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Review of YM Theory

@ What are the physical states of QCD?

@ Wide implications: confinement, chiral symmetry breaking, color
superconductivity, . . ..

@ Recall that the SU(N) Yang-Mills action is
S = —2192 / d*x Tr F, F*Y,  F, = 0,A, — 0,A, + [AL A
A, = ATA TH(TeTP) = %5319, ab=1,--N°—1.
@ The gauge symmetry

u-A, = UAuTt v udut, u(x) € SUN)

is actually a redundancy, and needs to be fixed.
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Pure Yang-Mills Theory

Groups(s) of Gauge Transformations

@ Our interest is in YM theory on S® x R (secretly R3 x R).

@ Temporal gauge Ay = 0. The configuration space is based on
Ai(x) = AZ(x)T2.
@ Group of all gauge transformations:

G={u:R3—= SUN) | u(F) = Us € SU(N) as |F| — oo}

@ Group of asymptotically trivial gauge transformations:

G® ={u:R3—= SU(N) | u(f) = 1 as |F| = oo}

@ Group Gg° of asymptotically and topologically trivial gauge
transformations: this is the connected component of G*.
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Gauge Transformations

@ Both G and Gg° are normal subgroups of G.

@ Gauss law (9,E; + [A;, Ej] = D;E; =~ 0) generates Gg°.

@ Infact G=°/Gg° = m3(SU(N)) = Z.

@ Representations of this Z > n — e give the QCD 6-states.
@ The color group is G/G>* = SU(N).

@ The configuration space C for local observables is .A/G.

@ This bundle is twisted.
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Case of SU(2)

@ The key idea: Narasimhan-Ramadas on SU(2) YM theory on
S x R.

@ Their aim: prove rigorously that G5° — A — A/Gg° is twisted.
@ They consider a special subset of left-invariant connections

w=i(Trru~'du)My7;, ue SU2),M € My(R) = M.

@ This connection is pulled back to spatial S® using S® — SU(2).
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Case of SU(2)

@ All such w’s are preserved under global SU(2) adjoint action
w — vwv~ 1, or, equivalently, M — MRT. (R s in image of v in
SO(3).
@ The action of SO(3) on My is free for all matrices with rank 2 or 3.
@ This gives a fibre bundle SO(3) — Mg — M;y/SO(3).

@ Narasimhan-Ramadas show that this bundle is twisted, and hence
the full gauge bundle is also twisted.

@ The matrix model for SU(2) comes from this matrix M,.
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Case of SU(3)
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Case of SU(3)

@ Start with the left-invariant one-form on SU(3):

Q=T <2u1 du) Maphp, U € SU(3).

@ Here M is a 8 x 8 real matrix.
@ Map the spatial S? diffeomorphically to SU(2) ¢ SU(3).

@ X; = vector fields for right action on SU(3) representing ;
(i=1,2,3), then [X;, Xj] = iejuXk-

° QX)) = —Mp%.
@ This gives us the gauge potential A; = —iM,-b%.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 8/30



SU(3) Yang-Mills

@ The M’s parametrize a submanifold of connections A.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 9/30



SU(3) Yang-Mills

@ The M’s parametrize a submanifold of connections A.

@ They have no spatial dependence: we have completely
gauge-fixed the "small" gauge transformations.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 9/30



SU(3) Yang-Mills

@ The M’s parametrize a submanifold of connections A.

@ They have no spatial dependence: we have completely
gauge-fixed the "small" gauge transformations.

@ Only the global transformations are left — the ones responsible for
the Gribov problem.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 9/30



SU(3) Yang-Mills

@ The M’s parametrize a submanifold of connections A.

@ They have no spatial dependence: we have completely
gauge-fixed the "small" gauge transformations.

@ Only the global transformations are left — the ones responsible for
the Gribov problem.

@ Global color SU(3) acts on the vector potential:
A — hAh', or M— M(Adh)T, he SU@3)

@ For SU(3), the M’s are 3 x 8 matrices.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 9/30



SU(3) Yang-Mills

@ The M’s parametrize a submanifold of connections A.

@ They have no spatial dependence: we have completely
gauge-fixed the "small" gauge transformations.

@ Only the global transformations are left — the ones responsible for
the Gribov problem.

@ Global color SU(3) acts on the vector potential:
A — hAh', or M— M(Adh)T, he SU@3)

@ For SU(3), the M’s are 3 x 8 matrices.
@ The space M /Ad SU(3) is twisted.
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Configuration space of SU(3) YM Matrix Model

@ The configuration space C for pure SU(3) is M3 g(R)/Ad SU(3).
@ This space has dimension 3.8 — 8 = 16 (not so at fixed points).

@ Wavefunctions are sections of vector bundles on C that transform
according to representations of Ad SU(N).

@ Those transforming according to the trivial representation are
colorless, which those transforming nontrivially are coloured.
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Quantization and Spectrum of YM Matrix Model

Quantization of the Matrix Model

@ Recall that the YM Hamiltonian is

1 1
H = 2/d3xTr (ng,-E,- + gzl—',-]?) :

@ For the matrix model, M, are the dynamical variables, and the
(Legendre transform of) 2z as the conjugate of M.

@ We identify this conjugate operator as the matrix model
chormoelectric field Ej,.

@ Quantisation: [Mjz, Ejp] = i6;j0ap.
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@ The matrix model Hamiltonian is
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1
H=%r
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2
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Quantization and Spectrum of YM Matrix Model

Quantization of the Matrix Model

@ The matrix model Hamiltonian is

1 (9%EiEp 1 g 92
H_R( SR V(M) ) = & —?iaa—%+V(M)

@ The overall factor of R comes from dimensional analysis.

@ The Gauss’ law constraint: [Ga, O] = [fapcMipEic, O] = 0 for all
observables O.

@ The physical states |1ppnys) are given by Ga|vpnys) = 0.
@ The Hilbert space has scalar product

(1,92) :/HdMia 1 (M)a(M).

i,a
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Spectrum of H
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@ The interaction has a cubic term and a quartic term.
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@ The interaction has a cubic term and a quartic term.
@ The potential grows quartically, and is smooth everywhere.
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@ We cannot treat the cubic + quartic terms as a perturbation,
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Spectrum of H

@ H=Hy+ lRth(M) = lFe <_%gj\/lfa + %MiaMia) +
% (-%eijk fabe MiaMjp M + %ZfabcfadeMichMidMe>
@ The interaction has a cubic term and a quartic term.
@ The potential grows quartically, and is smooth everywhere.
@ The spectrum is discrete.

@ We cannot treat the cubic + quartic terms as a perturbation,
because the perturbation series is non-analytic at g = 0.

@ We estimate the energies by variational calculation instead.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 13/30



Zero-point Energy

@ The H only accounts for the classical zero-mode sector of the full
theory.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 14/30



Zero-point Energy

@ The H only accounts for the classical zero-mode sector of the full
theory.

@ The full QFT contributes an extra constant to the energy.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 14/30



Zero-point Energy

@ The H only accounts for the classical zero-mode sector of the full
theory.

@ The full QFT contributes an extra constant to the energy.

@ It comes from zero-point energy of all the higher, spatially
dependent modes.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 14/30



Zero-point Energy

@ The H only accounts for the classical zero-mode sector of the full
theory.

@ The full QFT contributes an extra constant to the energy.

@ It comes from zero-point energy of all the higher, spatially
dependent modes.

@ We can account for this by working with
c(R)

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 14/30



Zero-point Energy

@ The H only accounts for the classical zero-mode sector of the full
theory.

@ The full QFT contributes an extra constant to the energy.

@ It comes from zero-point energy of all the higher, spatially
dependent modes.

@ We can account for this by working with

@ The R-dependence of ¢ comes from renormalization .

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 14/30



Zero-point Energy

@ The H only accounts for the classical zero-mode sector of the full
theory.

@ The full QFT contributes an extra constant to the energy.

@ It comes from zero-point energy of all the higher, spatially
dependent modes.

@ We can account for this by working with
c(R)

@ The R-dependence of ¢ comes from renormalization .
@ We henceforth work with this Hamiltonian.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 14/30



Variation Estimate of Energies

Variational Computational Scheme

@ Trial wavefunctions are linear combinations of eigenstates of Hp.
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Variation Estimate of Energies

Variational Computational Scheme

@ Trial wavefunctions are linear combinations of eigenstates of Hp.

@ Angular momentum (L; = €jxMjaExz) commutes with the
Hamiltonian.

@ Organize the eigenstates and energies by their spins s.

@ We consider 16 variational states with spin-0, 10 triplets with
spin-1, and 18 quintuplets with spin-2.

@ Express the cubic and quartic interaction terms in terms of the
creation/annihilation operators.

@ Compute the variational Hamiltonian matrix FI,-/- = (Yi|H1pj).

@ Then obtain the eigenvalues of H numerically.
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Parity P and Charge Conjugation C

@ We need to assign P and C to the variational eigenstates.
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@ We need to assign P and C to the variational eigenstates.
@ Under C: MjgTy — M T;.
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@ We need to assign P and C to the variational eigenstates.
@ Under C: MjgTy — M T;.
@ Cis a good symmetry of H and can be assigned unambiguously.

@ P poses a slight problem, because P : M;; — —M;,, but the cubic
term in H flips in sign under P.

@ In the large R limit, the expectation value of P in a variational
eigenstate asymptotes to +1.
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Parity P and Charge Conjugation C

We need to assign P and C to the variational eigenstates.
Under C: Mg Ty — M T3,
C is a good symmetry of H and can be assigned unambiguously.

P poses a slight problem, because P : M;; — —Mj,, but the cubic
term in H flips in sign under P.

@ In the large R limit, the expectation value of P in a variational
eigenstate asymptotes to +1.

@ So P can be assigned in the "flat space" limit.
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The large R limit

(s)
@ For a given s, the energies are of the form &£,[s] = Mgc(ﬁ),
measured in units of R~
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The large R limit

(s)
@ For a given s, the energies are of the form &£,[s] = MJC(R),

measured in units of R~1.
@ Neither R nor the bare coupling g are directly measurable.
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The large R limit

@ For a given s, the energies are of the form &,[s] = MJC(R),
measured in units of R~.

Neither R nor the bare coupling g are directly measurable.
Energy differences depend on g and R, but not on c.

Ratios of energy differences depend only on g.

For fixed g, all the £,[s] vanish in the ‘flat space” limit R — oco. (an
analogous situation occurs in lattice computations as well).
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The large R limit

For a given s, the energies are of the form &,[s] = MJC(R),
measured in units of R~.

Neither R nor the bare coupling g are directly measurable.
Energy differences depend on g and R, but not on c.

Ratios of energy differences depend only on g.

For fixed g, all the £,[s] vanish in the ‘flat space” limit R — oco. (an
analogous situation occurs in lattice computations as well).

But masses of physical particles must be computed in this limit!

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 17/30



Mass Difference Ratios

@ Ratios of mass differences are independent of both x(g) and ¢(x).

g
/-

0 5 10 15 20 25
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Variation Estimate of Energies

Mass Difference Ratios

@ Ratios of mass differences are independent of both x(g) and ¢(x).

- " EX)—€(0FT ) . )

Ratios of mass differences W as a function of g. (The black, blue and red curves represent spin-0, spin-1 and
spin-2 levels respectively.)

4 L

3 L

ﬁ
2 L
1 Vf
0 5 10 15 20 25
v

@ X(JPC) =2++ 0=+, 2=+ 0"+ 1+— 2¢+ 1~ 0+ 2. w
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Variation Estimate of Energies

Integrated Renormalization Group Equation

@ To get meaningful results, make g a function of R such that all
energies have well-defined (and non-zero) values at R = .
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Integrated Renormalization Group Equation

@ To get meaningful results, make g a function of R such that all
energies have well-defined (and non-zero) values at R = .

@ Measure the energies in some other units (like, say, MeV), not in
units of 1/R.

@ The radius of S% is now x = R// in these units.
(s)
@ Then &y[s] = <an(9) + C(X)> 1

X A
@ Make g = g(x) by fixing &[2] — &[0] to the observed (lattice)
value.
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Integrated Renormalization Group Equation

@ To get meaningful results, make g a function of R such that all
energies have well-defined (and non-zero) values at R = .

@ Measure the energies in some other units (like, say, MeV), not in
units of 1/R.

@ The radius of S% is now x = R// in these units.
(s)
@ Then &y[s] = <an(9) + 0(X)> 1

X A
@ Make g = g(x) by fixing &[2] — &[0] to the observed (lattice)
value.
@ This is our integrated renormalization group equation g(x).
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Variation Estimate of Energies

Integrated Renormalization Group Equation

@ In practice it is easier to make x(g) = %

x(g) versus g.

0 5 10 15 20 25

@ Here we have used m(2t+) — m(0**) = 460 MeV.
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Comparison with Lattice Data

@ Actual numerical values of masses also need asymptotic c(x)/x.
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@ Actual numerical values of masses also need asymptotic c(x)/x.

@ To fix this, demand that the physical mass of our lowest glueball
be fixed to be within the range predicted by lattice simulations
(1580 — 1840 MeV).
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Comparison with Lattice Data

@ Actual numerical values of masses also need asymptotic c(x)/x.

@ To fix this, demand that the physical mass of our lowest glueball
be fixed to be within the range predicted by lattice simulations
(1580 — 1840 MeV).

@ Choosing 1050 MeV for asymptotic c(x)/x, we get the best fit with
lattice predictions.
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Comparison with Lattice Data

Gilueball Physical masses Physical masses
states from matrix model from lattice QCD
JPC (MeV) (MeV)
@ 1757.081 1580 - 1840
ot 2257.08" 2240 - 2540
o—+ 2681.45 2405 - 2715
oxtt 3180.82 2360 - 2980
1= 3235.41 2810 - 3150
2=+ 3054.97 2850 - 3230
(s 3568.02 3400 - 3880
1= 3535.66 3600 - 4060
= 3435.75 3660 - 4120
2=~ 4050.14 3765 - 4255

f = (input)
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Comparison with Lattice Data

Glueball Masses (MeV)

3500 ! i f :

2500 i ? *

1500+ !

O-II-+ 2-I++ 0'_+ 0*I++ 1-;-— 2I—+ O*I—+ 1‘—— 2*I—+ 2‘——

M = Lattice e = Matrix Model. 0*F and 2™ are used in Matrix Model input.
For 0**, lattice has poor statistics near the continuum limit, so finite volume
effects are substantial.

For 2%+, lattice has large errors due to the presence of two other glueball
states in the vicinity.
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Comparison with Lattice Data

Summary

@ A natural reduction of SU(N) YM on S® x R to a matrix model.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 24 /30



Comparison with Lattice Data

Summary

@ A natural reduction of SU(N) YM on S® x R to a matrix model.

@ It captures the non-trivial topological character of the full gauge
bundle.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 24 /30



Comparison with Lattice Data

Summary

@ A natural reduction of SU(N) YM on S® x R to a matrix model.

@ It captures the non-trivial topological character of the full gauge
bundle.

@ The matrix model based on M p2_4(R).

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 24 /30



Comparison with Lattice Data

Summary

@ A natural reduction of SU(N) YM on S® x R to a matrix model.

@ It captures the non-trivial topological character of the full gauge
bundle.

@ The matrix model based on M p2_4(R).

@ The canonical quantisation can be carried out, and the spectrum
of the full Hamiltonian can be estimated variationally.

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 24 /30



Comparison with Lattice Data

Summary

@ A natural reduction of SU(N) YM on S® x R to a matrix model.
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Comparison with Lattice Data

Summary

@ A natural reduction of SU(N) YM on S® x R to a matrix model.

@ It captures the non-trivial topological character of the full gauge
bundle.

@ The matrix model based on M p2_4(R).

@ The canonical quantisation can be carried out, and the spectrum
of the full Hamiltonian can be estimated variationally.

@ Inthe large R limit, the eigenvalues tend to non-trivial asymptotic
values provided g(R) is chosen appropriately (our RG
prescription).

@ THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE
PREDICTIONS FOR GLUEBALL MASSES.
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Ongoing Work and Outlook

@ Investigate the glueball spectrum for SU(4), SU(5), SU(6), - - - .
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hadrons.
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Ongoing Work and Outlook

@ Investigate the glueball spectrum for SU(4), SU(5), SU(6), - - - .

@ Include fermions (quarks), and try to get the masses of light
hadrons.

@ Include the 8-term, and compute topological susceptibility ;.
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Ongoing Work and Outlook

@ Investigate the glueball spectrum for SU(4), SU(5), SU(6), - - - .

@ Include fermions (quarks), and try to get the masses of light
hadrons.

@ Include the 6-term, and compute topological susceptibility ;.
@ Relation between y; and the mass of 7.

A much deeper puzzle: why does this model work so well?
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Comparison with Lattice Data

This is joint work with

@ Nirmalendu Acharyya, AP Balachandran, Mahul Pandey and
Sambuddha Sanyal
arXiv:1606.08711
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Comparison with Lattice Data

This is joint work with

@ Nirmalendu Acharyya, AP Balachandran, Mahul Pandey and
Sambuddha Sanyal
arXiv:1606.08711

@ Lattice data is taken from
Morningstar and Peardon, Phys. Rev D 56, 4043 (1997);
Chen et al Phys. Rev D. 73 014516 (2006).

S. Vaidya (lISc/Pl) MatrixYM, Glueballs, Mass Spectrum Dublin, Jan 2018 26/30



Variational States
o

1 o 1 15}
o ' T ) AT = 5.8,
Aa = 75 (M‘a " W) BRI (M'a B aM,) = Wi Apl = 5
M m)
@ The oscillator vacuum is (M|0) = %e 2
7r
@ Spin-0:
l49) = 10)
[v9) = ALALI0)

‘wg> = €ijkfabcALA,LAIC|0>

[49) = ALALA;Q)A};\O)

1¥8) = ALALALALIO)

W’g> = dabedcdeA,'a’4‘1'427’4/‘?(:'4;1I0>

[09) = eifancALALALALALI0)

[48) = €jifabcday by edagce"‘;t—/‘fb"‘za1 AZH AITaZ 10)
14§) = ALALALALAL AL 10)

1990) = ALALALALALALI0)

1¥31) = cikemnALALALAT AL AL |0) ,
[fs) = €ijyky fay by oy €ipinky fazbzczAl: ay A/'T1 by AL c1 AszazAffzbzA‘tzcz 10)
W’?a) = dabcddelALALA;;A;eAltcAZf‘0>
W’?4> = db1 cq ddbgz:gdALALA/;ﬁ A/‘Tc1 A}sz AZCZ

l05) = €irj1ky Tay by of Ciplpho Tapbpop ey 0y edczdzeAi:_ra A/: by AL dy A’LazAfzbzA’tzdz 1)

0y _ T oAl Al T
‘11’16) = dabcdad1 = dadzez dada e3 A,'d1 A,'e1 Ajd2 Aj92 Akd3 Akea |0)

10)

@ 1, and dgp are the structure constants of SU(3).
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Variational States

Spin-1

1
1]} = dancALALALI0)

1y ToAl Al AT
[hg) = 6/kldab1 cq fabzcz A,'b Ajc1 Akb2 A102 10)

) = daceALA,X,A,LAlCAie\°>
‘ 1/"1 )= daceAiIJAlengchlte 10)
148) = daceALALALAL AL, 0)
W’é) = abcfbc1 by fc02b1 A;A;;;1 Ach1 Alt AICZ 10)

lp3) = E/k/dabcfadeALA/LAldAfeA,‘: ag Py a,19)

\’»Dé) = €jk/d.exb1 ¢ faazbzA;ra1 Ai]; a A:: by A}:,*1 AZaz AILZ 10)
W’;) = €ijk dab1 cq daa2b2 Aja1 A,: a4 A:: by Altq AIT«:{ ALZ 10)
[edo) = €ikOaby o fobpey A,t by AZ ¢ A};ALA;;JQ Ayg, 10)
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Variational States

Spin-2
2
w5 = (A,t,A,;T ‘6;,A,1,f;)|0> o
1
|1ZJ2> r1 a1 A¢1 aq (AiazAjaz — 3% agA/zaz)‘())

_ T T 1 + +
[v5) = (AL iaq /1a1 b A/b1 -3 ’IA/a1 A/1a1 A/1b1 /b1)‘0>
l45) = Cate oo 1 bAL JALAL — §6ALAL)(0)

v8) = Al Al <ALA,2 §8i45AL10)

vg) = fdabc<e,k/A,a1 Al + <AL Al )A,LA;[,AT 1)

[93) = *dabc(élk/A/a + ejklAL)A[I(bA}'a1 A;wa1 c|0)

st> 6klm"abcdda1add.':izbz’qza ATAT (AT AT - 16UA,232 12b2)|0>
[43) = r1a1 ALa1 A,TzazA,’fZaz(A;A; 15 A A,a)\o>

|¢10> - /J;a1 A/:a1 A/sza /sza (A ITaA/Ta 1‘SUAIJ['iAITa”O)

[451) = daby ey dabzcz ,ﬂAi cer,*z,,%A,Tch( LAL — 1&,A,L,A,c.{)|0>

Al Al oAl il
|w12> I1a1 I1a1( /a 12a IQb% jb2 - /a 12a2Al2b2 Ibz)m>

T AT
[$3) _daazbzdaczezAr1a1 «131 /232 /2b2(Au:2A/d2 6 Ay A/dz)m)

|w14> = z(elk/AijAIb + EjklA,J[,Akb)fmnpdam cq fbbzczA/J[,1 Agwq nby pc2 10)

2y _ toat At At tal AT ATY - 15.AT
%) = daby o Aabycp A, Ay AmeAmoZ( (ALAL + ALAL) — 5,,A,62A,02)\0>

AT At At t tat _ 15.af Al
[45) = daby c, dbbycy ,1aA,1bAhbJrAhc (ALAL — §6;ALAL)I0)
T tat
|w17> = daagbg dng a1 a A11 ap A/1 by Aj1 co (AIaA/b ‘;UAIaAIb)‘())

Af T T il oAl 1 I
|w13> = dab1 cq daazbz fbbzcz i by Ai1 ¢ Aizc2 Ai2d2 (Ala2 A/e2 6‘/Alaz Iez)|O>
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Variational States

New ldentities

We discovered some (new?) identities involving 3 x 8 matrices:

Tr(M"MD,MTMD,) = —%Tr(MTMDa)Tr(MTMDa)

+ g Tr(MTMM™ M) + %Tr(MTM)z

"
i fabcMiaMip(MMT M) = gely'kfabcMia/VIijkc Tr(M™M)

Where (Da)bc = dabc.
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