The Low-Energy Spectrum of Quantum Yang-Mills from Gauge Matrix Model

Sachindeo Vaidya

Centre for High Energy Physics, Indian Institute of Science, Bangalore, India

Quantum Physics: Fields, Particles and Information Geometry
Dublin Institute for Advanced Studies, Dublin 22 January 2018

Introduction

(1) Pure Yang-Mills Theory

(2) A New Matrix Model for Yang-Mills

3 Quantization and Spectrum of YM Matrix Model

4. Variation Estimate of Energies

(5) Comparison with Lattice Data

Introduction

(1) Pure Yang-Mills Theory
(2) A New Matrix Model for Yang-Mills
(3) Quantization and Spectrum of YM Matrix Model

4 Variation Estimate of Energies
(5) Comparison with Lattice Data

Introduction

(1) Pure Yang-Mills Theory
(2) A New Matrix Model for Yang-Mills
(3) Quantization and Spectrum of YM Matrix Model

(4) Variation Estimate of Energies

(5) Comparison with Lattice Data

Introduction

(1) Pure Yang-Mills Theory
(2) A New Matrix Model for Yang-Mills
(3) Quantization and Spectrum of YM Matrix Model
(4) Variation Estimate of Energies
(5) Comparison with Lattice Data

Introduction

(1) Pure Yang-Mills Theory
(2) A New Matrix Model for Yang-Mills
(3) Quantization and Spectrum of YM Matrix Model
(4) Variation Estimate of Energies
(5) Comparison with Lattice Data

Review of YM Theory

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity,
- Recall that the $S U(N)$ Yang-Mills action is

- The gauge symmetry

is actually a redundancy, and needs to be fixed.
S. Vaidya (IISc/PI)

Review of YM Theory

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity,
- Recall that the $S U(N)$ Yang-Mills action is

- The gauge symmetry
is actually a redundancy, and needs to be fixed.
S. Vaidya (IISc/PI)

Review of YM Theory

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity,
- Recall that the $S U(N)$ Yang-Mills action is

$$
\begin{aligned}
S & =-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right] \\
A_{\mu} & =A_{\mu}^{a} T^{a}, \quad \operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b}, \quad a, b=1, \cdots N^{2}-1
\end{aligned}
$$

- The gauge symmetry

Review of YM Theory

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity,
- Recall that the $S U(N)$ Yang-Mills action is

$$
\begin{aligned}
S & =-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right] \\
A_{\mu} & =A_{\mu}^{a} T^{a}, \quad \operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b}, \quad a, b=1, \cdots N^{2}-1
\end{aligned}
$$

- The gauge symmetry

$$
u \cdot A_{\mu} \mapsto u A_{\mu} u^{-1}+u \partial_{\mu} u^{-1}, \quad u(x) \in S U(N)
$$

is actually a redundancy, and needs to be fixed.

Review of YM Theory

- What are the physical states of QCD?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity,
- Recall that the $S U(N)$ Yang-Mills action is

$$
\begin{aligned}
S & =-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right] \\
A_{\mu} & =A_{\mu}^{a} T^{a}, \quad \operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b}, \quad a, b=1, \cdots N^{2}-1
\end{aligned}
$$

- The gauge symmetry

$$
u \cdot A_{\mu} \mapsto u A_{\mu} u^{-1}+u \partial_{\mu} u^{-1}, \quad u(x) \in S U(N)
$$

is actually a redundancy, and needs to be fixed.

Groups(s) of Gauge Transformations

- Our interest is in YM theory on $S^{3} \times \mathbb{R}\left(\right.$ secretly $\left.\mathbb{R}^{3} \times \mathbb{R}\right)$.
- Temporal gauge $A_{0}=0$. The configuration space is based on $A_{i}(x)=A_{i}^{a}(x) T^{a}$.
- Group of all gauge transformations:

- Group of asymptotically trivial gauge transformations:

- Group \mathcal{G}_{0}^{∞} of asymptotically and topologically trivial gauge transformations: this is the connected component of \mathcal{G}^{∞}

Groups(s) of Gauge Transformations

- Our interest is in YM theory on $S^{3} \times \mathbb{R}$ (secretly $\mathbb{R}^{3} \times \mathbb{R}$).
- Temporal gauge $A_{0}=0$. The configuration space is based on $A_{i}(x)=A_{i}^{a}(x) T^{a}$.
- Group of all gauge transformations:

- Group of asymptotically trivial gauge transformations:
- $\operatorname{Group} \mathcal{G}_{0}^{\infty}$ of asymptotically and topologically trivial gauge transformations: this is the connected component of \mathcal{G}^{∞}

Groups(s) of Gauge Transformations

- Our interest is in YM theory on $S^{3} \times \mathbb{R}$ (secretly $\mathbb{R}^{3} \times \mathbb{R}$).
- Temporal gauge $A_{0}=0$. The configuration space is based on $A_{i}(x)=A_{i}^{a}(x) T^{a}$.
- Group of all gauge transformations:

$$
\mathcal{G} \equiv\left\{u: \mathbb{R}^{3} \rightarrow S U(N) \mid u(\vec{r}) \rightarrow u_{\infty} \in S U(N) \text { as }|\vec{r}| \rightarrow \infty\right\}
$$

- Group of asymptotically trivial gauge transformations:
- $\operatorname{Group} \mathcal{G}_{0}^{\infty}$ of asymptotically and topologically trivial gauge transformations: this is the connected component of \mathcal{G}^{∞}

Groups(s) of Gauge Transformations

- Our interest is in YM theory on $S^{3} \times \mathbb{R}$ (secretly $\mathbb{R}^{3} \times \mathbb{R}$).
- Temporal gauge $A_{0}=0$. The configuration space is based on $A_{i}(x)=A_{i}^{a}(x) T^{a}$.
- Group of all gauge transformations:

$$
\mathcal{G} \equiv\left\{u: \mathbb{R}^{3} \rightarrow S U(N) \mid u(\vec{r}) \rightarrow u_{\infty} \in S U(N) \text { as }|\vec{r}| \rightarrow \infty\right\}
$$

- Group of asymptotically trivial gauge transformations:

$$
\mathcal{G}^{\infty} \equiv\left\{u: \mathbb{R}^{3} \rightarrow S U(N) \mid u(\vec{r}) \rightarrow 1 \text { as }|\vec{r}| \rightarrow \infty\right\}
$$

- Group \mathcal{G}_{0}^{∞} of asymptotically and topologically trivial gauge transformations: this is the connected component of \mathcal{G}^{∞}

Groups(s) of Gauge Transformations

- Our interest is in YM theory on $S^{3} \times \mathbb{R}$ (secretly $\mathbb{R}^{3} \times \mathbb{R}$).
- Temporal gauge $A_{0}=0$. The configuration space is based on $A_{i}(x)=A_{i}^{a}(x) T^{a}$.
- Group of all gauge transformations:

$$
\mathcal{G} \equiv\left\{u: \mathbb{R}^{3} \rightarrow S U(N) \mid u(\vec{r}) \rightarrow u_{\infty} \in S U(N) \text { as }|\vec{r}| \rightarrow \infty\right\}
$$

- Group of asymptotically trivial gauge transformations:

$$
\mathcal{G}^{\infty} \equiv\left\{u: \mathbb{R}^{3} \rightarrow S U(N) \mid u(\vec{r}) \rightarrow 1 \text { as }|\vec{r}| \rightarrow \infty\right\}
$$

- Group \mathcal{G}_{0}^{∞} of asymptotically and topologically trivial gauge transformations: this is the connected component of \mathcal{G}^{∞}.

Gauge Transformations

- Both \mathcal{G}^{∞} and \mathcal{G}_{0}^{∞} are normal subgroups of \mathcal{G}.
- Gauss law $\left(\partial_{i} E_{i}+\left[A_{i}, E_{i}\right]=D_{i} E_{i} \approx 0\right)$ generates \mathcal{G}_{0}^{∞}.
- In fact $\mathcal{G}^{\infty} / \mathcal{G}_{0}^{\infty} \cong \pi_{3}(S U(N))=\mathbb{Z}$.
- Representations of this $\mathbb{Z} \ni n \rightarrow e^{i n \theta}$ give the QCD θ-states.
- The color group is $\mathcal{G} / \mathcal{G}^{\infty}=S U(N)$.
- The configuration space \mathcal{C} for local observables is $\mathcal{A} / \mathcal{G}$.
- This bundle is twisted.

Gauge Transformations

- Both \mathcal{G}^{∞} and \mathcal{G}_{0}^{∞} are normal subgroups of \mathcal{G}.
- Gauss law ($\left.\partial_{i} E_{i}+\left[A_{i}, E_{i}\right]=D_{i} E_{i} \approx 0\right)$ generates \mathcal{G}_{0}^{∞}.
- In fact $\mathcal{G}^{\infty} / \mathcal{G}_{0}^{\infty} \cong \pi_{3}(S U(N))=\mathbb{Z}$.
- Representations of this $\mathbb{Z} \ni n \rightarrow e^{\text {in } \theta}$ give the QCD θ-states.
- The color group is $\mathcal{G} / \mathcal{G}^{\infty}=\operatorname{SU}(N)$.
- The configuration space \mathcal{C} for local observables is $\mathcal{A} / \mathcal{G}$.
- This bundle is twisted.

Gauge Transformations

- Both \mathcal{G}^{∞} and \mathcal{G}_{0}^{∞} are normal subgroups of \mathcal{G}.
- Gauss law ($\left.\partial_{i} E_{i}+\left[A_{i}, E_{i}\right]=D_{i} E_{i} \approx 0\right)$ generates \mathcal{G}_{0}^{∞}.
- In fact $\mathcal{G}^{\infty} / \mathcal{G}_{0}^{\infty} \cong \pi_{3}(S U(N))=\mathbb{Z}$.
- Representations of this $\mathbb{Z} \ni n \rightarrow e^{i n \theta}$ give the QCD θ-states.
- The color group is $\mathcal{G} / \mathcal{G}^{\infty}=\operatorname{SU}(N)$.
- The configuration space \mathcal{C} for local observables is $\mathcal{A} / \mathcal{G}$.
- This bundle is twisted.

Gauge Transformations

- Both \mathcal{G}^{∞} and \mathcal{G}_{0}^{∞} are normal subgroups of \mathcal{G}.
- Gauss law ($\left.\partial_{i} E_{i}+\left[A_{i}, E_{i}\right]=D_{i} E_{i} \approx 0\right)$ generates \mathcal{G}_{0}^{∞}.
- In fact $\mathcal{G}^{\infty} / \mathcal{G}_{0}^{\infty} \cong \pi_{3}(S U(N))=\mathbb{Z}$.
- Representations of this $\mathbb{Z} \ni n \rightarrow e^{\text {in } \theta}$ give the QCD θ-states.
- The configuration space \mathcal{C} for local observables is $\mathcal{A} / \mathcal{G}$.
- This bundle is twisted.

Gauge Transformations

- Both \mathcal{G}^{∞} and \mathcal{G}_{0}^{∞} are normal subgroups of \mathcal{G}.
- Gauss law ($\left.\partial_{i} E_{i}+\left[A_{i}, E_{i}\right]=D_{i} E_{i} \approx 0\right)$ generates \mathcal{G}_{0}^{∞}.
- In fact $\mathcal{G}^{\infty} / \mathcal{G}_{0}^{\infty} \cong \pi_{3}(S U(N))=\mathbb{Z}$.
- Representations of this $\mathbb{Z} \ni n \rightarrow e^{i n \theta}$ give the QCD θ-states.
- The color group is $\mathcal{G} / \mathcal{G}^{\infty}=\operatorname{SU}(N)$.
- The configuration space \mathcal{C} for local observables is $\mathcal{A} / \mathcal{G}$.
- This bundle is twisted.

Gauge Transformations

- Both \mathcal{G}^{∞} and \mathcal{G}_{0}^{∞} are normal subgroups of \mathcal{G}.
- Gauss law ($\left.\partial_{i} E_{i}+\left[A_{i}, E_{i}\right]=D_{i} E_{i} \approx 0\right)$ generates \mathcal{G}_{0}^{∞}.
- In fact $\mathcal{G}^{\infty} / \mathcal{G}_{0}^{\infty} \cong \pi_{3}(S U(N))=\mathbb{Z}$.
- Representations of this $\mathbb{Z} \ni n \rightarrow e^{i n \theta}$ give the QCD θ-states.
- The color group is $\mathcal{G} / \mathcal{G}^{\infty}=\operatorname{SU}(N)$.
- The configuration space \mathcal{C} for local observables is $\mathcal{A} / \mathcal{G}$.
- This bundle is twisted.

Case of $S U(2)$

- The key idea: Narasimhan-Ramadas on $S U(2)$ YM theory on $S^{3} \times \mathbb{R}$.
- Their aim: prove rigorously that $\mathcal{G}_{0}^{\infty} \rightarrow \mathcal{A} \rightarrow \mathcal{A} / \mathcal{G}_{0}^{\infty}$ is twisted.
- They consider a special subset of left-invariant connections

$$
\omega=I\left(\operatorname{Tr} \tau_{i} u^{-1} d u\right) M_{i j} \tau_{j}, \quad u \in S U(2), M \in M_{3}(\mathbb{R}) \equiv M_{0}
$$

- This connection is pulled back to spatial S^{3} using $S^{3} \rightarrow S U(2)$.

Case of $S U(2)$

- The key idea: Narasimhan-Ramadas on $S U(2)$ YM theory on $S^{3} \times \mathbb{R}$.
- Their aim: prove rigorously that $\mathcal{G}_{0}^{\infty} \rightarrow \mathcal{A} \rightarrow \mathcal{A} / \mathcal{G}_{0}^{\infty}$ is twisted.
- They consider a special subset of left-invariant connections

- This connection is pulled back to spatial S^{3} using $S^{3} \rightarrow S U(2)$.

Case of $S U(2)$

- The key idea: Narasimhan-Ramadas on $S U(2)$ YM theory on $S^{3} \times \mathbb{R}$.
- Their aim: prove rigorously that $\mathcal{G}_{0}^{\infty} \rightarrow \mathcal{A} \rightarrow \mathcal{A} / \mathcal{G}_{0}^{\infty}$ is twisted.
- They consider a special subset of left-invariant connections

$$
\omega=i\left(\operatorname{Tr} \tau_{i} u^{-1} d u\right) M_{i j} \tau_{j}, \quad u \in S U(2), M \in M_{3}(\mathbb{R}) \equiv \mathcal{M}_{0}
$$

- This connection is pulled back to spatial S^{3} using $S^{3} \rightarrow S U(2)$.

Case of $S U(2)$

- The key idea: Narasimhan-Ramadas on $S U(2)$ YM theory on $S^{3} \times \mathbb{R}$.
- Their aim: prove rigorously that $\mathcal{G}_{0}^{\infty} \rightarrow \mathcal{A} \rightarrow \mathcal{A} / \mathcal{G}_{0}^{\infty}$ is twisted.
- They consider a special subset of left-invariant connections

$$
\omega=i\left(\operatorname{Tr} \tau_{i} u^{-1} d u\right) M_{i j} \tau_{j}, \quad u \in S U(2), M \in M_{3}(\mathbb{R}) \equiv \mathcal{M}_{0}
$$

- This connection is pulled back to spatial S^{3} using $S^{3} \rightarrow S U(2)$.

Case of $S U(2)$

- All such ω 's are preserved under global $S U(2)$ adjoint action $\omega \rightarrow v \omega v^{-1}$, or, equivalently, $M \rightarrow M R^{T}$. (R is in image of v in $S O(3)$.
- The action of $S O(3)$ on \mathcal{M}_{0} is free for all matrices with rank 2 or 3.
- This gives a fibre bundle $S O(3) \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{0} / S O(3)$.
- Narasimhan-Ramadas show that this bundle is twisted, and hence the full gauge bundle is also twisted.
- The matrix model for $S U(2)$ comes from this matrix $M_{i a}$.

Case of $S U(2)$

- All such ω 's are preserved under global $S U(2)$ adjoint action $\omega \rightarrow v \omega v^{-1}$, or, equivalently, $M \rightarrow M R^{T}$. (R is in image of v in $S O(3)$.
- The action of $S O(3)$ on \mathcal{M}_{0} is free for all matrices with rank 2 or 3 .
- This gives a fibre bundle $S O(3) \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{0} / S O(3)$.
- Narasimhan-Ramadas show that this bundle is twisted, and hence the full gauge bundle is also twisted.
- The matrix model for $S U(2)$ comes from this matrix $M_{i a}$.

Case of $S U(2)$

- All such ω 's are preserved under global $S U(2)$ adjoint action $\omega \rightarrow v \omega v^{-1}$, or, equivalently, $M \rightarrow M R^{T}$. (R is in image of v in $S O(3)$.
- The action of $S O(3)$ on \mathcal{M}_{0} is free for all matrices with rank 2 or 3 .
- This gives a fibre bundle $S O(3) \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{0} / S O(3)$.
- Narasimhan-Ramadas show that this bundle is twisted, and hence the full gauge bundle is also twisted.
- The matrix model for $S U(2)$ comes from this matrix $M_{i a}$.

Case of $S U(2)$

- All such ω 's are preserved under global $\operatorname{SU(2)}$ adjoint action $\omega \rightarrow v \omega v^{-1}$, or, equivalently, $M \rightarrow M R^{T}$. (R is in image of v in $S O(3)$.
- The action of $S O(3)$ on \mathcal{M}_{0} is free for all matrices with rank 2 or 3 .
- This gives a fibre bundle $S O(3) \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{0} / S O(3)$.
- Narasimhan-Ramadas show that this bundle is twisted, and hence the full gauge bundle is also twisted.
- The matrix model for $S U(2)$ comes from this matrix $M_{i a}$.

Case of $S U(2)$

- All such ω 's are preserved under global $\operatorname{SU(2)}$ adjoint action $\omega \rightarrow v \omega v^{-1}$, or, equivalently, $M \rightarrow M R^{T}$. (R is in image of v in $S O(3)$.
- The action of $S O(3)$ on \mathcal{M}_{0} is free for all matrices with rank 2 or 3 .
- This gives a fibre bundle $S O(3) \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{0} / S O(3)$.
- Narasimhan-Ramadas show that this bundle is twisted, and hence the full gauge bundle is also twisted.
- The matrix model for $S U(2)$ comes from this matrix $M_{i a}$.

Case of $S U(3)$

- Start with the left-invariant one-form on $S U(3)$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in S U(3)
$$

- Here M is a 8×8 real matrix.
- Man the spatial S^{3} diffeomornhically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on SU(3) representing λ_{i} $(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.
- $\Omega\left(X_{i}\right)=-M_{i b} \frac{\lambda_{b}}{2}$.
- This gives us the gauge potential $A_{j}=-i M_{i b} \frac{\lambda_{b}}{2}$.

Case of $S U(3)$

- Start with the left-invariant one-form on $\operatorname{SU(3)}$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in S U(3)
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on $\operatorname{SU}(3)$ representing λ_{i} $(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.
- $\Omega\left(X_{i}\right)=-M_{i b} \frac{\lambda_{b}}{2}$.
- This gives us the gauge potential $A_{j}=-i M_{i b} \frac{\lambda_{b}}{2}$.

Case of $S U(3)$

- Start with the left-invariant one-form on $S U(3)$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in S U(3)
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on SU(3) representing λ ($i=1,2,3$), then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.
- $\Omega\left(X_{i}\right)=-M_{i b} \frac{\lambda_{b}}{2}$.
- This gives us the gauge potential $A_{j}=-i M_{i b} \frac{\lambda_{b}}{2}$.

Case of $S U(3)$

- Start with the left-invariant one-form on $S U(3)$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in S U(3)
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on $S U(3)$ representing λ_{i} $(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.

Case of $S U(3)$

- Start with the left-invariant one-form on $S U(3)$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in S U(3)
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on $S U(3)$ representing λ_{i}
$(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.
- $\Omega\left(X_{i}\right)=-M_{i b} \frac{\lambda_{b}}{2}$.
- This gives us the gauge potential $A_{j}=-i M_{i b} \frac{\lambda_{b}}{2}$

Case of $S U(3)$

- Start with the left-invariant one-form on $S U(3)$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in S U(3)
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on $S U(3)$ representing λ_{i}
$(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.
- $\Omega\left(X_{i}\right)=-M_{i b} \frac{\lambda_{b}}{2}$.
- This gives us the gauge potential $A_{j}=-i M_{i b} \frac{\lambda_{b}}{2}$.

SU(3) Yang-Mills

- The M's parametrize a submanifold of connections \mathcal{A}.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left - the ones responsible for the Gribov problem.
- Global color SU(3) acts on the vector potential:

$$
A_{j} \rightarrow h A_{j} h^{-1}, \quad \text { or } M \rightarrow M(A d h)^{T}, \quad h \in S U(3)
$$

- For $S U(3)$, the M 's are 3×8 matrices.
- The space $\mathcal{M} / \operatorname{Ad} S U(3)$ is twisted.

SU(3) Yang-Mills

- The M's parametrize a submanifold of connections \mathcal{A}.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left - the ones responsible for the Gribov problem.
- Global color SU(3) acts on the vector potential:

- For $S U(3)$, the M 's are 3×8 matrices.
- The space $\mathcal{M} / A d S U(3)$ is twisted.

SU(3) Yang-Mills

- The M's parametrize a submanifold of connections \mathcal{A}.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left - the ones responsible for the Gribov problem.
- Global color SU(3) acts on the vector potential:

- For $S U(3)$, the M 's are 3×8 matrices.
- The space $\mathcal{M} / \operatorname{Ad} S U(3)$ is twisted.

SU(3) Yang-Mills

- The M's parametrize a submanifold of connections \mathcal{A}.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left - the ones responsible for the Gribov problem.
- Global color SU(3) acts on the vector potential:

$$
A_{j} \rightarrow h A_{j} h^{-1}, \quad \text { or } \quad M \rightarrow M(A d h)^{T}, \quad h \in S U(3)
$$

- For $S U(3)$, the M 's are 3×8 matrices.
- The space $\mathcal{M} / A d \operatorname{SU}(3)$ is twisted.

SU(3) Yang-Mills

- The M's parametrize a submanifold of connections \mathcal{A}.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left - the ones responsible for the Gribov problem.
- Global color SU(3) acts on the vector potential:

$$
A_{j} \rightarrow h A_{j} h^{-1}, \quad \text { or } \quad M \rightarrow M(A d h)^{T}, \quad h \in S U(3)
$$

- For $S U(3)$, the M 's are 3×8 matrices.
- The space $\mathcal{M} / A d S U(3)$ is twisted.

Configuration space of $\operatorname{SU}(3)$ YM Matrix Model

- The configuration space \mathcal{C} for pure $\operatorname{SU}(3)$ is $M_{3,8}(\mathbb{R}) / \operatorname{Ad} S U(3)$.
- This space has dimension $3.8-8=16$ (not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} S U(N)$.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.

Configuration space of $S U(3)$ YM Matrix Model

- The configuration space \mathcal{C} for pure $S U(3)$ is $M_{3,8}(\mathbb{R}) / \operatorname{Ad} S U(3)$.
- This space has dimension $3.8-8=16$ (not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} S U(N)$.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.

Configuration space of $S U(3)$ YM Matrix Model

- The configuration space \mathcal{C} for pure $S U(3)$ is $M_{3,8}(\mathbb{R}) / A d S U(3)$.
- This space has dimension $3.8-8=16$ (not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} \operatorname{SU}(N)$.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.

Configuration space of $S U(3)$ YM Matrix Model

- The configuration space \mathcal{C} for pure $S U(3)$ is $M_{3,8}(\mathbb{R}) / A d S U(3)$.
- This space has dimension $3.8-8=16$ (not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} \operatorname{SU}(N)$.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.

Quantization of the Matrix Model

- Recall that the YM Hamiltonian is

$$
H=\frac{1}{2} \int d^{3} x \operatorname{Tr}\left(g^{2} E_{i} E_{i}+\frac{1}{g^{2}} F_{i j}^{2}\right) .
$$

- For the matrix model, $M_{i a}$ are the dynamical variables, and the (Legendre transform of) $\frac{d M_{i a}}{d t}$ as the conjugate of $M_{i a}$.
- We identify this conjugate operator as the matrix model chormoelectric field $E_{i a}$.
- Quantisation: $\left[M_{i z}, E_{i b}\right]=i \delta_{i j} \delta_{a b}$.

Quantization of the Matrix Model

- Recall that the YM Hamiltonian is

$$
H=\frac{1}{2} \int d^{3} x \operatorname{Tr}\left(g^{2} E_{i} E_{i}+\frac{1}{g^{2}} F_{i j}^{2}\right) .
$$

- For the matrix model, $M_{i a}$ are the dynamical variables, and the (Legendre transform of) $\frac{d M_{i a}}{d t}$ as the conjugate of $M_{i a}$.
- We identify this conjugate operator as the matrix model chormoelectric field $E_{i a}$.
- Quantisation: $\left[M_{i z}, E_{j b}\right]=i \delta_{i j} \delta_{a b}$.

Quantization of the Matrix Model

- Recall that the YM Hamiltonian is

$$
H=\frac{1}{2} \int d^{3} x \operatorname{Tr}\left(g^{2} E_{i} E_{i}+\frac{1}{g^{2}} F_{i j}^{2}\right) .
$$

- For the matrix model, $M_{i a}$ are the dynamical variables, and the (Legendre transform of) $\frac{d M_{i a}}{d t}$ as the conjugate of $M_{i a}$.
- We identify this conjugate operator as the matrix model chormoelectric field $E_{i a}$.
- Quantisation: $\left[M_{i a}, E_{j b}\right]=i \delta_{j i} \delta_{a b}$.

Quantization of the Matrix Model

- Recall that the YM Hamiltonian is

$$
H=\frac{1}{2} \int d^{3} x \operatorname{Tr}\left(g^{2} E_{i} E_{i}+\frac{1}{g^{2}} F_{i j}^{2}\right) .
$$

- For the matrix model, $M_{i a}$ are the dynamical variables, and the (Legendre transform of) $\frac{d M_{i a}}{d t}$ as the conjugate of $M_{i a}$.
- We identify this conjugate operator as the matrix model chormoelectric field $E_{i a}$.
- Quantisation: $\left[M_{i a}, E_{j b}\right]=i \delta_{i j} \delta_{a b}$.

Quantization of the Matrix Model

- The matrix model Hamiltonian is

$$
H=\frac{1}{R}\left(\frac{g^{2} E_{i a} E_{i a}}{2}+V(M)\right)=\frac{1}{R}\left(-\frac{g^{2}}{2} \sum_{i, a} \frac{\partial^{2}}{\partial M_{i a}^{2}}+V(M)\right)
$$

- The overall factor of R comes from dimensional analysis.
- The Gauss' law constraint: $\left[G_{a}, \mathcal{O}\right] \equiv\left[f_{a b c} M_{i b} E_{i c}, \mathcal{O}\right]=0$ for all observables \mathcal{O}.
- The physical states $\left|\psi_{\text {phys }}\right\rangle$ are given by $G_{a}\left|\psi_{\text {phys }}\right\rangle=0$.
- The Hilbert space has scalar product

Quantization of the Matrix Model

- The matrix model Hamiltonian is

$$
H=\frac{1}{R}\left(\frac{g^{2} E_{i a} E_{i a}}{2}+V(M)\right)=\frac{1}{R}\left(-\frac{g^{2}}{2} \sum_{i, a} \frac{\partial^{2}}{\partial M_{i a}^{2}}+V(M)\right)
$$

- The overall factor of R comes from dimensional analysis.
- The Gauss' law constraint: $\left[G_{a}, \mathcal{O}\right] \equiv\left[f_{a b c} M_{i b} E_{i c}, \mathcal{O}\right]=0$ for all observables \mathcal{O}.
- The physical states $\left(\psi_{\text {phys }}\right)$ are given by $G_{a}\left|\psi_{\text {phys }}\right\rangle=0$.
- The Hilbert space has scalar product

Quantization of the Matrix Model

- The matrix model Hamiltonian is

$$
H=\frac{1}{R}\left(\frac{g^{2} E_{i a} E_{i a}}{2}+V(M)\right)=\frac{1}{R}\left(-\frac{g^{2}}{2} \sum_{i, a} \frac{\partial^{2}}{\partial M_{i a}^{2}}+V(M)\right)
$$

- The overall factor of R comes from dimensional analysis.
- The Gauss' law constraint: $\left[G_{a}, \mathcal{O}\right] \equiv\left[f_{a b c} M_{i b} E_{i c}, \mathcal{O}\right]=0$ for all observables \mathcal{O}.
> - The physical states $\left|\psi_{\text {phys }}\right\rangle$ are given by $G_{a}\left|\psi_{\text {phys }}\right\rangle=0$
> - The Hilbert space has scalar product

Quantization of the Matrix Model

- The matrix model Hamiltonian is

$$
H=\frac{1}{R}\left(\frac{g^{2} E_{i a} E_{i a}}{2}+V(M)\right)=\frac{1}{R}\left(-\frac{g^{2}}{2} \sum_{i, a} \frac{\partial^{2}}{\partial M_{i a}^{2}}+V(M)\right)
$$

- The overall factor of R comes from dimensional analysis.
- The Gauss' law constraint: $\left[G_{a}, \mathcal{O}\right] \equiv\left[f_{a b c} M_{i b} E_{i c}, \mathcal{O}\right]=0$ for all observables \mathcal{O}.
- The physical states $\left|\psi_{\text {phys }}\right\rangle$ are given by $G_{a}\left|\psi_{\text {phys }}\right\rangle=0$.
- The Hilbert space has scalar product

Quantization of the Matrix Model

- The matrix model Hamiltonian is

$$
H=\frac{1}{R}\left(\frac{g^{2} E_{i a} E_{i a}}{2}+V(M)\right)=\frac{1}{R}\left(-\frac{g^{2}}{2} \sum_{i, a} \frac{\partial^{2}}{\partial M_{i a}^{2}}+V(M)\right)
$$

- The overall factor of R comes from dimensional analysis.
- The Gauss' law constraint: $\left[G_{a}, \mathcal{O}\right] \equiv\left[f_{a b c} M_{i b} E_{i c}, \mathcal{O}\right]=0$ for all observables \mathcal{O}.
- The physical states $\left|\psi_{\text {phys }}\right\rangle$ are given by $G_{a}\left|\psi_{\text {phys }}\right\rangle=0$.
- The Hilbert space has scalar product

$$
\left(\psi_{1}, \psi_{2}\right)=\int \prod_{i, a} d M_{i a} \bar{\psi}_{1}(M) \psi_{2}(M) .
$$

Spectrum of H

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$
$\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)$
- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at $g=0$.
- We estimate the energies by variational calculation instead.

Spectrum of H

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$

$$
\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)
$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at $g=0$.
- We estimate the energies by variational calculation instead.

Spectrum of H

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$

$$
\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)
$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at $g=0$.
- We estimate the energies by variational calculation instead.

Spectrum of H

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$

$$
\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)
$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at $g=0$.
- We estimate the energies by variational calculation instead.

Spectrum of H

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$

$$
\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)
$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at $g=0$.
- We estimate the energies by variational calculation instead.

Spectrum of H

- $H=H_{0}+\frac{1}{R} V_{\text {int }}(M)=\frac{1}{R}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial M_{i a}^{2}}+\frac{1}{2} M_{i a} M_{i a}\right)+$

$$
\frac{1}{R}\left(-\frac{g}{2} \epsilon_{i j k} f_{a b c} M_{i a} M_{j b} M_{k c}+\frac{g^{2}}{4} f_{a b c} f_{a d e} M_{i b} M_{j c} M_{i d} M_{j e}\right)
$$

- The interaction has a cubic term and a quartic term.
- The potential grows quartically, and is smooth everywhere.
- The spectrum is discrete.
- We cannot treat the cubic + quartic terms as a perturbation, because the perturbation series is non-analytic at $g=0$.
- We estimate the energies by variational calculation instead.

Zero-point Energy

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

- The R-dependence of c comes from renormalization .
- We henceforth work with this Hamiltonian.

Zero-point Energy

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

- The R-dependence of c comes from renormalization
- We henceforth work with this Hamiltonian.

Zero-point Energy

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

- The R-dependence of c comes from renormalization
- We henceforth work with this Hamiltonian.

Zero-point Energy

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

$$
H+\frac{c(R)}{R}
$$

- The R-dependence of c comes from renormalization
- We henceforth work with this Hamiltonian.

Zero-point Energy

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

$$
H+\frac{c(R)}{R}
$$

- The R-dependence of c comes from renormalization .
- We henceforth work with this Hamiltonian.

Zero-point Energy

- The H only accounts for the classical zero-mode sector of the full theory.
- The full QFT contributes an extra constant to the energy.
- It comes from zero-point energy of all the higher, spatially dependent modes.
- We can account for this by working with

$$
H+\frac{c(R)}{R}
$$

- The R-dependence of c comes from renormalization .
- We henceforth work with this Hamiltonian.

Variational Computational Scheme

- Trial wavefunctions are linear combinations of eigenstates of H_{0}.
- Angular momentum ($L_{i}=\epsilon_{i j k} M_{j a} E_{k a}$) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix $\tilde{H}_{i j}=\left\langle\psi_{i}\right| H\left|\psi_{j}\right\rangle$.
- Then obtain the eigenvalues of \tilde{H} numerically.

Variational Computational Scheme

- Trial wavefunctions are linear combinations of eigenstates of H_{0}.
- Angular momentum ($L_{i}=\epsilon_{i j k} M_{j a} E_{k a}$) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix $\tilde{H}_{i j}=\left\langle\psi_{i}\right| H\left|\psi_{j}\right\rangle_{\text {. }}$
- Then obtain the eigenvalues of \tilde{H} numerically.

Variational Computational Scheme

- Trial wavefunctions are linear combinations of eigenstates of H_{0}.
- Angular momentum ($L_{i}=\epsilon_{i j k} M_{j a} E_{k a}$) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix $\tilde{H}_{i j}=\left\langle\psi_{i}\right| H\left|\psi_{j}\right\rangle$
- Then obtain the eigenvalues of \tilde{H} numerically.

Variational Computational Scheme

- Trial wavefunctions are linear combinations of eigenstates of H_{0}.
- Angular momentum ($L_{i}=\epsilon_{i j k} M_{j a} E_{k a}$) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix \tilde{H}_{j}

Variational Computational Scheme

- Trial wavefunctions are linear combinations of eigenstates of H_{0}.
- Angular momentum ($L_{i}=\epsilon_{i j k} M_{j a} E_{k a}$) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix \tilde{H}_{j}
- Then obtain the eigenvalues of \tilde{H} numerically.

Variational Computational Scheme

- Trial wavefunctions are linear combinations of eigenstates of H_{0}.
- Angular momentum ($L_{i}=\epsilon_{i j k} M_{j a} E_{k a}$) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix $\tilde{H}_{i j}=\left\langle\psi_{i}\right| H\left|\psi_{j}\right\rangle$.
- Then obtain the eigenvalues of \tilde{H} numerically.

Variational Computational Scheme

- Trial wavefunctions are linear combinations of eigenstates of H_{0}.
- Angular momentum ($L_{i}=\epsilon_{i j k} M_{j a} E_{k a}$) commutes with the Hamiltonian.
- Organize the eigenstates and energies by their spins s.
- We consider 16 variational states with spin-0, 10 triplets with spin-1, and 18 quintuplets with spin-2.
- Express the cubic and quartic interaction terms in terms of the creation/annihilation operators.
- Compute the variational Hamiltonian matrix $\tilde{H}_{i j}=\left\langle\psi_{i}\right| H\left|\psi_{j}\right\rangle$.
- Then obtain the eigenvalues of \tilde{H} numerically.

Parity P and Charge Conjugation C

- We need to assign P and C to the variational eigenstates.
- Under C : $M_{i a} T_{a} \rightarrow M_{i a} T_{a}^{*}$
- C is a good symmetry of H and can be assigned unambiguously.
- P poses a slight problem, because $P: M_{i a} \rightarrow-M_{i a}$, but the cubic term in H flips in sign under P.
- In the large R limit, the expectation value of P in a variational eigenstate asymptotes to ± 1.
- So P can be assigned in the "flat space" limit.

Parity P and Charge Conjugation C

- We need to assign P and C to the variational eigenstates.
- Under $C: M_{i a} T_{a} \rightarrow M_{i a} T_{a}^{*}$.
- C is a good symmetry of H and can be assigned unambiguously.
- P poses a slight problem, because $P: M_{i a} \rightarrow-M_{i a}$, but the cubic term in H flips in sign under P.
- In the large R limit, the expectation value of P in a variational eigenstate asymptotes to ± 1.
- So P can be assianed in the "flat space" limit.

Parity P and Charge Conjugation C

- We need to assign P and C to the variational eigenstates.
- Under $C: M_{i a} T_{a} \rightarrow M_{i a} T_{a}^{*}$.
- C is a good symmetry of H and can be assigned unambiguously.
- P poses a slight problem, because $P: M_{i a} \rightarrow-M_{i a}$, but the cubic term in H flips in sign under P.
- In the large R limit, the expectation value of P in a variational eigenstate asymptotes to ± 1
- So P can be assigned in the "flat space" limit.

Parity P and Charge Conjugation C

- We need to assign P and C to the variational eigenstates.
- Under $C: M_{i a} T_{a} \rightarrow M_{i a} T_{a}^{*}$.
- C is a good symmetry of H and can be assigned unambiguously.
- P poses a slight problem, because $P: M_{i a} \rightarrow-M_{i a}$, but the cubic term in H flips in sign under P.
- In the large R limit, the expectation value of P in a variational
eigenstate asymptotes to ± 1.
- So P can be assigned in the "flat space" limit.

Parity P and Charge Conjugation C

- We need to assign P and C to the variational eigenstates.
- Under $C: M_{i a} T_{a} \rightarrow M_{i a} T_{a}^{*}$.
- C is a good symmetry of H and can be assigned unambiguously.
- P poses a slight problem, because $P: M_{i a} \rightarrow-M_{i a}$, but the cubic term in H flips in sign under P.
- In the large R limit, the expectation value of P in a variational eigenstate asymptotes to ± 1.
- So P can be assigned in the "flat space" limit.

Parity P and Charge Conjugation C

- We need to assign P and C to the variational eigenstates.
- Under $C: M_{i a} T_{a} \rightarrow M_{i a} T_{a}^{*}$.
- C is a good symmetry of H and can be assigned unambiguously.
- P poses a slight problem, because $P: M_{i a} \rightarrow-M_{i a}$, but the cubic term in H flips in sign under P.
- In the large R limit, the expectation value of P in a variational eigenstate asymptotes to ± 1.
- So P can be assigned in the "flat space" limit.

The large R limit

- For a given s, the energies are of the form $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$, measured in units of R^{-1}.
- Neither R nor the bare coupling g are directly measurable.
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.
- For fixed g, all the $\mathcal{E}_{n}[s]$ vanish in the 'flat space" limit $R \rightarrow \infty$. (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!

The large R limit

- For a given s, the energies are of the form $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$, measured in units of R^{-1}.
- Neither R nor the bare coupling g are directly measurable.
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.
- For fixed a, all the $\mathcal{E}_{n}[s]$ vanish in the 'flat space" limit $R \rightarrow \infty$. (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!

The large R limit

- For a given s, the energies are of the form $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$, measured in units of R^{-1}.
- Neither R nor the bare coupling g are directly measurable.
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.
- For fixed g, all the $\mathcal{E}_{n}[s]$ vanish in the 'flat space" limit $R \rightarrow \infty$. (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!

The large R limit

- For a given s, the energies are of the form $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$, measured in units of R^{-1}.
- Neither R nor the bare coupling g are directly measurable.
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.
- For fixed g, all the $\mathcal{E}_{n}[s]$ vanish in the "flat space" limit $R \rightarrow \infty$. (an analogous situation occurs in lattice computations as well)
- But masses of physical particles must be computed in this limit!

The large R limit

- For a given s, the energies are of the form $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$, measured in units of R^{-1}.
- Neither R nor the bare coupling g are directly measurable.
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.
- For fixed g, all the $\mathcal{E}_{n}[s]$ vanish in the 'flat space" limit $R \rightarrow \infty$. (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!

The large R limit

- For a given s, the energies are of the form $\mathcal{E}_{n}[s]=\frac{f_{n}^{(s)}(g)+c(R)}{R}$, measured in units of R^{-1}.
- Neither R nor the bare coupling g are directly measurable.
- Energy differences depend on g and R, but not on c.
- Ratios of energy differences depend only on g.
- For fixed g, all the $\mathcal{E}_{n}[s]$ vanish in the 'flat space" limit $R \rightarrow \infty$. (an analogous situation occurs in lattice computations as well).
- But masses of physical particles must be computed in this limit!

Mass Difference Ratios

- Ratios of mass differences are independent of both $x(g)$ and $c(x)$.

Mass Difference Ratios

- Ratios of mass differences are independent of both $x(g)$ and $c(x)$.

Ratios of mass differences $\frac{\mathcal{E}(X)-\mathcal{E}\left(0^{++}\right)}{\mathcal{E}\left(2^{++}\right)-\mathcal{E}\left(0^{++}\right)}$as a function of g. (The black, blue and red curves represent spin- 0 , spin- 1 and spin-2 levels respectively.)

- $X\left(J^{P C}\right)=2^{++}, 0^{-+}, 2^{-+}, 0^{*++}, 1^{+-}, 2^{*-+}, 1^{--}, 0^{*-+}, 2^{--}$.

Integrated Renormalization Group Equation

- To get meaningful results, make g a function of R such that all energies have well-defined (and non-zero) values at $R=\infty$.
- Measure the energies in some other units (like, say, MeV), not in units of $1 / R$.
- The radius of S^{3} is now $x=R / l$ in these units.
- Then $\mathcal{E}_{n}[s]=\left(\frac{f_{n}^{(s)}(g)}{x}+\frac{c(x)}{x}\right) \frac{1}{\ell}$
- Make $g=g(x)$ by fixing $\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]$ to the observed (lattice) value.
- This is our integrated renormalization group equation $g(x)$.

Integrated Renormalization Group Equation

- To get meaningful results, make g a function of R such that all energies have well-defined (and non-zero) values at $R=\infty$.
- Measure the energies in some other units (like, say, MeV), not in units of $1 / R$.
- The radius of S^{3} is now $x=R / \ell$ in these units.
- Then $\mathcal{E}_{n}[s]=\left(\frac{f_{n}^{(s)}(g)}{x}+\frac{c(x)}{x}\right) \frac{1}{\ell}$
- Make $g=g(x)$ by fixing $\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]$ to the observed (lattice) value.
- This is our integrated renormalization group equation $g(x)$.

Integrated Renormalization Group Equation

- To get meaningful results, make g a function of R such that all energies have well-defined (and non-zero) values at $R=\infty$.
- Measure the energies in some other units (like, say, MeV), not in units of $1 / R$.
- The radius of S^{3} is now $x=R / \ell$ in these units.
- Then $\mathcal{E}_{n}[s]=\left(\frac{f_{n}^{f(s)}(g)}{x}+\frac{c(x)}{x}\right) \frac{1}{\ell}$
- Make $g=g(x)$ by fixing $\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]$ to the observed (lattice) value.
- This is our integrated renormalization group equation $g(x)$.

Integrated Renormalization Group Equation

- To get meaningful results, make g a function of R such that all energies have well-defined (and non-zero) values at $R=\infty$.
- Measure the energies in some other units (like, say, MeV), not in units of $1 / R$.
- The radius of S^{3} is now $x=R / \ell$ in these units.
- Then $\mathcal{E}_{n}[s]=\left(\frac{f_{(s)}^{(s)}(g)}{x}+\frac{c(x)}{x}\right) \frac{1}{\ell}$.
- Make $g=g(x)$ by fixing $\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]$ to the observed (lattice) value.
- This is our integrated renormalization group equation $g(x)$.

Integrated Renormalization Group Equation

- To get meaningful results, make g a function of R such that all energies have well-defined (and non-zero) values at $R=\infty$.
- Measure the energies in some other units (like, say, MeV), not in units of $1 / R$.
- The radius of S^{3} is now $x=R / \ell$ in these units.
- Then $\mathcal{E}_{n}[s]=\left(\frac{f^{(s)}(g)}{x}+\frac{c(x)}{x}\right) \frac{1}{\ell}$.
- Make $g=g(x)$ by fixing $\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]$ to the observed (lattice) value.
- This is our integrated renormalization group equation $g(x)$.

Integrated Renormalization Group Equation

- In practice it is easier to make $x(g)=\frac{\mathcal{E}_{0}[2]-\mathcal{E}_{0}[0]}{m\left(2^{++}\right)-m\left(0^{++}\right)}$.
$x(g)$ versus g.

- Here we have used $m\left(2^{++}\right)-m\left(0^{++}\right)=460 \mathrm{MeV}$.
- Actual numerical values of masses also need asymptotic $c(x) / x$.
- To fix this, demand that the physical mass of our lowest glueball be fixed to be within the range predicted by lattice simulations (1580 - 1840 MeV).
- Choosing 1050 MeV for asymptotic $c(x) / x$, we get the best fit with lattice predictions.
- Actual numerical values of masses also need asymptotic $c(x) / x$.
- To fix this, demand that the physical mass of our lowest glueball be fixed to be within the range predicted by lattice simulations (1580-1840 MeV).
- Choosing 1050 MeV for asymptotic $c(x) / x$, we get the best fit with lattice predictions.
- Actual numerical values of masses also need asymptotic $c(x) / x$.
- To fix this, demand that the physical mass of our lowest glueball be fixed to be within the range predicted by lattice simulations (1580-1840 MeV).
- Choosing 1050 MeV for asymptotic $c(x) / x$, we get the best fit with lattice predictions.

Glueball states $J^{P C}$	Physical masses from matrix model (MeV)	Physical masses from lattice QCD (MeV)
0^{++}	1757.08^{\dagger}	$1580-1840$
2^{++}	2257.08^{\dagger}	$2240-2540$
0^{-+}	2681.45	$2405-2715$
0^{*++}	3180.82	$2360-2980$
1^{+-}	3235.41	$2810-3150$
2^{-+}	3054.97	$2850-3230$
0^{*-+}	3568.02	$3400-3880$
1^{--}	3435.66	$3600-4060$
2^{*-+}	3435.75	$3660-4120$
2^{--}		$3765-4255$

$$
\dagger \text { † (input) }
$$

■ \equiv Lattice $\bullet \equiv$ Matrix Model. 0^{++}and 2^{++}are used in Matrix Model input.
For 0^{*++}, lattice has poor statistics near the continuum limit, so finite volume effects are substantial.
For 2^{*++}, lattice has large errors due to the presence of two other glueball states in the vicinity.

Summary

- A natural reduction of $S U(N)$ YM on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on $M_{3, N^{2}-1}(\mathbb{R})$.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).
- THESE ASYMFTOTIC VALUES AGREE WELL WITH LATTICE PREDICTIONS FOR GLUEBALL MASSES.

Summary

- A natural reduction of $S U(N)$ YM on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on $M_{3, N^{2}-1}(\mathbb{R})$.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).
- THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE PREDICTIONS FOR GLUEBALL MASSES.

Summary

- A natural reduction of $S U(N)$ YM on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on $M_{3, N^{2}-1}(\mathbb{R})$.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).
\square

Summary

- A natural reduction of $S U(N) \mathrm{YM}$ on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on $M_{3, N^{2}-1}(\mathbb{R})$.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).

PREDICTIONS FOR GLUEBALL MASSES.

Summary

- A natural reduction of $S U(N)$ YM on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on $M_{3, N^{2}-1}(\mathbb{R})$.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).

PREDICTIONS FOR GLUEBALL MASSES.

Summary

- A natural reduction of $S U(N)$ YM on $S^{3} \times \mathbb{R}$ to a matrix model.
- It captures the non-trivial topological character of the full gauge bundle.
- The matrix model based on $M_{3, N^{2}-1}(\mathbb{R})$.
- The canonical quantisation can be carried out, and the spectrum of the full Hamiltonian can be estimated variationally.
- In the large R limit, the eigenvalues tend to non-trivial asymptotic values provided $g(R)$ is chosen appropriately (our RG prescription).
- THESE ASYMPTOTIC VALUES AGREE WELL WITH LATTICE PREDICTIONS FOR GLUEBALL MASSES.

Ongoing Work and Outlook

- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the θ-term, and compute topological susceptibility χ_{t}.
- Relation between χ_{t} and the mass of η^{\prime}.

A much deeper puzzle: why does this model work so well?

Ongoing Work and Outlook

- Investigate the glueball spectrum for $S U(4), S U(5), S U(6), \cdots$.
- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the θ-term, and compute topological susceptibility χ t.
- Relation between χ_{t} and the mass of η^{\prime}.

Ongoing Work and Outlook

- Investigate the glueball spectrum for $S U(4), S U(5), S U(6), \cdots$.
- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the θ-term, and compute topological susceptibility χ_{t}.
- Relation between χ_{t} and the mass of η^{\prime}.

A much deeper puzzle: why does this model work so well?

Ongoing Work and Outlook

- Investigate the glueball spectrum for $S U(4), S U(5), S U(6), \cdots$.
- Include fermions (quarks), and try to get the masses of light hadrons.
- Include the θ-term, and compute topological susceptibility χ_{t}.
- Relation between χ_{t} and the mass of η^{\prime}.

A much deeper puzzle: why does this model work so well?

This is joint work with

- Nirmalendu Acharyya, AP Balachandran, Mahul Pandey and Sambuddha Sanyal arXiv:1606.08711
- Lattice data is taken from

Morningstar and Peardon, Phys. Rev D 56, 4043 (1997); Chen et al Phys. Rev D. 73014516 (2006).

This is joint work with

- Nirmalendu Acharyya, AP Balachandran, Mahul Pandey and Sambuddha Sanyal arXiv:1606.08711
- Lattice data is taken from

Morningstar and Peardon, Phys. Rev D 56, 4043 (1997); Chen et al Phys. Rev D. 73014516 (2006).

$$
A_{i a}=\frac{1}{\sqrt{2}}\left(M_{i a}+\frac{\partial}{\partial M_{i a}}\right), \quad A_{i a}^{\dagger}=\frac{1}{\sqrt{2}}\left(M_{i a}-\frac{\partial}{\partial M_{i a}}\right) \Longrightarrow\left[A_{i a}, A_{j b}^{\dagger}\right]=\delta_{i a} \delta_{j b}
$$

- The oscillator vacuum is $\langle M \mid 0\rangle=\frac{1}{\pi^{6}} e^{-\frac{\operatorname{Tr}\left(M^{T} M\right)}{2}}$
- Spin-0:

$$
\begin{aligned}
& \left|\psi_{1}^{0}\right\rangle=|0\rangle \\
& \left|\psi_{2}^{0}\right\rangle=A_{i a}^{\dagger} A_{i a}^{\dagger}|0\rangle \\
& \left|\psi_{3}^{0}\right\rangle=\epsilon_{i j k} f_{a b c} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{k c}^{\dagger}|0\rangle \\
& \left|\psi_{4}^{0}\right\rangle=A_{i a}^{\dagger} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{j b}^{\dagger}|0\rangle \\
& \left|\psi_{5}^{0}\right\rangle=A_{i a}^{\dagger} A_{i b}^{\dagger} A_{j a}^{\dagger} A_{j b}^{\dagger}|0\rangle \\
& \left|\psi_{6}^{0}\right\rangle=d_{a b e} d_{c d e} A_{i a}^{\dagger} A_{i b}^{\dagger} A_{j c}^{\dagger} A_{j d}^{\dagger}|0\rangle \\
& \left|\psi_{7}^{0}\right\rangle=\epsilon_{i j k} f_{a b c} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{k c}^{\dagger} A_{l d}^{\dagger} A_{l d}^{\dagger}|0\rangle \\
& \left|\psi_{8}^{0}\right\rangle=\epsilon_{i j k} f_{a b c} d_{a_{1} b_{1} e} d_{a_{2} c e} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{k a_{1}}^{\dagger} A_{l b_{1}}^{\dagger} A_{l a_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{9}^{0}\right\rangle=A_{i a}^{\dagger} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{j b}^{\dagger} A_{k c}^{\dagger} A_{k c}^{\dagger}|0\rangle \\
& \left|\psi_{10}^{0}\right\rangle=A_{i a}^{\dagger} A_{i b}^{\dagger} A_{j b}^{\dagger} A_{j c}^{\dagger} A_{k c}^{\dagger} A_{k a}^{\dagger}|0\rangle \\
& \left|\psi_{11}^{0}\right\rangle=\epsilon_{i j k} \epsilon_{I m n} A_{i a}^{\dagger} A_{l a}^{\dagger} A_{j b}^{\dagger} A_{m b}^{\dagger} A_{k c}^{\dagger} A_{n c}^{\dagger}|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left|\psi_{13}^{0}\right\rangle=d_{a b c} d_{d e f} A_{i a}^{\dagger} A_{i d}^{\dagger} A_{j b}^{\dagger} A_{j e}^{\dagger} A_{k c}^{\dagger} A_{k f}^{\dagger}|0\rangle \\
& \left|\psi_{14}^{0}\right\rangle=d_{b_{1} c_{1} d} d_{b_{2} c_{2} d} A_{i a}^{\dagger} A_{i a}^{\dagger} A_{j b_{1}}^{\dagger} A_{j c_{1}}^{\dagger} A_{k b_{2}}^{\dagger} A_{k c_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{15}^{0}\right\rangle=\epsilon_{i_{1} j_{1} k_{1}} f_{a_{1} b_{1} c_{1}} \epsilon_{i_{2} j_{2} k_{2}} f_{a_{2} b_{2} c_{2}} d_{c_{1} d_{1} e} d_{c_{2} d_{2} e} A_{1_{1} a_{1}}^{\dagger} A_{j_{1} b_{1}}^{\dagger} A_{k_{1} d_{1}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{j_{2} b_{2}}^{\dagger} A_{k_{2} d_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{16}^{0}\right\rangle=d_{a b c} d_{a d_{1} e_{1}} d_{a d_{2} e_{2}} d_{a d_{3} e_{3}} A_{i d_{1}}^{\dagger} A_{i e_{1}}^{\dagger} A_{j d_{2}}^{\dagger} A_{j e_{2}}^{\dagger} A_{k d_{3}}^{\dagger} A_{k e_{3}}^{\dagger}|0\rangle
\end{aligned}
$$

$f_{a b c}$ and $d_{a b c}$ are the structure constants of $S U(3)$.

$$
\begin{aligned}
& \left|\psi_{1}^{1}\right\rangle=d_{a b c} A_{j b}^{\dagger} A_{j c}^{\dagger} A_{i a}^{\dagger}|0\rangle \\
& \left|\psi_{2}^{1}\right\rangle=\epsilon_{j k l} d_{a b_{1} c_{1}} f_{a b_{2} c_{2}} A_{i b_{1}}^{\dagger} A_{j c_{1}}^{\dagger} A_{k b_{2}}^{\dagger} A_{l c_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{3}^{1}\right\rangle=d_{a c e} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{j b}^{\dagger} A_{k c}^{\dagger} A_{k e}^{\dagger}|0\rangle \\
& \left|\psi_{4}^{1}\right\rangle=d_{a c e} A_{i b}^{\dagger} A_{j b}^{\dagger} A_{j a}^{\dagger} A_{k c}^{\dagger} A_{k e}^{\dagger}|0\rangle \\
& \left|\psi_{5}^{1}\right\rangle=d_{a c e} A_{i a}^{\dagger} A_{j b}^{\dagger} A_{j c}^{\dagger} A_{k e}^{\dagger} A_{k b}^{\dagger}|0\rangle \\
& \left|\psi_{6}^{1}\right\rangle=d_{a b c} f_{b c_{1} b_{2}} f_{c c_{2} b_{1}} A_{i a}^{\dagger} A_{j b_{1}}^{\dagger} A_{j c_{1}}^{\dagger} A_{k b_{2}}^{\dagger} A_{k c_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{7}^{1}\right\rangle=\epsilon_{j k l} d_{a b c} f_{a d e} A_{i b}^{\dagger} A_{j c}^{\dagger} A_{k d}^{\dagger} A_{l e}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger}|0\rangle \\
& \left|\psi_{8}^{1}\right\rangle=\epsilon_{j k l} d_{a b_{1} c_{1}} f_{a_{2} b_{2}} A_{i a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} b_{1}}^{\dagger} A_{j c_{1}}^{\dagger} A_{k a_{2}}^{\dagger} A_{l b_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{9}^{1}\right\rangle=\epsilon_{i j k} d_{a b_{1} c_{1}} d_{a_{2} b_{2}} A_{j a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} b_{1}}^{\dagger} A_{k c_{1}}^{\dagger} A_{l a_{2}}^{\dagger} A_{l b_{2}}^{\dagger}|0\rangle \\
& \left|\psi_{10}^{1}\right\rangle=\epsilon_{i j k} d_{a b_{1} c_{1}} f_{b b_{2} c_{2}} A_{1_{1} b_{1}}^{\dagger} A_{1_{1} c_{1}}^{\dagger} A_{l a}^{\dagger} A_{l b}^{\dagger} A_{j b_{2}}^{\dagger} A_{k c_{2}}^{\dagger}|0\rangle
\end{aligned}
$$

Spin-2

$$
\begin{aligned}
& \left|\psi_{1}^{2}\right\rangle=\left(A_{i a}^{\dagger} A_{j a}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l a}^{\dagger}\right)|0\rangle \\
& \left|\psi_{2}^{2}\right\rangle=A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger}\left(A_{i a_{2}}^{\dagger} A_{j i_{2}}^{\dagger}-\frac{1}{3} \delta_{i j} A_{i a_{2} a_{2}}^{\dagger} A_{j a_{2}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{3}^{2}\right\rangle=\left(A_{i a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} b_{1}}^{\dagger} A_{j b_{1}}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} b_{1}}^{\dagger} A_{l b_{1}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{4}^{2}\right\rangle=d_{a b c} d_{a d e} A_{i_{1} b}^{\dagger} A_{i_{1} c}^{\dagger}\left(A_{i d}^{\dagger} A_{j e}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l d}^{\dagger} A_{l e}^{\dagger}\right)|0\rangle \\
& \left|\psi_{5}^{2}\right\rangle=A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger}\left(A_{i a}^{\dagger} A_{j a}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l a}^{\dagger}\right)|0\rangle \\
& \left|\psi_{6}^{2}\right\rangle=\frac{1}{2} d_{a b c}\left(\epsilon_{i k l} A_{j a_{1}}^{\dagger} A_{k a_{1}}^{\dagger}+\epsilon_{j k l} A_{i a_{1}}^{\dagger} A_{k a_{1}}^{\dagger}\right) A_{l a}^{\dagger} A_{m b}^{\dagger} A_{m c}^{\dagger}|0\rangle \\
& \left|\psi_{7}^{2}\right\rangle=\frac{1}{2} d_{a b c}\left(\epsilon_{i k l} A_{j a}^{\dagger}+\epsilon_{j k l} A_{i a}^{\dagger}\right) A_{k b}^{\dagger} A_{l a_{1}}^{\dagger} A_{m a_{1}}^{\dagger} A_{m c}^{\dagger}|0\rangle \\
& \left|\psi_{8}^{2}\right\rangle=\epsilon_{k l m} f_{a b c} d_{d a_{1} a} d_{d a_{2} b_{2}} A_{k a_{1}}^{\dagger} A_{l b}^{\dagger} A_{m c}^{\dagger}\left(A_{i a_{2}}^{\dagger} A_{j b_{2}}^{\dagger}-\frac{1}{3} \delta_{i j} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} b_{2}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{9}^{2}\right\rangle=A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} a_{2}}^{\dagger}\left(A_{i a}^{\dagger} A_{j a}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l a}^{\dagger}\right)|0\rangle \\
& \left|\psi_{10}^{2}\right\rangle=A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} a_{1}}^{\dagger}\left(A_{i a}^{\dagger} A_{j a}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l a}^{\dagger}\right)|0\rangle \\
& \left|\psi_{11}^{2}\right\rangle=d_{a b_{1} c_{1}} d_{a b_{2} c_{2}} A_{i_{1} b_{1}}^{\dagger} A_{i_{1} c_{1}}^{\dagger} A_{i_{2} b_{2}}^{\dagger} A_{i_{2} c_{2}}^{\dagger}\left(A_{i a}^{\dagger} A_{j a}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l a}^{\dagger}\right)|0\rangle \\
& \left|\psi_{12}^{2}\right\rangle=A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger}\left(A_{i a_{2}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} b_{2}}^{\dagger} A_{j b_{2}}^{\dagger}-A_{l_{2}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} b_{2}}^{\dagger} A_{l b_{2}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{13}^{2}\right\rangle=d_{a a_{2} b_{2}} d_{a c_{2} e_{2}} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{1}}^{\dagger} A_{i_{2} a_{2}}^{\dagger} A_{i_{2} b_{2}}^{\dagger}\left(A_{i c_{2}}^{\dagger} A_{j d_{2}}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l c_{2}}^{\dagger} A_{l d_{2}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{14}^{2}\right\rangle=\frac{1}{2}\left(\epsilon_{i k l} A_{j b}^{\dagger} A_{k b}^{\dagger}+\epsilon_{j k l} A_{i b}^{\dagger} A_{k b}^{\dagger}\right) \epsilon_{m n p} d_{a b_{1} c_{1} f_{b b_{2} c_{2}} A_{l b_{1}}^{\dagger} A_{m c_{1}}^{\dagger} A_{n b_{2}}^{\dagger} A_{p c_{2}}^{\dagger}|0\rangle} \\
& \left|\psi_{15}^{2}\right\rangle=d_{a b_{1} c_{1}} d_{a b_{2} c_{2}} A_{l b_{1}}^{\dagger} A_{l c_{1}}^{\dagger} A_{m b_{2}}^{\dagger} A_{m c_{2}}^{\dagger}\left(\frac{1}{2}\left(A_{i a}^{\dagger} A_{j b}^{\dagger}+A_{j a}^{\dagger} A_{i b}^{\dagger}\right)-\frac{1}{3} \delta_{i j} A_{l a_{2}}^{\dagger} A_{l c_{2}}^{\dagger}\right)|0\rangle \\
& \left|\psi_{16}^{2}\right\rangle=d_{a b_{1} c_{1}} d_{b b_{2} c_{2}} A_{i_{1} a}^{\dagger} A_{i_{1} b}^{\dagger} A_{j_{1} b_{1}}^{\dagger} A_{j_{1} c_{1}}^{\dagger}\left(A_{i a}^{\dagger} A_{j b}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l b}^{\dagger}\right)|0\rangle \\
& \left|\psi_{17}^{2}\right\rangle=d_{a a_{2} b_{2}} d_{b c_{2} a_{1}} A_{i_{1} a_{1}}^{\dagger} A_{i_{1} a_{2}}^{\dagger} A_{j_{1} b_{2}}^{\dagger} A_{j_{1} c_{2}}^{\dagger}\left(A_{i a}^{\dagger} A_{j b}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a}^{\dagger} A_{l b}^{\dagger}\right)|0\rangle \\
& \left|\psi_{18}^{2}\right\rangle=d_{a b_{1} c_{1}} d_{a a_{2} b_{2}} f_{b b_{2} c_{2}} A_{i_{1} b_{1}}^{\dagger} A_{i_{1} c_{1}}^{\dagger} A_{i_{2} c_{2}}^{\dagger} A_{i_{2} d_{2}}^{\dagger}\left(A_{i i_{2}}^{\dagger} A_{j e_{2}}^{\dagger}-\frac{1}{3} \delta_{i j} A_{l a_{2}}^{\dagger} A_{l e_{2}}^{\dagger}\right)|0\rangle
\end{aligned}
$$

New Identities

We discovered some (new?) identities involving 3×8 matrices:

$$
\begin{aligned}
\operatorname{Tr}\left(M^{\top} M D_{a} M^{T} M D_{a}\right) & =-\frac{1}{2} \operatorname{Tr}\left(M^{\top} M D_{a}\right) \operatorname{Tr}\left(M^{\top} M D_{a}\right) \\
& +\frac{2}{3} \operatorname{Tr}\left(M^{\top} M M^{\top} M\right)+\frac{1}{3} \operatorname{Tr}\left(M^{\top} M\right)^{2} \\
\epsilon_{i j k} f_{a b c} M_{i a} M_{j b}\left(M M^{\top} M\right)_{k c} & =\frac{1}{3} \epsilon_{j j k} f_{a b c} M_{i a} M_{j b} M_{k c} \operatorname{Tr}\left(M^{\top} M\right)
\end{aligned}
$$

where $\left(D_{a}\right)_{b c} \equiv d_{a b c}$.

