# The Low-Energy Spectrum of Quantum Yang-Mills from Gauge Matrix Model

Sachindeo Vaidya

Centre for High Energy Physics, Indian Institute of Science, Bangalore, India

Quantum Physics: Fields, Particles and Information Geometry Dublin Institute for Advanced Studies, Dublin 22 January 2018



#### Pure Yang-Mills Theory

- A New Matrix Model for Yang-Mills
- 3 Quantization and Spectrum of YM Matrix Model
- 4 Variation Estimate of Energies
- 5 Comparison with Lattice Data

< 回 > < 回 > < 回 >

- 🚺 Pu
  - Pure Yang-Mills Theory
- 2
- A New Matrix Model for Yang-Mills
- Quantization and Spectrum of YM Matrix Model
- 4 Variation Estimate of Energies
- 5 Comparison with Lattice Data

< 回 > < 回 > < 回 >

- 1
- Pure Yang-Mills Theory
- A New Matrix Model for Yang-Mills
- 3 Quantization and Spectrum of YM Matrix Model
- 4 Variation Estimate of Energies
- 5 Comparison with Lattice Data

★ ∃ > < ∃ >

A .

- 1
- Pure Yang-Mills Theory
- A New Matrix Model for Yang-Mills
- Quantization and Spectrum of YM Matrix Model
- 4 Variation Estimate of Energies
- 5 Comparison with Lattice Data

3 + 4 = +

A .

- 1
- Pure Yang-Mills Theory
- 2 A New Matrix Model for Yang-Mills
- Quantization and Spectrum of YM Matrix Model
- Variation Estimate of Energies
- 5 Comparison with Lattice Data

The Sec. 74

#### What are the physical states of QCD?

- Wide implications: confinement, chiral symmetry breaking, color superconductivity, ....
- Recall that the SU(N) Yang-Mills action is

$$S = -\frac{1}{2g^2} \int d^4 x \operatorname{Tr} F_{\mu\nu} F^{\mu\nu}, \quad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu}, A_{\nu}]$$
$$A_{\mu} = A_{\mu}^a T^a, \quad \operatorname{Tr}(T^a T^b) = \frac{1}{2} \delta^{ab}, \quad a, b = 1, \cdots N^2 - 1.$$

• The gauge symmetry

$$u \cdot A_{\mu} \mapsto uA_{\mu}u^{-1} + u\partial_{\mu}u^{-1}, \quad u(x) \in SU(N)$$

is actually a redundancy, and needs to be fixed.



MatrixYM, Glueballs, Mass Spectrum

э

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity, ....
- Recall that the SU(N) Yang-Mills action is

$$S = -\frac{1}{2g^2} \int d^4 x \operatorname{Tr} F_{\mu\nu} F^{\mu\nu}, \quad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu}, A_{\nu}]$$
$$A_{\mu} = A_{\mu}^a T^a, \quad \operatorname{Tr}(T^a T^b) = \frac{1}{2} \delta^{ab}, \quad a, b = 1, \cdots N^2 - 1.$$

• The gauge symmetry

$$u \cdot A_{\mu} \mapsto uA_{\mu}u^{-1} + u\partial_{\mu}u^{-1}, \quad u(x) \in SU(N)$$

is actually a redundancy, and needs to be fixed.



MatrixYM, Glueballs, Mass Spectrum

Image: A mathematical strength of the stren

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity, ....
- Recall that the SU(N) Yang-Mills action is

$$S = -\frac{1}{2g^2} \int d^4 x \operatorname{Tr} F_{\mu\nu} F^{\mu\nu}, \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$$
$$A_\mu = A^a_\mu T^a, \quad \operatorname{Tr}(T^a T^b) = \frac{1}{2} \delta^{ab}, \quad a, b = 1, \dots N^2 - 1.$$

• The gauge symmetry

$$u \cdot A_{\mu} \mapsto u A_{\mu} u^{-1} + u \partial_{\mu} u^{-1}, \quad u(x) \in SU(N)$$

is actually a redundancy, and needs to be fixed.



MatrixYM, Glueballs, Mass Spectrum

Image: A matrix

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity, ....
- Recall that the SU(N) Yang-Mills action is

$$S = -\frac{1}{2g^2} \int d^4 x \operatorname{Tr} F_{\mu\nu} F^{\mu\nu}, \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$$
$$A_\mu = A^a_\mu T^a, \quad \operatorname{Tr}(T^a T^b) = \frac{1}{2} \delta^{ab}, \quad a, b = 1, \cdots N^2 - 1.$$

The gauge symmetry

$$u \cdot A_{\mu} \mapsto uA_{\mu}u^{-1} + u\partial_{\mu}u^{-1}, \quad u(x) \in SU(N)$$

is actually a redundancy, and needs to be fixed



- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity, ....
- Recall that the SU(N) Yang-Mills action is

$$S = -\frac{1}{2g^2} \int d^4 x \operatorname{Tr} F_{\mu\nu} F^{\mu\nu}, \quad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu}, A_{\nu}]$$
$$A_{\mu} = A_{\mu}^a T^a, \quad \operatorname{Tr}(T^a T^b) = \frac{1}{2} \delta^{ab}, \quad a, b = 1, \dots N^2 - 1.$$

The gauge symmetry

$$u \cdot A_{\mu} \mapsto uA_{\mu}u^{-1} + u\partial_{\mu}u^{-1}, \quad u(x) \in SU(N)$$

is actually a redundancy, and needs to be fixed.



- Our interest is in YM theory on  $S^3 \times \mathbb{R}$  (secretly  $\mathbb{R}^3 \times \mathbb{R}$ ).
- Temporal gauge  $A_0 = 0$ . The configuration space is based on  $A_i(x) = A_i^a(x)T^a$ .
- Group of all gauge transformations:

$$\mathcal{G} \equiv \{ u : \mathbb{R}^3 
ightarrow SU(N) \mid u(\vec{r}) 
ightarrow u_\infty \in SU(N) ext{ as } |\vec{r}| 
ightarrow \infty \}$$

• Group of asymptotically trivial gauge transformations:

$$\mathcal{G}^{\infty} \equiv \{ u : \mathbb{R}^3 \to SU(N) \mid u(\vec{r}) \to 1 \text{ as } |\vec{r}| \to \infty \}$$

 Group G<sub>0</sub><sup>∞</sup> of asymptotically and topologically trivial gauge transformations: this is the connected component of G<sup>∞</sup>.



- Our interest is in YM theory on  $S^3 \times \mathbb{R}$  (secretly  $\mathbb{R}^3 \times \mathbb{R}$ ).
- Temporal gauge  $A_0 = 0$ . The configuration space is based on  $A_i(x) = A_i^a(x)T^a$ .

• Group of all gauge transformations:

$$\mathcal{G} \equiv \{ u : \mathbb{R}^3 \to SU(N) \mid u(\vec{r}) \to u_\infty \in SU(N) \text{ as } |\vec{r}| \to \infty \}$$

• Group of asymptotically trivial gauge transformations:

$$\mathcal{G}^{\infty} \equiv \{ u : \mathbb{R}^3 \to SU(N) \mid u(\vec{r}) \to 1 \text{ as } |\vec{r}| \to \infty \}$$

 Group G<sub>0</sub><sup>∞</sup> of asymptotically and topologically trivial gauge transformations: this is the connected component of G<sup>∞</sup>.



- Our interest is in YM theory on  $S^3 \times \mathbb{R}$  (secretly  $\mathbb{R}^3 \times \mathbb{R}$ ).
- Temporal gauge  $A_0 = 0$ . The configuration space is based on  $A_i(x) = A_i^a(x)T^a$ .
- Group of all gauge transformations:

$$\mathcal{G} \equiv \{ u : \mathbb{R}^3 \to SU(N) \mid u(\vec{r}) \to u_{\infty} \in SU(N) \text{ as } |\vec{r}| \to \infty \}$$

• Group of asymptotically trivial gauge transformations:

$$\mathcal{G}^{\infty} \equiv \{ u : \mathbb{R}^3 \to SU(N) \mid u(\vec{r}) \to 1 \text{ as } |\vec{r}| \to \infty \}$$

Group G<sub>0</sub><sup>∞</sup> of asymptotically and topologically trivial gauge transformations: this is the connected component of G<sup>∞</sup>.



- Our interest is in YM theory on  $S^3 \times \mathbb{R}$  (secretly  $\mathbb{R}^3 \times \mathbb{R}$ ).
- Temporal gauge  $A_0 = 0$ . The configuration space is based on  $A_i(x) = A_i^a(x)T^a$ .
- Group of all gauge transformations:

$$\mathcal{G} \equiv \{ u : \mathbb{R}^3 \to SU(N) \mid u(\vec{r}) \to u_{\infty} \in SU(N) \text{ as } |\vec{r}| \to \infty \}$$

• Group of asymptotically trivial gauge transformations:

$$\mathcal{G}^{\infty} \equiv \{ u : \mathbb{R}^3 \to SU(N) \mid u(\vec{r}) \to 1 \text{ as } |\vec{r}| \to \infty \}$$

 Group G<sub>0</sub><sup>∞</sup> of asymptotically and topologically trivial gauge transformations: this is the connected component of G<sup>∞</sup>.



- Our interest is in YM theory on  $S^3 \times \mathbb{R}$  (secretly  $\mathbb{R}^3 \times \mathbb{R}$ ).
- Temporal gauge  $A_0 = 0$ . The configuration space is based on  $A_i(x) = A_i^a(x)T^a$ .
- Group of all gauge transformations:

$$\mathcal{G} \equiv \{ u : \mathbb{R}^3 \to SU(N) \mid u(\vec{r}) \to u_{\infty} \in SU(N) \text{ as } |\vec{r}| \to \infty \}$$

• Group of asymptotically trivial gauge transformations:

$$\mathcal{G}^{\infty} \equiv \{ u : \mathbb{R}^3 \to SU(N) \mid u(\vec{r}) \to 1 \text{ as } |\vec{r}| \to \infty \}$$

Group G<sub>0</sub><sup>∞</sup> of asymptotically and topologically trivial gauge transformations: this is the connected component of G<sup>∞</sup>.



#### • Both $\mathcal{G}^{\infty}$ and $\mathcal{G}^{\infty}_0$ are normal subgroups of $\mathcal{G}$ .

- Gauss law  $(\partial_i E_i + [A_i, E_i] = D_i E_i \approx 0)$  generates  $\mathcal{G}_0^{\infty}$ .
- In fact  $\mathcal{G}^{\infty}/\mathcal{G}_0^{\infty} \cong \pi_3(SU(N)) = \mathbb{Z}$ .
- Representations of this  $\mathbb{Z} \ni n \to e^{in\theta}$  give the QCD  $\theta$ -states.
- The color group is  $\mathcal{G}/\mathcal{G}^{\infty} = SU(N)$ .
- The configuration space C for local observables is A/G.
- This bundle is twisted.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Both  $\mathcal{G}^{\infty}$  and  $\mathcal{G}^{\infty}_0$  are normal subgroups of  $\mathcal{G}$ .
- Gauss law  $(\partial_i E_i + [A_i, E_i] = D_i E_i \approx 0)$  generates  $\mathcal{G}_0^{\infty}$ .
- In fact  $\mathcal{G}^{\infty}/\mathcal{G}_0^{\infty} \cong \pi_3(SU(N)) = \mathbb{Z}$ .
- Representations of this  $\mathbb{Z} \ni n \to e^{in\theta}$  give the QCD  $\theta$ -states.
- The color group is  $\mathcal{G}/\mathcal{G}^{\infty} = SU(N)$ .
- The configuration space C for local observables is A/G.
- This bundle is twisted.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Both  $\mathcal{G}^{\infty}$  and  $\mathcal{G}^{\infty}_0$  are normal subgroups of  $\mathcal{G}$ .
- Gauss law  $(\partial_i E_i + [A_i, E_i] = D_i E_i \approx 0)$  generates  $\mathcal{G}_0^{\infty}$ .

• In fact 
$$\mathcal{G}^{\infty}/\mathcal{G}_0^{\infty} \cong \pi_3(SU(N)) = \mathbb{Z}$$
.

- Representations of this  $\mathbb{Z} \ni n \to e^{in\theta}$  give the QCD  $\theta$ -states.
- The color group is  $\mathcal{G}/\mathcal{G}^{\infty} = SU(N)$ .
- The configuration space C for local observables is A/G.
- This bundle is twisted.

- Both  $\mathcal{G}^{\infty}$  and  $\mathcal{G}^{\infty}_0$  are normal subgroups of  $\mathcal{G}$ .
- Gauss law  $(\partial_i E_i + [A_i, E_i] = D_i E_i \approx 0)$  generates  $\mathcal{G}_0^{\infty}$ .

• In fact 
$$\mathcal{G}^{\infty}/\mathcal{G}_0^{\infty} \cong \pi_3(SU(N)) = \mathbb{Z}$$
.

- Representations of this  $\mathbb{Z} \ni n \to e^{in\theta}$  give the QCD  $\theta$ -states.
- The color group is  $\mathcal{G}/\mathcal{G}^{\infty} = SU(N)$ .
- The configuration space C for local observables is A/G.
- This bundle is twisted.

- Both  $\mathcal{G}^{\infty}$  and  $\mathcal{G}^{\infty}_0$  are normal subgroups of  $\mathcal{G}$ .
- Gauss law  $(\partial_i E_i + [A_i, E_i] = D_i E_i \approx 0)$  generates  $\mathcal{G}_0^{\infty}$ .

• In fact 
$$\mathcal{G}^{\infty}/\mathcal{G}_0^{\infty} \cong \pi_3(SU(N)) = \mathbb{Z}$$
.

- Representations of this  $\mathbb{Z} \ni n \to e^{in\theta}$  give the QCD  $\theta$ -states.
- The color group is  $\mathcal{G}/\mathcal{G}^{\infty} = SU(N)$ .
- The configuration space C for local observables is  $\mathcal{A}/\mathcal{G}$ .
- This bundle is twisted.

- Both  $\mathcal{G}^{\infty}$  and  $\mathcal{G}^{\infty}_0$  are normal subgroups of  $\mathcal{G}$ .
- Gauss law  $(\partial_i E_i + [A_i, E_i] = D_i E_i \approx 0)$  generates  $\mathcal{G}_0^{\infty}$ .

• In fact 
$$\mathcal{G}^{\infty}/\mathcal{G}_0^{\infty} \cong \pi_3(SU(N)) = \mathbb{Z}$$
.

- Representations of this  $\mathbb{Z} \ni n \to e^{in\theta}$  give the QCD  $\theta$ -states.
- The color group is  $\mathcal{G}/\mathcal{G}^{\infty} = SU(N)$ .
- The configuration space C for local observables is A/G.
- This bundle is twisted.

- The key idea: Narasimhan-Ramadas on SU(2) YM theory on  $\mathcal{S}^3\times\mathbb{R}.$
- Their aim: prove rigorously that  $\mathcal{G}_0^\infty \to \mathcal{A} \to \mathcal{A}/\mathcal{G}_0^\infty$  is twisted.
- They consider a special subset of left-invariant connections

 $\omega = i(\operatorname{Tr} \tau_i u^{-1} du) M_{ij} \tau_j, \quad u \in SU(2), M \in M_3(\mathbb{R}) \equiv \mathcal{M}_0.$ 

• This connection is pulled back to spatial  $S^3$  using  $S^3 \rightarrow SU(2)$ .



イロト 不得 トイヨト イヨト

- The key idea: Narasimhan-Ramadas on SU(2) YM theory on  $S^3 \times \mathbb{R}$ .
- Their aim: prove rigorously that  $\mathcal{G}_0^\infty \to \mathcal{A} \to \mathcal{A}/\mathcal{G}_0^\infty$  is twisted.
- They consider a special subset of left-invariant connections

 $\omega = i(\operatorname{Tr} \tau_i u^{-1} du) M_{ij} \tau_j, \quad u \in SU(2), M \in M_3(\mathbb{R}) \equiv \mathcal{M}_0.$ 

• This connection is pulled back to spatial  $S^3$  using  $S^3 \rightarrow SU(2)$ .



- The key idea: Narasimhan-Ramadas on SU(2) YM theory on  $S^3 \times \mathbb{R}$ .
- Their aim: prove rigorously that  $\mathcal{G}_0^\infty \to \mathcal{A} \to \mathcal{A}/\mathcal{G}_0^\infty$  is twisted.
- They consider a special subset of left-invariant connections

$$\omega=\textit{i}({
m Tr}\, au_{\it i}\textit{u}^{-1}\textit{du})\textit{M}_{\it ij} au_{\it j}, \hspace{1em} \textit{u}\in\textit{SU}(2),\textit{M}\in\textit{M}_{3}(\mathbb{R})\equiv\mathcal{M}_{0}.$$

• This connection is pulled back to spatial  $S^3$  using  $S^3 \rightarrow SU(2)$ .



- The key idea: Narasimhan-Ramadas on SU(2) YM theory on  $S^3 \times \mathbb{R}$ .
- Their aim: prove rigorously that  $\mathcal{G}_0^\infty \to \mathcal{A} \to \mathcal{A}/\mathcal{G}_0^\infty$  is twisted.
- They consider a special subset of left-invariant connections

$$\omega=\textit{i}({\sf Tr}\, au_{\it i}\textit{u}^{-1}\textit{du})\textit{M}_{\it ij} au_{\it j}, \quad \textit{u}\in\textit{SU}(2),\textit{M}\in\textit{M}_{3}(\mathbb{R})\equiv\mathcal{M}_{0}.$$

• This connection is pulled back to spatial  $S^3$  using  $S^3 \rightarrow SU(2)$ .

- All such  $\omega$ 's are preserved under global SU(2) adjoint action  $\omega \rightarrow v \omega v^{-1}$ , or, equivalently,  $M \rightarrow MR^{T}$ . (*R* is in image of *v* in SO(3).
- The action of SO(3) on  $\mathcal{M}_0$  is free for all matrices with rank 2 or 3.
- This gives a fibre bundle  $SO(3) \rightarrow \mathcal{M}_0 \rightarrow \mathcal{M}_0/SO(3)$ .
- Narasimhan-Ramadas show that this bundle is twisted, and hence the full gauge bundle is also twisted.
- The matrix model for SU(2) comes from this matrix  $M_{ia}$ .



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- All such  $\omega$ 's are preserved under global SU(2) adjoint action  $\omega \rightarrow v \omega v^{-1}$ , or, equivalently,  $M \rightarrow MR^{T}$ . (*R* is in image of *v* in SO(3).
- The action of SO(3) on  $\mathcal{M}_0$  is free for all matrices with rank 2 or 3.
- This gives a fibre bundle  $SO(3) \rightarrow \mathcal{M}_0 \rightarrow \mathcal{M}_0/SO(3)$ .
- Narasimhan-Ramadas show that this bundle is twisted, and hence the full gauge bundle is also twisted.
- The matrix model for SU(2) comes from this matrix  $M_{ia}$ .



・ロト ・ 四ト ・ ヨト ・ ヨト …

- All such  $\omega$ 's are preserved under global SU(2) adjoint action  $\omega \rightarrow v \omega v^{-1}$ , or, equivalently,  $M \rightarrow MR^{T}$ . (*R* is in image of *v* in SO(3).
- The action of SO(3) on  $\mathcal{M}_0$  is free for all matrices with rank 2 or 3.
- This gives a fibre bundle  $SO(3) \rightarrow \mathcal{M}_0 \rightarrow \mathcal{M}_0/SO(3)$ .
- Narasimhan-Ramadas show that this bundle is twisted, and hence the full gauge bundle is also twisted.
- The matrix model for SU(2) comes from this matrix M<sub>ia</sub>.



< 日 > < 同 > < 回 > < 回 > < □ > <

- All such  $\omega$ 's are preserved under global SU(2) adjoint action  $\omega \rightarrow v \omega v^{-1}$ , or, equivalently,  $M \rightarrow MR^{T}$ . (*R* is in image of *v* in SO(3).
- The action of SO(3) on  $\mathcal{M}_0$  is free for all matrices with rank 2 or 3.
- This gives a fibre bundle  $SO(3) \rightarrow \mathcal{M}_0 \rightarrow \mathcal{M}_0/SO(3)$ .
- Narasimhan-Ramadas show that this bundle is twisted, and hence the full gauge bundle is also twisted.
- The matrix model for SU(2) comes from this matrix  $M_{ia}$ .



・ロト ・四ト ・ヨト ・ヨト

- All such  $\omega$ 's are preserved under global SU(2) adjoint action  $\omega \rightarrow v \omega v^{-1}$ , or, equivalently,  $M \rightarrow MR^{T}$ . (*R* is in image of *v* in SO(3).
- The action of SO(3) on  $\mathcal{M}_0$  is free for all matrices with rank 2 or 3.
- This gives a fibre bundle  $SO(3) \rightarrow \mathcal{M}_0 \rightarrow \mathcal{M}_0/SO(3)$ .
- Narasimhan-Ramadas show that this bundle is twisted, and hence the full gauge bundle is also twisted.
- The matrix model for SU(2) comes from this matrix  $M_{ia}$ .



• Start with the left-invariant one-form on *SU*(3):

$$\Omega = \operatorname{Tr}\left(rac{\lambda}{2}u^{-1}du
ight)M_{ab}\lambda_b, \quad u\in SU(3).$$

- Here *M* is a  $8 \times 8$  real matrix.
- Map the spatial  $S^3$  diffeomorphically to  $SU(2) \subset SU(3)$ .
- X<sub>i</sub> ≡ vector fields for right action on SU(3) representing λ<sub>i</sub> (i = 1, 2, 3), then [X<sub>i</sub>, X<sub>j</sub>] = iε<sub>ijk</sub>X<sub>k</sub>.
- $\Omega(X_i) = -M_{ib}\frac{\lambda_b}{2}$ .
- This gives us the gauge potential  $A_j = -iM_{ib}\frac{\lambda_b}{2}$ .



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Start with the left-invariant one-form on SU(3):

$$\Omega = \operatorname{Tr}\left(rac{\lambda}{2}u^{-1}du
ight)M_{ab}\lambda_b, \quad u\in SU(3).$$

#### • Here *M* is a 8 × 8 real matrix.

- Map the spatial  $S^3$  diffeomorphically to  $SU(2) \subset SU(3)$ .
- $X_i \equiv$  vector fields for right action on SU(3) representing  $\lambda_i$ (*i* = 1, 2, 3), then  $[X_i, X_j] = i\epsilon_{ijk}X_k$ .
- $\Omega(X_i) = -M_{ib}\frac{\lambda_b}{2}$ .
- This gives us the gauge potential  $A_j = -iM_{ib}\frac{\lambda_b}{2}$ .

・ロン ・四 ・ ・ ヨン ・ ヨン

• Start with the left-invariant one-form on *SU*(3):

$$\Omega = \operatorname{Tr}\left(\frac{\lambda}{2}u^{-1}du\right)M_{ab}\lambda_b, \quad u \in SU(3).$$

- Here *M* is a  $8 \times 8$  real matrix.
- Map the spatial  $S^3$  diffeomorphically to  $SU(2) \subset SU(3)$ .
- X<sub>i</sub> ≡ vector fields for right action on SU(3) representing λ<sub>i</sub> (i = 1, 2, 3), then [X<sub>i</sub>, X<sub>j</sub>] = iε<sub>ijk</sub>X<sub>k</sub>.
- $\Omega(X_i) = -M_{ib}\frac{\lambda_b}{2}$ .
- This gives us the gauge potential  $A_j = -iM_{ib}\frac{\lambda_b}{2}$ .

・ロト ・ 四ト ・ ヨト ・ ヨト …

• Start with the left-invariant one-form on *SU*(3):

$$\Omega = \operatorname{Tr}\left(\frac{\lambda}{2}u^{-1}du\right)M_{ab}\lambda_b, \quad u \in SU(3).$$

- Here *M* is a  $8 \times 8$  real matrix.
- Map the spatial  $S^3$  diffeomorphically to  $SU(2) \subset SU(3)$ .
- $X_i \equiv$  vector fields for right action on SU(3) representing  $\lambda_i$ (*i* = 1, 2, 3), then  $[X_i, X_j] = i\epsilon_{ijk}X_k$ .
- $\Omega(X_i) = -M_{ib}\frac{\lambda_b}{2}$ .
- This gives us the gauge potential  $A_j = -iM_{ib}\frac{\lambda_b}{2}$ .

• Start with the left-invariant one-form on *SU*(3):

$$\Omega = \operatorname{Tr}\left(\frac{\lambda}{2}u^{-1}du\right)M_{ab}\lambda_b, \quad u \in SU(3).$$

- Here *M* is a  $8 \times 8$  real matrix.
- Map the spatial  $S^3$  diffeomorphically to  $SU(2) \subset SU(3)$ .
- $X_i \equiv$  vector fields for right action on SU(3) representing  $\lambda_i$ (*i* = 1, 2, 3), then  $[X_i, X_j] = i\epsilon_{ijk}X_k$ .

• 
$$\Omega(X_i) = -M_{ib}\frac{\lambda_b}{2}$$
.

• This gives us the gauge potential  $A_i = -iM_{ib}\frac{\lambda_b}{2}$ .
# Case of SU(3)

• Start with the left-invariant one-form on *SU*(3):

$$\Omega = \operatorname{Tr}\left(\frac{\lambda}{2}u^{-1}du\right)M_{ab}\lambda_b, \quad u \in SU(3).$$

- Here *M* is a  $8 \times 8$  real matrix.
- Map the spatial  $S^3$  diffeomorphically to  $SU(2) \subset SU(3)$ .
- $X_i \equiv$  vector fields for right action on SU(3) representing  $\lambda_i$ (*i* = 1, 2, 3), then  $[X_i, X_j] = i\epsilon_{ijk}X_k$ .
- $\Omega(X_i) = -M_{ib}\frac{\lambda_b}{2}$ .
- This gives us the gauge potential  $A_j = -iM_{ib}\frac{\lambda_b}{2}$ .

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト



#### • The *M*'s parametrize a submanifold of connections *A*.

- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left the ones responsible for the Gribov problem.
- Global color *SU*(3) acts on the vector potential:

$$A_j \rightarrow h A_j h^{-1}$$
, or  $M \rightarrow M (Ad h)^T$ ,  $h \in SU(3)$ 

- For SU(3), the *M*'s are  $3 \times 8$  matrices.
- The space  $\mathcal{M}/Ad SU(3)$  is twisted.

- The *M*'s parametrize a submanifold of connections A.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left the ones responsible for the Gribov problem.
- Global color *SU*(3) acts on the vector potential:

$$A_j \rightarrow h A_j h^{-1}$$
, or  $M \rightarrow M (Ad h)^T$ ,  $h \in SU(3)$ 

- For SU(3), the *M*'s are  $3 \times 8$  matrices.
- The space  $\mathcal{M}/Ad SU(3)$  is twisted.

- The *M*'s parametrize a submanifold of connections A.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left the ones responsible for the Gribov problem.
- Global color *SU*(3) acts on the vector potential:

 $A_i \rightarrow h A_i h^{-1}$ , or  $M \rightarrow M (Ad h)^T$ ,  $h \in SU(3)$ 

- For SU(3), the *M*'s are  $3 \times 8$  matrices.
- The space  $\mathcal{M}/Ad SU(3)$  is twisted.

イロト 不得 トイヨト イヨト

- The *M*'s parametrize a submanifold of connections A.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left the ones responsible for the Gribov problem.
- Global color *SU*(3) acts on the vector potential:

$$A_j 
ightarrow hA_j h^{-1}$$
, or  $M 
ightarrow M(Ad h)^T$ ,  $h \in SU(3)$ 

- For SU(3), the *M*'s are  $3 \times 8$  matrices.
- The space  $\mathcal{M}/Ad SU(3)$  is twisted.

- The *M*'s parametrize a submanifold of connections A.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left the ones responsible for the Gribov problem.
- Global color *SU*(3) acts on the vector potential:

$$A_j \rightarrow h A_j h^{-1}$$
, or  $M \rightarrow M (Ad h)^T$ ,  $h \in SU(3)$ 

- For SU(3), the *M*'s are  $3 \times 8$  matrices.
- The space  $\mathcal{M}/Ad SU(3)$  is twisted.

#### • The configuration space C for pure SU(3) is $M_{3,8}(\mathbb{R})/Ad SU(3)$ .

- This space has dimension 3.8 8 = 16 (not so at fixed points).
- Wavefunctions are sections of vector bundles on *C* that transform according to representations of *Ad SU(N)*.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.

- The configuration space C for pure SU(3) is  $M_{3,8}(\mathbb{R})/Ad SU(3)$ .
- This space has dimension 3.8 8 = 16 (not so at fixed points).
- Wavefunctions are sections of vector bundles on *C* that transform according to representations of *Ad SU(N)*.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.

- The configuration space C for pure SU(3) is  $M_{3,8}(\mathbb{R})/Ad SU(3)$ .
- This space has dimension 3.8 8 = 16 (not so at fixed points).
- Wavefunctions are sections of vector bundles on C that transform according to representations of Ad SU(N).
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.



- The configuration space C for pure SU(3) is  $M_{3,8}(\mathbb{R})/Ad SU(3)$ .
- This space has dimension 3.8 8 = 16 (not so at fixed points).
- Wavefunctions are sections of vector bundles on C that transform according to representations of Ad SU(N).
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.

4 E N 4 E N -

#### Recall that the YM Hamiltonian is

$$\mathcal{H}=rac{1}{2}\int d^3x\,{
m Tr}\left(g^2E_iE_i+rac{1}{g^2}F_{ij}^2
ight).$$

- For the matrix model,  $M_{ia}$  are the dynamical variables, and the (Legendre transform of)  $\frac{dM_{ia}}{dt}$  as the conjugate of  $M_{ia}$ .
- We identify this conjugate operator as the matrix model chormoelectric field *E*<sub>*ia*</sub>.

• Quantisation: 
$$[M_{ia}, E_{jb}] = i\delta_{ij}\delta_{ab}$$
.

Recall that the YM Hamiltonian is

$$H=rac{1}{2}\int d^3x\,{
m Tr}\left(g^2E_iE_i+rac{1}{g^2}F_{ij}^2
ight)\,.$$

- For the matrix model,  $M_{ia}$  are the dynamical variables, and the (Legendre transform of)  $\frac{dM_{ia}}{dt}$  as the conjugate of  $M_{ia}$ .
- We identify this conjugate operator as the matrix model chormoelectric field *E*<sub>*ia*</sub>.

• Quantisation:  $[M_{ia}, E_{jb}] = i\delta_{ij}\delta_{ab}$ .

Recall that the YM Hamiltonian is

$$\mathcal{H}=rac{1}{2}\int d^3x\, {
m Tr}\left(g^2 E_i E_i+rac{1}{g^2} F_{ij}^2
ight).$$

- For the matrix model,  $M_{ia}$  are the dynamical variables, and the (Legendre transform of)  $\frac{dM_{ia}}{dt}$  as the conjugate of  $M_{ia}$ .
- We identify this conjugate operator as the matrix model chormoelectric field *E*<sub>*ia*</sub>.

• Quantisation:  $[M_{ia}, E_{jb}] = i\delta_{ij}\delta_{ab}$ .

A B A A B A

Recall that the YM Hamiltonian is

$$H=rac{1}{2}\int d^3x\,{
m Tr}\left(g^2E_iE_i+rac{1}{g^2}F_{ij}^2
ight).$$

- For the matrix model,  $M_{ia}$  are the dynamical variables, and the (Legendre transform of)  $\frac{dM_{ia}}{dt}$  as the conjugate of  $M_{ia}$ .
- We identify this conjugate operator as the matrix model chormoelectric field *E<sub>ia</sub>*.

• Quantisation: 
$$[M_{ia}, E_{jb}] = i\delta_{ij}\delta_{ab}$$
.

• The matrix model Hamiltonian is

$$H = \frac{1}{R} \left( \frac{g^2 E_{ia} E_{ia}}{2} + V(M) \right) = \frac{1}{R} \left( -\frac{g^2}{2} \sum_{i,a} \frac{\partial^2}{\partial M_{ia}^2} + V(M) \right)$$

- The overall factor of *R* comes from dimensional analysis.
- The Gauss' law constraint: [G<sub>a</sub>, O] ≡ [f<sub>abc</sub>M<sub>ib</sub>E<sub>ic</sub>, O] = 0 for all observables O.
- The physical states  $|\psi_{phys}\rangle$  are given by  $G_a |\psi_{phys}\rangle = 0$ .
- The Hilbert space has scalar product

$$(\psi_1,\psi_2)=\int\prod_{i,a}dM_{ia}\;\bar{\psi}_1(M)\psi_2(M).$$

• The matrix model Hamiltonian is

$$H = \frac{1}{R} \left( \frac{g^2 E_{ia} E_{ia}}{2} + V(M) \right) = \frac{1}{R} \left( -\frac{g^2}{2} \sum_{i,a} \frac{\partial^2}{\partial M_{ia}^2} + V(M) \right)$$

- The overall factor of *R* comes from dimensional analysis.
- The Gauss' law constraint: [G<sub>a</sub>, O] ≡ [f<sub>abc</sub>M<sub>ib</sub>E<sub>ic</sub>, O] = 0 for all observables O.
- The physical states  $|\psi_{phys}\rangle$  are given by  $G_a |\psi_{phys}\rangle = 0$ .
- The Hilbert space has scalar product

$$(\psi_1,\psi_2)=\int\prod_{i,a}dM_{ia}\;\bar{\psi}_1(M)\psi_2(M).$$

イロト 不得 トイヨト イヨト

• The matrix model Hamiltonian is

$$H = \frac{1}{R} \left( \frac{g^2 E_{ia} E_{ia}}{2} + V(M) \right) = \frac{1}{R} \left( -\frac{g^2}{2} \sum_{i,a} \frac{\partial^2}{\partial M_{ia}^2} + V(M) \right)$$

- The overall factor of *R* comes from dimensional analysis.
- The Gauss' law constraint: [G<sub>a</sub>, O] ≡ [f<sub>abc</sub>M<sub>ib</sub>E<sub>ic</sub>, O] = 0 for all observables O.
- The physical states  $|\psi_{phys}\rangle$  are given by  $G_a |\psi_{phys}\rangle = 0$ .
- The Hilbert space has scalar product

$$(\psi_1,\psi_2)=\int\prod_{i,a}dM_{ia}\;\bar{\psi}_1(M)\psi_2(M).$$

• The matrix model Hamiltonian is

$$H = \frac{1}{R} \left( \frac{g^2 E_{ia} E_{ia}}{2} + V(M) \right) = \frac{1}{R} \left( -\frac{g^2}{2} \sum_{i,a} \frac{\partial^2}{\partial M_{ia}^2} + V(M) \right)$$

- The overall factor of *R* comes from dimensional analysis.
- The Gauss' law constraint: [G<sub>a</sub>, O] ≡ [f<sub>abc</sub>M<sub>ib</sub>E<sub>ic</sub>, O] = 0 for all observables O.
- The physical states  $|\psi_{phys}\rangle$  are given by  $G_a |\psi_{phys}\rangle = 0$ .
- The Hilbert space has scalar product

$$(\psi_1,\psi_2)=\int\prod_{i,a}dM_{ia}\;\bar{\psi}_1(M)\psi_2(M).$$

• The matrix model Hamiltonian is

$$H = \frac{1}{R} \left( \frac{g^2 E_{ia} E_{ia}}{2} + V(M) \right) = \frac{1}{R} \left( -\frac{g^2}{2} \sum_{i,a} \frac{\partial^2}{\partial M_{ia}^2} + V(M) \right)$$

- The overall factor of *R* comes from dimensional analysis.
- The Gauss' law constraint: [G<sub>a</sub>, O] ≡ [f<sub>abc</sub>M<sub>ib</sub>E<sub>ic</sub>, O] = 0 for all observables O.
- The physical states  $|\psi_{phys}\rangle$  are given by  $G_a |\psi_{phys}\rangle = 0$ .
- The Hilbert space has scalar product

$$(\psi_1,\psi_2)=\int\prod_{i,a}dM_{ia}\ \bar{\psi}_1(M)\psi_2(M).$$

(B)

• 
$$H = H_0 + \frac{1}{R}V_{int}(M) = \frac{1}{R}\left(-\frac{1}{2}\frac{\partial^2}{\partial M_{ia}^2} + \frac{1}{2}M_{ia}M_{ia}\right) + \frac{1}{R}\left(-\frac{g}{2}\epsilon_{ijk}f_{abc}M_{ia}M_{jb}M_{kc} + \frac{g^2}{4}f_{abc}f_{ade}M_{ib}M_{jc}M_{id}M_{je}\right)$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at g = 0.
- We estimate the energies by variational calculation instead.



(B)

< 17 ▶

• 
$$H = H_0 + \frac{1}{R}V_{int}(M) = \frac{1}{R}\left(-\frac{1}{2}\frac{\partial^2}{\partial M_{ia}^2} + \frac{1}{2}M_{ia}M_{ia}\right) + \frac{1}{R}\left(-\frac{g}{2}\epsilon_{ijk}f_{abc}M_{ia}M_{jb}M_{kc} + \frac{g^2}{4}f_{abc}f_{ade}M_{ib}M_{jc}M_{id}M_{je}\right)$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at g = 0.
- We estimate the energies by variational calculation instead.



(B)

< 🗇 🕨

• 
$$H = H_0 + \frac{1}{R}V_{int}(M) = \frac{1}{R}\left(-\frac{1}{2}\frac{\partial^2}{\partial M_{ia}^2} + \frac{1}{2}M_{ia}M_{ia}\right) + \frac{1}{R}\left(-\frac{g}{2}\epsilon_{ijk}f_{abc}M_{ia}M_{jb}M_{kc} + \frac{g^2}{4}f_{abc}f_{ade}M_{ib}M_{jc}M_{id}M_{je}\right)$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at g = 0.
- We estimate the energies by variational calculation instead.



(B)

< 🗇 🕨

• 
$$H = H_0 + \frac{1}{R}V_{int}(M) = \frac{1}{R}\left(-\frac{1}{2}\frac{\partial^2}{\partial M_{ia}^2} + \frac{1}{2}M_{ia}M_{ia}\right) + \frac{1}{R}\left(-\frac{g}{2}\epsilon_{ijk}f_{abc}M_{ia}M_{jb}M_{kc} + \frac{g^2}{4}f_{abc}f_{ade}M_{ib}M_{jc}M_{id}M_{je}\right)$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at g = 0.
- We estimate the energies by variational calculation instead.



(B)

< 6 b

• 
$$H = H_0 + \frac{1}{R}V_{int}(M) = \frac{1}{R}\left(-\frac{1}{2}\frac{\partial^2}{\partial M_{ia}^2} + \frac{1}{2}M_{ia}M_{ia}\right) + \frac{1}{R}\left(-\frac{g}{2}\epsilon_{ijk}f_{abc}M_{ia}M_{jb}M_{kc} + \frac{g^2}{4}f_{abc}f_{ade}M_{ib}M_{jc}M_{id}M_{je}\right)$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at g = 0.
- We estimate the energies by variational calculation instead.



• 
$$H = H_0 + \frac{1}{R}V_{int}(M) = \frac{1}{R}\left(-\frac{1}{2}\frac{\partial^2}{\partial M_{ia}^2} + \frac{1}{2}M_{ia}M_{ia}\right) + \frac{1}{R}\left(-\frac{g}{2}\epsilon_{ijk}f_{abc}M_{ia}M_{jb}M_{kc} + \frac{g^2}{4}f_{abc}f_{ade}M_{ib}M_{jc}M_{id}M_{je}\right)$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at g = 0.
- We estimate the energies by variational calculation instead.



- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

$$H + \frac{c(R)}{R}$$

- The *R*-dependence of *c* comes from renormalization .
- We henceforth work with this Hamiltonian.

(B)

Image: A matrix and a matrix

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

$$H + \frac{c(R)}{R}$$

- The *R*-dependence of *c* comes from renormalization .
- We henceforth work with this Hamiltonian.

A B F A B F

Image: A matrix and a matrix

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

$$H + rac{c(R)}{R}$$

- The *R*-dependence of *c* comes from renormalization .
- We henceforth work with this Hamiltonian.

(B)

< 6 b

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

$$H + \frac{c(R)}{R}$$

- The *R*-dependence of *c* comes from renormalization .
- We henceforth work with this Hamiltonian.



4 3 5 4 3 5 5

< 6 b

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

$$H + rac{c(R)}{R}$$

- The *R*-dependence of *c* comes from renormalization .
- We henceforth work with this Hamiltonian.



4 E 5

< 6 k

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

$$H + \frac{c(R)}{R}$$

- The *R*-dependence of *c* comes from renormalization .
- We henceforth work with this Hamiltonian.

4 E 5

#### • Trial wavefunctions are linear combinations of eigenstates of *H*<sub>0</sub>.

- Angular momentum ( $L_i = \epsilon_{ijk} M_{ja} E_{ka}$ ) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins *s*.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix  $\tilde{H}_{ij} = \langle \psi_i | H | \psi_j \rangle$ .
- Then obtain the eigenvalues of  $\tilde{H}$  numerically.

э

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Trial wavefunctions are linear combinations of eigenstates of *H*<sub>0</sub>.
- Angular momentum ( $L_i = \epsilon_{ijk} M_{ja} E_{ka}$ ) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins *s*.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix  $\tilde{H}_{ij} = \langle \psi_i | H | \psi_j \rangle$ .
- Then obtain the eigenvalues of  $\tilde{H}$  numerically.

э

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Trial wavefunctions are linear combinations of eigenstates of *H*<sub>0</sub>.
- Angular momentum (L<sub>i</sub> = \epsilon\_{ijk} M\_{ja} E\_{ka}) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix  $\tilde{H}_{ij} = \langle \psi_i | H | \psi_j \rangle$ .
- Then obtain the eigenvalues of  $\tilde{H}$  numerically.

э

イロト 不得 トイヨト イヨト

- Trial wavefunctions are linear combinations of eigenstates of *H*<sub>0</sub>.
- Angular momentum (L<sub>i</sub> = \epsilon\_{ijk} M\_{ja} E\_{ka}) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix  $\tilde{H}_{ij} = \langle \psi_i | H | \psi_j \rangle$ .
- Then obtain the eigenvalues of  $\tilde{H}$  numerically.

э

イロト 不得 トイヨト イヨト

- Trial wavefunctions are linear combinations of eigenstates of  $H_0$ .
- Angular momentum (L<sub>i</sub> = \epsilon\_{ijk} M\_{ja} E\_{ka}) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix  $\tilde{H}_{ij} = \langle \psi_i | H | \psi_j \rangle$ .
- Then obtain the eigenvalues of  $\tilde{H}$  numerically.



э
## Variational Computational Scheme

- Trial wavefunctions are linear combinations of eigenstates of *H*<sub>0</sub>.
- Angular momentum (L<sub>i</sub> = \epsilon\_{ijk} M\_{ja} E\_{ka}) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix  $\tilde{H}_{ij} = \langle \psi_i | H | \psi_j \rangle$ .

• Then obtain the eigenvalues of  $\tilde{H}$  numerically.

э

## Variational Computational Scheme

- Trial wavefunctions are linear combinations of eigenstates of  $H_0$ .
- Angular momentum (L<sub>i</sub> = \epsilon\_{ijk} M\_{ja} E\_{ka}) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix  $\tilde{H}_{ij} = \langle \psi_i | H | \psi_j \rangle$ .
- Then obtain the eigenvalues of  $\tilde{H}$  numerically.

э

Image: A matrix and a matrix

#### • We need to assign *P* and *C* to the variational eigenstates.

- Under  $C: M_{ia}T_a \rightarrow M_{ia}T_a^*$ .
- C is a good symmetry of H and can be assigned unambiguously.
- *P* poses a slight problem, because  $P: M_{ia} \rightarrow -M_{ia}$ , but the cubic term in *H* flips in sign under *P*.
- In the large *R* limit, the expectation value of *P* in a variational eigenstate asymptotes to ±1.
- So P can be assigned in the "flat space" limit.

- We need to assign *P* and *C* to the variational eigenstates.
- Under  $C: M_{ia}T_a \rightarrow M_{ia}T_a^*$ .
- C is a good symmetry of H and can be assigned unambiguously.
- *P* poses a slight problem, because  $P: M_{ia} \rightarrow -M_{ia}$ , but the cubic term in *H* flips in sign under *P*.
- In the large *R* limit, the expectation value of *P* in a variational eigenstate asymptotes to ±1.
- So P can be assigned in the "flat space" limit.

- We need to assign *P* and *C* to the variational eigenstates.
- Under  $C: M_{ia}T_a \rightarrow M_{ia}T_a^*$ .
- C is a good symmetry of H and can be assigned unambiguously.
- *P* poses a slight problem, because *P* : *M<sub>ia</sub>* → −*M<sub>ia</sub>*, but the cubic term in *H* flips in sign under *P*.
- In the large *R* limit, the expectation value of *P* in a variational eigenstate asymptotes to ±1.
- So P can be assigned in the "flat space" limit.

- We need to assign *P* and *C* to the variational eigenstates.
- Under  $C: M_{ia}T_a \rightarrow M_{ia}T_a^*$ .
- C is a good symmetry of H and can be assigned unambiguously.
- *P* poses a slight problem, because *P* : *M<sub>ia</sub>* → −*M<sub>ia</sub>*, but the cubic term in *H* flips in sign under *P*.
- In the large *R* limit, the expectation value of *P* in a variational eigenstate asymptotes to ±1.
- So P can be assigned in the "flat space" limit.

- We need to assign *P* and *C* to the variational eigenstates.
- Under  $C: M_{ia}T_a \rightarrow M_{ia}T_a^*$ .
- C is a good symmetry of H and can be assigned unambiguously.
- *P* poses a slight problem, because *P* : *M<sub>ia</sub>* → −*M<sub>ia</sub>*, but the cubic term in *H* flips in sign under *P*.
- In the large R limit, the expectation value of P in a variational eigenstate asymptotes to ±1.
- So P can be assigned in the "flat space" limit.

- We need to assign *P* and *C* to the variational eigenstates.
- Under  $C: M_{ia}T_a \rightarrow M_{ia}T_a^*$ .
- C is a good symmetry of H and can be assigned unambiguously.
- *P* poses a slight problem, because *P* : *M<sub>ia</sub>* → −*M<sub>ia</sub>*, but the cubic term in *H* flips in sign under *P*.
- In the large R limit, the expectation value of P in a variational eigenstate asymptotes to ±1.
- So P can be assigned in the "flat space" limit.

- For a given *s*, the energies are of the form  $\mathcal{E}_n[s] = \frac{f_n^{(s)}(g) + c(R)}{R}$ , measured in units of  $R^{-1}$ .
- Neither *R* nor the bare coupling *g* are directly measurable.
- Energy differences depend on *g* and *R*, but not on *c*.
- Ratios of energy differences depend only on g.
- For fixed g, all the  $\mathcal{E}_n[s]$  vanish in the 'flat space" limit  $R \to \infty$ . (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!



- For a given *s*, the energies are of the form  $\mathcal{E}_n[s] = \frac{f_n^{(s)}(g) + c(R)}{R}$ , measured in units of  $R^{-1}$ .
- Neither *R* nor the bare coupling *g* are directly measurable.
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.
- For fixed g, all the  $\mathcal{E}_n[s]$  vanish in the 'flat space" limit  $R \to \infty$ . (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!



- For a given *s*, the energies are of the form  $\mathcal{E}_n[s] = \frac{f_n^{(s)}(g) + c(R)}{R}$ , measured in units of  $R^{-1}$ .
- Neither *R* nor the bare coupling *g* are directly measurable.
- Energy differences depend on *g* and *R*, but not on *c*.
- Ratios of energy differences depend only on g.
- For fixed g, all the  $\mathcal{E}_n[s]$  vanish in the 'flat space" limit  $R \to \infty$ . (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!



3

- For a given *s*, the energies are of the form  $\mathcal{E}_n[s] = \frac{f_n^{(s)}(g) + c(R)}{R}$ , measured in units of  $R^{-1}$ .
- Neither *R* nor the bare coupling *g* are directly measurable.
- Energy differences depend on *g* and *R*, but not on *c*.
- Ratios of energy differences depend only on g.
- For fixed g, all the  $\mathcal{E}_n[s]$  vanish in the 'flat space" limit  $R \to \infty$ . (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!



э

- For a given *s*, the energies are of the form  $\mathcal{E}_n[s] = \frac{f_n^{(s)}(g) + c(R)}{R}$ , measured in units of  $R^{-1}$ .
- Neither *R* nor the bare coupling *g* are directly measurable.
- Energy differences depend on *g* and *R*, but not on *c*.
- Ratios of energy differences depend only on g.
- For fixed g, all the  $\mathcal{E}_n[s]$  vanish in the 'flat space" limit  $R \to \infty$ . (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!



A B > A B >

Image: A matrix and a matrix

- For a given *s*, the energies are of the form  $\mathcal{E}_n[s] = \frac{t_n^{(s)}(g) + c(R)}{R}$ , measured in units of  $R^{-1}$ .
- Neither *R* nor the bare coupling *g* are directly measurable.
- Energy differences depend on *g* and *R*, but not on *c*.
- Ratios of energy differences depend only on g.
- For fixed g, all the *E<sub>n</sub>*[s] vanish in the 'flat space" limit R → ∞. (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!



A B > A B >

Image: A matrix and a matrix

#### Mass Difference Ratios

#### • Ratios of mass differences are independent of both *x*(*g*) and *c*(*x*).



•  $X(J^{PC}) = 2^{++}, 0^{-+}, 2^{-+}, 0^{*++}, 1^{+-}, 2^{*-+}, 1^{--}, 0^{*-+}, 2^{--}.$ 



### Mass Difference Ratios

#### • Ratios of mass differences are independent of both *x*(*g*) and *c*(*x*).

Ratios of mass differences  $\frac{\mathcal{E}(X) - \mathcal{E}(0^{++})}{\mathcal{E}(2^{++}) - \mathcal{E}(0^{++})}$  as a function of *g*. (The black, blue and red curves represent spin-0, spin-1 and spin-2 levels respectively.)



• 
$$X(J^{PC}) = 2^{++}, 0^{-+}, 2^{-+}, 0^{*++}, 1^{+-}, 2^{*-+}, 1^{--}, 0^{*-+}, 2^{--}$$



- To get meaningful results, make g a function of R such that all energies have well-defined (and non-zero) values at  $R = \infty$ .
- Measure the energies in some other units (like, say, MeV), not in units of 1/R.
- The radius of  $S^3$  is now  $x = R/\ell$  in these units.
- Then  $\mathcal{E}_n[s] = \left(\frac{f_n^{(s)}(g)}{x} + \frac{c(x)}{x}\right) \frac{1}{\ell}.$
- Make g = g(x) by fixing \$\mathcal{E}\_0[2] \mathcal{E}\_0[0]\$ to the observed (lattice) value.
- This is our integrated renormalization group equation g(x).

- To get meaningful results, make g a function of R such that all energies have well-defined (and non-zero) values at  $R = \infty$ .
- Measure the energies in some other units (like, say, MeV), not in units of 1/R.
- The radius of  $S^3$  is now  $x = R/\ell$  in these units.
- Then  $\mathcal{E}_n[s] = \left(\frac{f_n^{(s)}(g)}{x} + \frac{c(x)}{x}\right) \frac{1}{\ell}$ .
- Make g = g(x) by fixing \$\mathcal{E}\_0[2] \mathcal{E}\_0[0]\$ to the observed (lattice) value.
- This is our integrated renormalization group equation g(x).

- To get meaningful results, make g a function of R such that all energies have well-defined (and non-zero) values at  $R = \infty$ .
- Measure the energies in some other units (like, say, MeV), not in units of 1/R.
- The radius of  $S^3$  is now  $x = R/\ell$  in these units.
- Then  $\mathcal{E}_n[s] = \left(\frac{f_n^{(s)}(g)}{x} + \frac{c(x)}{x}\right) \frac{1}{\ell}$ .
- Make g = g(x) by fixing \$\mathcal{E}\_0[2] \mathcal{E}\_0[0]\$ to the observed (lattice) value.
- This is our integrated renormalization group equation g(x).

- To get meaningful results, make g a function of R such that all energies have well-defined (and non-zero) values at  $R = \infty$ .
- Measure the energies in some other units (like, say, MeV), not in units of 1/R.
- The radius of  $S^3$  is now  $x = R/\ell$  in these units.

• Then 
$$\mathcal{E}_n[s] = \left(\frac{f_n^{(s)}(g)}{x} + \frac{c(x)}{x}\right) \frac{1}{\ell}.$$

- Make g = g(x) by fixing \$\mathcal{E}\_0[2] \mathcal{E}\_0[0]\$ to the observed (lattice) value.
- This is our integrated renormalization group equation g(x).



- To get meaningful results, make g a function of R such that all energies have well-defined (and non-zero) values at  $R = \infty$ .
- Measure the energies in some other units (like, say, MeV), not in units of 1/R.
- The radius of  $S^3$  is now  $x = R/\ell$  in these units.

• Then 
$$\mathcal{E}_n[s] = \left(\frac{t_n^{(s)}(g)}{x} + \frac{c(x)}{x}\right) \frac{1}{\ell}.$$

- Make g = g(x) by fixing \$\mathcal{E}\_0[2] \mathcal{E}\_0[0]\$ to the observed (lattice) value.
- This is our integrated renormalization group equation g(x).

• In practice it is easier to make  $x(g) = \frac{\mathcal{E}_0[2] - \mathcal{E}_0[0]}{m(2^{++}) - m(0^{++})}$ .





• Here we have used  $m(2^{++}) - m(0^{++}) = 460$  MeV.

< 17 ▶

#### Actual numerical values of masses also need asymptotic c(x)/x.

- To fix this, demand that the physical mass of our lowest glueball be fixed to be within the range predicted by lattice simulations (1580 – 1840 MeV).
- Choosing 1050 MeV for asymptotic c(x)/x, we get the best fit with lattice predictions.

A B F A B F

Image: A matrix and a matrix

- Actual numerical values of masses also need asymptotic c(x)/x.
- To fix this, demand that the physical mass of our lowest glueball be fixed to be within the range predicted by lattice simulations (1580 – 1840 MeV).
- Choosing 1050 MeV for asymptotic c(x)/x, we get the best fit with lattice predictions.

(B)

- Actual numerical values of masses also need asymptotic c(x)/x.
- To fix this, demand that the physical mass of our lowest glueball be fixed to be within the range predicted by lattice simulations (1580 – 1840 MeV).
- Choosing 1050 MeV for asymptotic c(x)/x, we get the best fit with lattice predictions.

#### Comparison with Lattice Data

| Glueball<br>states<br>J <sup>PC</sup> | Physical masses<br>from matrix model<br>(MeV) | Physical masses<br>from lattice QCD<br>(MeV) |
|---------------------------------------|-----------------------------------------------|----------------------------------------------|
| 0++                                   | 1757.08 <sup>†</sup>                          | 1580 - 1840                                  |
| 2++                                   | 2257.08 <sup>†</sup>                          | 2240 - 2540                                  |
| 0-+                                   | 2681.45                                       | 2405 - 2715                                  |
| 0*++                                  | 3180.82                                       | 2360 - 2980                                  |
| 1+-                                   | 3235.41                                       | 2810 - 3150                                  |
| 2-+                                   | 3054.97                                       | 2850 - 3230                                  |
| 0*-+                                  | 3568.02                                       | 3400 - 3880                                  |
| 1                                     | 3535.66                                       | 3600 - 4060                                  |
| 2*-+                                  | 3435.75                                       | 3660 - 4120                                  |
| 2                                     | 4050.14                                       | 3765 - 4255                                  |
|                                       |                                               |                                              |

#### $^{\dagger} \equiv$ (input)

æ

<ロン <回と < 回と < 回と < 回と

Glueball Masses (MeV)



■ = Lattice • = Matrix Model.  $0^{++}$  and  $2^{++}$  are used in Matrix Model input.

For  $0^{*++}$ , lattice has poor statistics near the continuum limit, so finite volume effects are substantial.

For  $2^{*++}$ , lattice has large errors due to the presence of two other glueball states in the vicinity. 

S. Vaidya (IISc/PI)

MatrixYM, Glueballs, Mass Spectrum

4 A N

- A natural reduction of SU(N) YM on  $S^3 \times \mathbb{R}$  to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on  $M_{3,N^2-1}(\mathbb{R})$ .
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided g(R) is chosen appropriately (our RG prescription).
- THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE PREDICTIONS FOR GLUEBALL MASSES.



- A natural reduction of SU(N) YM on  $S^3 \times \mathbb{R}$  to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on  $M_{3,N^2-1}(\mathbb{R})$ .
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided g(R) is chosen appropriately (our RG prescription).
- THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE PREDICTIONS FOR GLUEBALL MASSES.



- A natural reduction of SU(N) YM on  $S^3 \times \mathbb{R}$  to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on  $M_{3,N^2-1}(\mathbb{R})$ .
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided g(R) is chosen appropriately (our RG prescription).
- THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE PREDICTIONS FOR GLUEBALL MASSES.



- A natural reduction of SU(N) YM on  $S^3 \times \mathbb{R}$  to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on  $M_{3,N^2-1}(\mathbb{R})$ .
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided g(R) is chosen appropriately (our RG prescription).
- THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE PREDICTIONS FOR GLUEBALL MASSES.



- A natural reduction of SU(N) YM on  $S^3 \times \mathbb{R}$  to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on  $M_{3,N^2-1}(\mathbb{R})$ .
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided g(R) is chosen appropriately (our RG prescription).
- THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE PREDICTIONS FOR GLUEBALL MASSES.



(B)

Image: A matrix and a matrix

- A natural reduction of SU(N) YM on  $S^3 \times \mathbb{R}$  to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on  $M_{3,N^2-1}(\mathbb{R})$ .
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided g(R) is chosen appropriately (our RG prescription).
- THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE PREDICTIONS FOR GLUEBALL MASSES.



Image: A mathematical states in the second states in the second

# Ongoing Work and Outlook

- Investigate the glueball spectrum for SU(4), SU(5), SU(6), ···.
- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the  $\theta$ -term, and compute topological susceptibility  $\chi_t$ .
- Relation between  $\chi_t$  and the mass of  $\eta'$ .
- A much deeper puzzle: why does this model work so well?



# Ongoing Work and Outlook

- Investigate the glueball spectrum for SU(4), SU(5), SU(6), ···.
- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the  $\theta$ -term, and compute topological susceptibility  $\chi_t$ .
- Relation between  $\chi_t$  and the mass of  $\eta'$ .
- A much deeper puzzle: why does this model work so well?



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Ongoing Work and Outlook

- Investigate the glueball spectrum for SU(4), SU(5), SU(6), ···.
- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the  $\theta$ -term, and compute topological susceptibility  $\chi_t$ .
- Relation between  $\chi_t$  and the mass of  $\eta'$ .
- A much deeper puzzle: why does this model work so well?



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
## Ongoing Work and Outlook

- Investigate the glueball spectrum for SU(4), SU(5), SU(6), ···.
- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the  $\theta$ -term, and compute topological susceptibility  $\chi_t$ .
- Relation between  $\chi_t$  and the mass of  $\eta'$ .
- A much deeper puzzle: why does this model work so well?



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This is joint work with

 Nirmalendu Acharyya, AP Balachandran, Mahul Pandey and Sambuddha Sanyal arXiv:1606.08711

 Lattice data is taken from Morningstar and Peardon, Phys. Rev D 56, 4043 (1997); Chen *et al* Phys. Rev D. 73 014516 (2006).



(B)

Image: A matrix and a matrix

This is joint work with

- Nirmalendu Acharyya, AP Balachandran, Mahul Pandey and Sambuddha Sanyal arXiv:1606.08711
- Lattice data is taken from Morningstar and Peardon, Phys. Rev D 56, 4043 (1997); Chen *et al* Phys. Rev D. 73 014516 (2006).

4 E 5



f<sub>abc</sub> and d<sub>abc</sub> are the structure constants of SU(3).

۲

Dublin, Jan 2018 27 / 30

Spin-1

$$\begin{split} |\psi_{1}^{\dagger}\rangle &= d_{abc}A_{lb}^{\dagger}A_{lc}^{\dagger}A_{la}^{\dagger}|0\rangle \\ |\psi_{2}^{\dagger}\rangle &= \epsilon_{jkl}d_{ab_{1}c_{1}}f_{ab_{2}c_{2}}A_{lb_{1}}^{\dagger}A_{lc_{1}}^{\dagger}A_{kb_{2}}^{\dagger}A_{lc_{2}}^{\dagger}|0\rangle \\ |\psi_{3}^{\dagger}\rangle &= d_{ace}A_{lb}^{\dagger}A_{lb}^{\dagger}A_{lb}^{\dagger}A_{kc}^{\dagger}A_{ke}^{\dagger}|0\rangle \\ |\psi_{3}^{\dagger}\rangle &= d_{ace}A_{lb}^{\dagger}A_{lb}^{\dagger}A_{lc}^{\dagger}A_{kc}^{\dagger}A_{ke}^{\dagger}|0\rangle \\ |\psi_{3}^{\dagger}\rangle &= d_{ace}A_{lb}^{\dagger}A_{lb}^{\dagger}A_{lc}^{\dagger}A_{ke}^{\dagger}|0\rangle \\ |\psi_{3}^{\dagger}\rangle &= d_{ace}A_{lb}^{\dagger}A_{lb}^{\dagger}A_{lc}^{\dagger}A_{ke}^{\dagger}|0\rangle \\ |\psi_{3}^{\dagger}\rangle &= d_{ace}A_{lb}^{\dagger}A_{lb}^{\dagger}A_{lc}^{\dagger}A_{ke}^{\dagger}|0\rangle \\ |\psi_{3}^{\dagger}\rangle &= d_{ace}A_{lb}^{\dagger}A_{lb}^{\dagger}A_{lc}^{\dagger}A_{kc}^{\dagger}A_{ke}^{\dagger}|0\rangle \\ |\psi_{3}^{\dagger}\rangle &= \epsilon_{jkl}d_{abc}f_{ade}A_{lb}^{\dagger}A_{lc}^{\dagger}A_{kd}^{\dagger}A_{lc}^{\dagger}A_{la}^{\dagger}A_{lc}^{\dagger}A_{kc_{2}}^{\dagger}A_{kc_{2}}^{\dagger}|0\rangle \\ |\psi_{3}^{\dagger}\rangle &= \epsilon_{jk}d_{ab_{1}c_{1}}d_{aa_{2}b_{2}}A_{la_{1}}^{\dagger}A_{la}^{\dagger}A_{la}^{\dagger}A_{lb}^{\dagger}A_{lc}^{\dagger}A_{kc_{2}}^{\dagger}A_{lb_{2}}^{\dagger}|0\rangle \\ |\psi_{3}^{\dagger}\rangle &= \epsilon_{jk}d_{ab_{1}c_{1}}d_{ab_{2}c_{2}}A_{la}^{\dagger}A_{la}^{\dagger}A_{la}^{\dagger}A_{lb}^{\dagger}A_{la_{2}}^{\dagger}A_{lb_{2}}^{\dagger}|0\rangle \\ |\psi_{1}^{\dagger}\rangle &= \epsilon_{ijk}d_{ab_{1}c_{1}}d_{bb_{2}c_{2}}A_{la}^{\dagger}A_{la}^{\dagger}A_{la}^{\dagger}A_{lb}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}|0\rangle \\ |\psi_{1}^{\dagger}\rangle &= \epsilon_{ijk}d_{ab_{1}c_{1}}d_{bb_{2}c_{2}}A_{la}^{\dagger}A_{la}^{\dagger}A_{la}^{\dagger}A_{la}^{\dagger}A_{lb}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}|0\rangle \\ |\psi_{1}^{\dagger}\rangle &= \epsilon_{ijk}d_{ab_{1}c_{1}}d_{bb_{2}c_{2}}A_{la}^{\dagger}A_{la}^{\dagger}A_{la}^{\dagger}A_{la}^{\dagger}A_{lb}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}|0\rangle \\ |\psi_{1}^{\dagger}\rangle &= \epsilon_{ijk}d_{ab_{1}c_{1}}d_{bb_{2}c_{2}}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^{\dagger}A_{b}^$$

S. Vaidya (IISc/PI)

MatrixYM, Glueballs, Mass Spectrum

Dublin, Jan 2018 28 / 30

æ

◆□> ◆圖> ◆臣> ◆臣>

Q

$$\begin{split} |\psi_{1}^{2}\rangle &= (A_{ia}^{\dagger}A_{ja}^{\dagger} - \frac{1}{3}\delta_{ij}A_{ia}^{\dagger}A_{ja}^{\dagger})|0\rangle \\ |\psi_{2}^{2}\rangle &= A_{i_{1}a_{1}}^{\dagger}A_{i_{1}a_{1}}^{\dagger}(A_{ia_{2}}^{\dagger}A_{ja_{2}}^{\dagger} - \frac{1}{3}\delta_{ij}A_{ia_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ia_{1}}^{\dagger}A_{ia_{1}}^{\dagger}A_{ia_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{ja_{1}}^{\dagger}A_{j$$

S. Vaidya (IISc/PI)

Dublin, Jan 2018 29 / 30

æ

<ロ> <四> <ヨ> <ヨ>

 $\Omega$ 

## **New Identities**

We discovered some (new?) identities involving  $3 \times 8$  matrices:

$$Tr(M^{T}MD_{a}M^{T}MD_{a}) = -\frac{1}{2}Tr(M^{T}MD_{a})Tr(M^{T}MD_{a})$$
$$+ \frac{2}{3}Tr(M^{T}MM^{T}M) + \frac{1}{3}Tr(M^{T}M)^{2}$$
$$_{ijk}f_{abc}M_{ia}M_{jb}(MM^{T}M)_{kc} = \frac{1}{3}\epsilon_{ijk}f_{abc}M_{ia}M_{jb}M_{kc}Tr(M^{T}M)$$

where  $(D_a)_{bc} \equiv d_{abc}$ .

 $\epsilon$ 

э

Image: A matrix and a matrix