functions

as follows:

(U(a)ψ) (x) := ψ(x− ~a), (1)

(V (b)ψ) (x) := e−ibxψ(x).

In terms of q̂ and p̂, we have: U(a) = e−iap̂ and V (b) = e−ibq̂.

U(a) and V (b) satisfy the following commutation relations (Weyl form):

U(a1)U(a2) = U(a1 + a2),

V (b1)V (b2) = V (b1 + b2), (2)

U(a)V (b) = ei~abV (b)U(a).
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For u = (α, β) ∈ T ∗Rn, define

W (α, β) := e−i(αq̂+βp̂).

These operators satisfy the following identity:

W (u)W (v) = e−
i
2σ(u,v)W (u+ v),

where u and v denote elements of the symplectic vector space T ∗Rn,

and σ the standard symplectic form.

They are related to U and V through

W (α, β) = ei
~
2αβV (α)U(β).
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Definition (Weyl ∗-algebra)

Let V be a real vector space and σ : V × V → R a symplectic form. A

∗-algebra W(V, σ) is called a Weyl ∗-algebra of (V, σ) if there is a

family {W (u)}u∈V of “generators” such that

(i ) W (u)W (v) = e−
i
2σ(u,v)W (u+ v), W (u)∗ = W (−u), u, v ∈ V .

(ii ) W(V, σ) is generated by the family {W (u)}u∈V , i.e., it is the span

of finite linear combinations of finite products of the W (u).

• Every symplectic vector space (V, σ) determines uniquely a Weyl

∗-algebra, up to ∗-isomorphism.

• (V1, σ1) ∼= (V2, σ2) ⇒ W(V1, σ1) ∼=W(V2, σ2).

• A most important fact is that W(V, σ) can be completed to a

C∗-algebra, the Weyl C∗-algebra.
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It is a fundamental result, due to Stone and von Neumann, that when

the dimension of V is finite (and hence necessarily even), there is

essentially only one representation of the CCR, which can be taken to be

the standard Schrödinger representation. But in infinite dimensions

uniqueness is lost, and so inequivalent representations do exist. This fact

is closely related to the non-uniqueness of a vacuum state for a free

quantum field in a curved spacetime background.

Theorem (Stone-von Neumann)

If (V, σ) finite dimensional, all irreducible representations of the Weyl

algebra are unitarily equivalent.
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Shale-Stinespring theorem

The CAR (or fermionic) algebra



The CAR algebra

Consider the unital, involutive complex algebra ACAR generated by

elements a1, a2, . . . , an,1, subject to the following canonical

anticommutation relations (CAR):

aia
∗
j + a∗jai = δij1, aiaj + ajai = 0. (3)

A C∗-norm on ACAR must (by definition) satisfy:

‖x∗x‖ = ‖x‖2. (4)

But (3) ⇒ (a∗i ai)
2 = a∗i ai

(4)⇒ ‖a∗i ai‖2 = ‖a∗i ai‖.

↪→ The only possible choice is ‖ai‖ = 1 ∀i ∈ {1, . . . , n}.
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The previous example can be generalized to the Hilbert space context, as

follows:

Let (H, 〈 , 〉) be a Hilbert space. For each pair u, v ∈ H, define

generators a(u), a(v) subject to the CAR relations:

{a(u), a(v)∗} = 〈u, v〉1, {a(u), a(v)} = 0.

Here, as well, there is a unique choice for ‖a(u)‖.

In this way we obtain a C∗-algebra, that we denote with: ACAR(H, 〈·, ·〉)

In the infinite-dimensional case, the choice of a polarization/complex

structure plays an important role for quantum field theory.

10



The previous example can be generalized to the Hilbert space context, as

follows:

Let (H, 〈 , 〉) be a Hilbert space. For each pair u, v ∈ H, define

generators a(u), a(v) subject to the CAR relations:

{a(u), a(v)∗} = 〈u, v〉1, {a(u), a(v)} = 0.

Here, as well, there is a unique choice for ‖a(u)‖.

In this way we obtain a C∗-algebra, that we denote with: ACAR(H, 〈·, ·〉)

In the infinite-dimensional case, the choice of a polarization/complex

structure plays an important role for quantum field theory.

10



Complex structures

• Consider a real vector space V with dimR(V ) = 2n.

• Let g(·, ·) be a positive, symmetric bilinear form on V and J an

orthogonal complex structure.

• Use J to construct a complexification of V , call it VJ ( 6= V C).

If we define an inner product in VJ by

〈u, v〉J := g(u, v) + ig(Ju, v), (5)

we obtain a complex Hilbert space (VJ , 〈·, ·〉J) with complex dimension n.
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• The (complex) Clifford algebra C`(V ) acts naturally on the exterior

algebra
∧• V C, but the resulting representation is not irreducible.

• But it is irreducible on FJ(V ) :=
∧• VJ .

• As Clifford and CAR algebras are closely related, we also obtain an

irreducible representation of ACAR(VJ , 〈·, ·〉J).

In this representation, creation and annihilation operators aJ(v) and

a†J(v) acting on FJ(V ) are given by:

a†J(v)(u1 ∧ · · · ∧ uk) = v ∧ u1 ∧ · · · ∧ uk, (6)

aJ(v)(u1 ∧ · · · ∧ uk) =

k∑
j=1

(−1)j−1 〈v, uj〉J u1 ∧ · · · ∧ ûj ∧ · · · ∧ uk,

for v ∈ V and u1, . . . , uk ∈ VJ .
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Defining

πJ(v) := a†J(v) + aJ(v), (7)

we obtain a representation of the (real) Clifford algebra C`(V ) on FJ(V ).

The vacuum in FJ(V ) can also be characterized as a gaussian state ωJ
with a two-point function given by

〈0J |aJ(u)a†J(v)|0J〉 ≡ ωJ(aJ(u)a†J(v)) = 〈u, v〉J . (8)

In fact, this representation can be obtained from ωJ (regarded as an

algebraic state) through the GNS construction.

Representations

A most important fact is the possibility (when dimV =∞) of having

inequivalent representations. A very useful characterization of the

vacuum state |0J〉 in the J-induced representation is obtained if we

extend all operators from V to V C, as explained below.
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The Clifford generators πJ(v), as well as the creation/annihilation

operators aJ(v)†, aJ(v) can be regarded as real linear maps from V to

L(FJ(V )). These can be extended to complex linear maps

π̃J , ãJ , ã
†
J : V C −→ L(FJ(V )), (9)

Since the complex structure on FJ(V ) is determined by J , we also have

(for v in V ):

a†J(Jv) = ia†J(v), aJ(Jv) = −iaJ(v). (10)

The minus sign can be traced back to equations (5) and (6) above.

Summarizing, we have the following important identities (v ∈ V ):

ã†J(iv) = ia†J(v) ≡ Ja†J(v), ãJ(iv) = iaJ(v) ≡ JaJ(v), (11)

a†J(Jv) = ia†J(v) ≡ Ja†J(v), aJ(Jv) = −iaJ(v) ≡ −JaJ(v). (12)
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Consider the linear extension of J to V C and define

P±J :=
1

2
(1∓ iJ), as well as W±J := P±J(V C). (13)

Then, using 〈〈w, z〉〉 := 2gC(w, z) as the inner product for V C, we obtain

W−J = W⊥J , so that

V C = WJ ⊕W⊥J . (14)

Furthermore, restricting 〈〈·, ·〉〉 to WJ , we obtain:

(VJ , 〈·, ·〉J) ∼= (WJ , 〈〈·, ·〉〉). (15)

Vacuum condition

It can be shown that the condition

π̃J(u)|0J〉 = 0 ⇐⇒ u ∈W⊥J , (16)

provides a full characterization of the vacuum |0J〉.
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The Shale-Stinespring theorem

Theorem (Shale-Stinespring)

Let J,K be two orthogonal complex structures. Then πJ and πK are

unitarily equivalent iff J −K is Hilbert-Schmidt.

• Any h ∈ O(V, g) can be decomposed into linear and antilinear parts:

h = ph + qh, ph := 1
2 (h− JhJ), qh := 1

2 (h+ JhJ) (17)

• OJ(V ) = {h ∈ O(V ) | [J, h] is Hilbert-Schmidt}

• Equivalence problem = implementability problem = cyclic vector s.t.(
aJ(phv) + a†J(qhv)

)
Φ = 0. (18)

Φ = u1 ∧ · · · ∧ un ∧ fG, (19)

with fG a gaussian and n = dim ker ph <∞.

16



(V, g, J), (VJ , 〈 , 〉J)

Irreducible representation of Cl(V ) on FJ =
∧•

VJ

Clifford generators πJ(v) = a†(v) + a(v)

Theorem (Shale-Stinespring)

Let h ∈ O(V, g) and put K ≡ hJh−1. Then, the following statements

are equivalent:

(i) The Bogoliubov automorphism θh is unitarily implementable.

(ii) The representation πJ and πK are unitarily equivalent.

(iii) K − J is a Hilbert-Schmidt operator.
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The Z2-index

Let h ∈ OJ(V ) and set Jh := hJh−1. Then, we get an index map

index : J −→ Z2

Jh 7−→ (−1)
1
2 dim ker(J+Jh). (20)

We will see below that this is precisely the topological Z2-index (Pfaffian

invariant) used in condensed matter physics.
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The Kitaev chain



Quadratic Hamiltonians

H =

N∑
i,j=1

[
a†iAijaj +

1

2

(
a†iBija

†
j − aiBijaj

)]
, (21)

H =
1

2
(a†, a)

(
A B

−B −A

)(
a

a†

)
+ constant. (22)
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Bogoliubov transformation

Introduce new operators

ck =

N∑
i=1

(
gkiai + hkia

†
i

)
, c†k =

N∑
i=1

(
ḡkia

†
i + h̄kiai

)
, (23)

where g and h are N ×N matrices to be chosen so that

(i) The new operators satisfy the same CAR algebra:

{ck, c†l } = δkl, {ck, cl} = 0 = {c†k, c
†
l }. (24)

(ii) The Hamiltonian becomes diagonal in the new basis:

H =
∑
k

Λkc
†
kck + constant. (25)

the requirement (24) leads to the following conditions:

gg† + hh† = 1N ,

ght + hgt = 0. (26)
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Consistency between the two expressions for H implies:

gki Λk =

N∑
j=1

(gkjAji − hkjBji) , hki Λk =

N∑
j=1

(gkjBji − hkjAji) .

(27)

In order to solve this eigenvalue problem, it proves convenient to

introduce new matrices Φ and Ψ, as follows:

Φ := g + h, Ψ := g − h.

If we now define for each k a vector |Φk〉, the ith component of which is

given by Φki, and similarly for Ψ, we find that (27) can be written as

follows:

(A−B)|Ψk〉 = Λk|Φk〉, (A+B)|Φk〉 = Λk|Ψk〉,
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Kitaev chain

H =

N∑
i=l

t(a†iai+1 + a†i+1ai) + ∆(a†ia
†
i+1 − aiai+1)− 2µa†iai. (28)
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Warm up: just one fermion

• V = Rn, with Euclidean metric.

• J : space of all orthogonal complex structures.

(Transitive) action of O(2m) on J : J 7→ hJh−1

⇒ J ∼= O(2m)/U(m)

• V = R2, g =

(
1 0

0 1

)
, J =

(
0 −1

1 0

)
⇒ J = O(2)/U(1) ∼= Z2.

O(2) 3 h =

(
cosα σ sinα

− sinα σ cosα

)
, σ = ±1.

hJh−1
σ = hJht = σJ, h ∈ U(VJ)⇔ [J, h] = 0⇔ σ = 1.

• h = 1
2 (h− JhJ) + 1

2 (h+ JhJ) ≡ ph + qh.

Z2-index

i(h) := dimC(ker ph) =

{
0, σ = 1,

1, σ = −1.
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u, v ∈ V : 〈u, v〉J := g(u, v) + ig(Ju, v), {a(u), a†(v)} = 〈u, v〉J

Initial vacuum:

a(v)|0〉 = 0, v ∈ V .

Bogoliubov transformation:

c(v) = a(phv) + a†(qhv).

Solve c(v)|Ω〉 = 0 (for all v ∈ V )...

What is |Ω〉?

σ = 1 ⇔ |Ω〉 = |0〉 ⇔ i(h) = 0

σ = −1 ⇔ |Ω〉 = a†1|0〉 ⇔ i(h) = 1

Parity of transformed vacuum gives the Z2-index
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2-site Kitaev chain

Let V = R4 with gE(·, ·) the standard Euclidean metric. For e1, . . . , e4

the standard basis vectors, introduce the following complex structure:

J =


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 (29)

Notice that we have e3 = Je1 and e4 = Je2. Consider now a two-site

Kitaev chain (OBC):

H = t(a†1a2 + a†2a1) + ∆(a†1a
†
2 − a1a2)− 2µ(a†1a1 + a†2a2). (30)

Introduce now the following parameters:

α =
√

∆2 + 4µ2, (31)

β± =
√

(α±∆)/(2α), (32)

σ = sgn(α− t). (33)
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The Bogoliubov transformation that diagonalizes H is induced by the

orthogonal transformation

h =

(
Φ 0

0 Ψ

)
, Φ =

(
β+ β−
−β− β+

)
, Ψ =

(
σβ− σβ+

−β+ β−

)
.

(34)

For the real maps ph, qh : V → V , expressed in block form, we find:

ph =

(
g 0

0 g

)
, qh =

(
f 0

0 −f

)
, (35)

where g = (1/2)(Φ + Ψ) and f = (1/2)(Φ−Ψ).

For the orthogonal complex structure we obtain:

Jh = hJhᵀ =
1√

∆2 + 4µ2


0 0 −2σµ ∆

0 0 −σ∆ −2µ

2σµ σ∆ 0 0

−∆ 2µ 0 0

 . (36)

The Z2-index is given by:

index(h) := (−1)
1
2 dim ker(J+Jh) = deth = σ. (37)
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t2 = ∆2 + 4µ2
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Classical 2D-Ising model



The Quantum-Classical mapping

Thermal expectation values of the classical model in dimension d+ 1

correspond to vacuum expectation values of a quantum system in

dimension d (transfer matrix formalism):

〈f〉β := tr(ρ̂Ôf,β), (38)

f is a classical observable, β = (kBT )−1, ρ̂ a density matrix and Ôf,β a

(quantum) observable associated to f .

For the 1D-classical Ising model, we have:

〈f〉β := Z−1
β

∑
{s}

f(s)e−βHΛ(s) = tr(ρ̂f̂) (39)

where Zβ =
∑
{s} e

−βHΛ(s), HΛ(s) = −J
∑
〈i,j〉Λ sisj , J > 0, and

ρ̂ = Z−1e−βĤq . The quantum Hamiltonian obtained by this operation is:

Hq = − 1
2ξσx. (40)
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Algebraic approach

For d=2, the mapping gives rise to the 1-dimensional quantum Ising

chain:

Hλ = −
∑
j

σjxσ
j+1
x − λ

∑
j

σjz (41)

• Using the Jordan-Wigner transformation, we can describe this

system by means of a quadratic fermionic Hamiltonian.

• Araki and Matsui have shown (1980s) that the classical phase

transition can be characterized in terms of equivalence classes of

representations.

• Going through their (very technical) proof, one recognizes that the

same index discussed today is present in this case (Tabban, Sequera,

AFRL).

• Extension to the quantum-critical region (work in progress).
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Z2-action

• An automorphism of A is an invertible linear map θ : A→ A

satisfying

θ(ab) = θ(a)θ(b), θ(a∗) = θ(a)∗ (42)

• A Z2-action on A is an automorphism θ : A→ A with θ2 = I. An

algebra A carrying a Z2-action decomposes as:

A = A+ +A−, A± = {a ∈ A | θ(a) = ±a} (43)

Example: Let u = H → H be a unitary operator u2 = 1, A = B(H)

, then

θ(a) = uau∗ (44)

defines a Z2 action on A, so A± = {a ∈ A | au∓ ua = 0}



Pauli and Fermionic algebras

• IL = [−L,L], L ∈ Z+

• Pauli Algebra APL '
⊗

IL
M2 generated by

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, σ0 ≡ I

(45)

• Fermionic Algebra AFL ' ACAR
(
l2(IL)

)
generated by

{ai, a∗j} = δij , {ai, aj} = 0 = {a∗i a∗j} (46)

• Let θ be a Z2-action such that for i ∈ IL

θ(σix) = −σix, θ(σiy) = −σiy, θ(σiz) = σiz, AP = AP+ +AP−
θ(ai) = −ai, AF = AF+ +AF−

(47)



Jordan-Wigner transformation

The JWT is an isomorphism αL : APL → AFL ( L <∞)

σjx = TSj(aj + a∗j ), σjy = iTSj(aj − a∗j ), σjz = 1− 2a∗jaj (48)

where T =
∏0
k=−L σ

k
z and TSj =

∏j−1
k=−L σ

k
z . Since the tail T depends

on L, the diagram is not commutative

APL
−−−→αL AFL⋂ ⋂

APL+1
−−−→αL+1 AFL+1

(49)

APL+ is generated by σiz and σjxσ
j+1
x , since T 2 = 1, the restriction of αL

to the even subalgebra is not L-dependent, so limL→∞ αL|AP
L+

gives an

isomorphism of AP+ with AF+.



Local observables and ground state

• Hilbert space by site H = C2

• H(Λ) =
⊗

x∈ΛHx, (dimH(Λ) =
(
dimH

)|Λ|
)

• Local observables A(Λ) = B(H(Λ)), Λ ⊂ Λ′ ⇒ A(Λ) ↪→ A(Λ′)

• Heisenberg equation:

da(t)

dt
= i[HΛ, a(t)] (50)

Setting t = 0, this defines a derivation

δΛ : A(Λ) → A(Λ)

a 7→ δΛ(a) = i[HΛ, a]
(51)

• For each a ∈ A(Λ), δ(a) = i limΛ↑Zd [HΛ, a] exists.

• A ground state is a state ω0 : A→ Λ such that

−iω0(a∗δ(a)) ≥ 0, ∀a ∈ A (52)

• An even state on AP or AF is one which is invariant under θ.



• Let ω : A→ C be a state on a C∗-algebra A. There exists a cyclic

representation πω of A on a Hilbert space Hω with cyclic unit vector

Ωω such that

ω(a) = 〈Ωω, πω(a)Ωω〉, ∀a ∈ A (53)

• The GNS representation πω(A) is irreducible iff ω is pure.

• Let (Hω, πω,Ωω) be the GNS triple of ω : A→ C, due to

θ-invariance of ω

Hω = H+ ⊕H−, H± = πω(A±)Ωω (54)

• Suppose A carries a Z2-action θ and consider a state ω : A→ C
that is Z2-invariant in the sense that ω

(
θ(a)

)
= ω(a) for all a ∈ A.

We write this as θ∗ω = ω, with θ∗ω := ω ◦ θ. Then there is a

unitary operator u : Hω → Hω satisfacing u2 = 1, uΩ = Ω and

uπω(a)u∗ = πω
(
θ(a)

)
for each a ∈ A.

• A symmetry θ : A→ A is implementable in an Hilbert space H iff

there is an unitary operator U such that:

Uπ(a)U∗ = π(θa),∀a ∈ A (55)



Consider the fermionic algebra A = Span{a∗, a, a∗a, I} ∼= M2(C), in

terms of Pauli matrices σ± = σx ± iσy, a = σ−, a∗ = σ+. The Z2 action

can be implemented by the unitary σz, so A+ = Span{a∗a, I} and

A− = Span{a∗, a}, then:

A+ =

{(
z+ 0

0 z−

)
, z± ∈ C

}
; A− =

{(
0 z1

z2 0

)
, z1, z2 ∈ C

}
(56)

• Ω = (1, 0), ω(a) := 〈Ω, aΩ〉, σzΩ = Ω.

• πω(A) is the defining representations of M2(C) on Hω = C2,

Ωω = Ω.

• H+ = {(z, 0), z ∈ C} and H− = {(0, z), z ∈ C}.
• Let π± be the restriction of πω(A+) to H±

π±

(
z+ 0

0 z−

)
= z± (57)



Theorem

Suppose A carries a Z2-action θ as well as a Z2-invariant state

ω : A→ C. suppose the representation π+(A+) on H+ is irreducible.

Then also the representation π−(A+) on H− is irreducible, and there are

the following two possibilities for the representation πω(A) on

H = H+ ⊕H−

• πω(A) is irreducible (and hence ω is pure) iff π±(A+) are

inequivalent;

• πω(A) is reducible (and hence ω is mixed) iff π±(A+) are equivalent.



Self-dual formalism

Diagonalization of quadratic Hamiltonians:

• K = H ⊕H
• We have two conjugations: S : H → H, S∗ = S, S2 = 1 and

Γ : K → K

• B(h) = a∗(f) + a(Sg)

• B∗(h) = B(h)∗ = B(Γh)

Theorem

There is a bijective correspondence between basis projections P : K → K

(ΓPΓ = 1− P ) and states ωP on AF that satisfy

ωP (B(h)∗B(h)) = 〈h | Ph〉, ∀h ∈ K (58)

Such a state (quasi-free) ωP is pure (so that the corresponding GNS

representation πP is irreducible).



Hλ = −
∑
j

σjxσ
j+1
x − λ

∑
j

σjz, (59)

• For each |λ| 6= 1 we have πωF
0

(AF ) ∼= πθ∗−ωF
0

(AF ) which implies, the

ground state ωP0 is pure on AP .

• Let W− : K → K be the Z2-action on K defining the Z2-action θ−
on AF and let E+ be the projection onto the positive energy space

for HSD in K, then

πωF
0

= πE+

πθ∗−ωF
0

= πW−E+W−

(60)



Theorem (Araki-Matsui)

The unique Z2-invariant ground state ω0 of the Hamiltonian of the Ising

model is pure (and hence forms the unique ground state) iff both of the

following hold

1. E+ −W−E+W− ∈ B2(K);

2. dim(E+K ∩ (1−W−E+W−)K) is even

• Z2-index between two basis projections E1, E2

σ(E1, E2) = (−1)dimE1∩(1−E2) (61)

• For the Ising model

σ
(
E+, (1−W−E+W−)

)
=

{
+1, |λ| ≥ 1 ω0 is pure

−1, |λ| < 1 ω0 = 1
2 (ω+

0 + ω−0 )

(62)

where ω±0 are pure and transform under the Z2-action θ as

ω±0 ◦ θ = ω∓0
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