Quantum Physics: Fields, Particles, and Information Geometry

In honour of A. P. Balachandran on the occasion of his 80th birthday.

Dublin Institute for Advanced Studies

22-26 January 2018

Quantum Hall Effect on Odd-dimensional Spheres

S. Kürkçüoğlu

Department of Physics, METU

Based on PRD 95, 2017 with U.H. Coşkun, & G.C.Toga

Timeline and Motivations

Warm Up: QHE on S^2

Landau Problem on S^{2k-1}

Hamiltonian & the Energy Spectrum

Dirac-Landau Problem on S^{2k-1}

Concluding Remarks and Outlook

TIMELINE AND MOTIVATIONS WARM UP: QHE on S^2 Landau Problem on S^{2k-1} Hamiltonian & the Energy Spectrum Dirac-Landau Problem on S^{2k-1}

A Short Timeline

- Haldane (1983) considered QHE on S^2 .
- Hu & Zhang (2000) obtained a generalization of QHE on S^4 .
- Karabali & Nair (2002) formulated QHE on $\mathbb{C}P^N$.
- QHE on even-dimensional spheres, S^{2k}, Kimura & Hasebe (2004), on S⁸ Bernevig et.al. (2004).
- QHE on S³ considered by Nair & Daemi (2004), and by Hasebe (2014).

• We formulated QHE on $\mathbf{Gr}_2(\mathbb{C}^{\mathbb{N}})$ (2014).

Early and Recent Motivations

- In 2D edge excitations give spin zero particles (massless chiral bosons), in 4D edge excitations have higher spin particles like photons and gravitons. However, other massless higher-spin states also occur.
- For S⁴ and ℂP², effective Abelian and non-Abelian Chern-Simons theory descriptions are given as generalizations of effective CS theory for QHE in the low energy regime.
- Low energy dynamics of strings-D-branes configurations are effectively captured by QHE on S^2 and S^4 . Bernevig et.al. (2001), Fabinger (2002).
- Topological Insulators(TIs):
 - A-class TIs: T = 0, C = 0, S = TC = 0 and Z TI in even dimensions. These can be realized as QHE on even spheres S^{2k}. (Hasebe(1), 2014).
 - 2. All-class TIs: $\mathcal{T} = 0$, $\mathcal{C} = 0$, $\mathcal{S} = 1$ and \mathbb{Z} TI in odd dimensions. QHE on S^3 can be seen as a realization of All-class TI in 3-dimensions. (Hasebe(2),2014).

Landau Problem on S^2

- There are motivations from condensed matter physics.
 - Rotational Invariance, leading to invariance under magnetic translations, explaining the degeneracy of LL.
 - Compact geometry leads to finite number of degrees of freedom, leading to finite degeneracy of states at a given LL.
 - When $R \to \infty$, results on the plane are recovered.
- A Dirac monopole placed at the center of *S*²:

$$\vec{B} = \frac{g}{r^3}\vec{r},$$

• Dirac quantization condition is:

$$\textit{eg} = \frac{1}{2} \textit{I} \hbar \,, \quad \textit{I} \in \mathbb{Z} \,.$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

• The Hamiltonian for a charged particle on a sphere of radius *R* under the influence of the monopole field is

$$H = \frac{1}{2mR^2} \mathbf{\Lambda} \cdot \mathbf{\Lambda} = \frac{\omega_c}{l\hbar} \mathbf{\Lambda} \cdot \mathbf{\Lambda} \,, \quad \omega_c = \frac{eB}{m} \,.$$

We have

$$egin{aligned} & oldsymbol{\Lambda} = oldsymbol{r} imes (-i\hbar oldsymbol{
abla} + eoldsymbol{A}), \quad oldsymbol{
abla} imes oldsymbol{A} = Boldsymbol{\hat{r}}, \quad oldsymbol{\Lambda} \cdot oldsymbol{\hat{r}} = oldsymbol{\hat{r}} \cdot oldsymbol{\Lambda} = 0, \ & [eta_{lpha}, eta_{eta}] = i\hbar arepsilon_{lphaeta} \gamma (eta_{\gamma} - rac{l\hbar}{2} oldsymbol{\hat{r}}_{\gamma}) \end{aligned}$$

• Rotations are generated by

$$\boldsymbol{J} = \boldsymbol{\Lambda} + \frac{l\hbar}{2} \hat{\boldsymbol{r}}, \quad [\boldsymbol{J}_{\alpha}, \boldsymbol{J}_{\beta}] = i\hbar\varepsilon_{\alpha\beta\gamma}\boldsymbol{J}_{\gamma}, \quad \boldsymbol{J}\cdot\hat{\boldsymbol{r}} = \hat{\boldsymbol{r}}\cdot\boldsymbol{J} = \frac{l\hbar}{2},$$

- We have [*J*, *H*] = 0.
- Eigenvalues of J^2 should be $\hbar^2 j(j+1)$ where $j = q + \frac{l}{2}$.

• Spectrum of the Hamiltonian is then $(B = \frac{I\hbar}{2eR^2})$

$$E=\frac{e\hbar B}{2m}(2q+1)+\frac{\hbar^2}{2mR^2}q(q+1)\,,$$

- The lowest Landau level has the energy $E = \frac{e\hbar B}{2m}$.
- Each Landau level has finite degeneracy 2j + 1 = l + 1 + 2q.
- On SU(2), we have the Wigner functions D^(j)_{L₃,R₃}(g). Functions on S² may be viewed as the subset of functions on SU(2) invariant under the U(1) subgroup.
- Suppose that there there is no *B*-field. What is the Hamiltonian for an electron on the sphere?

$$H = \frac{L^2}{2mR^2}, \quad E = \frac{\ell(\ell+1)}{2mR^2}, \quad \psi_{\ell m} = D^{\ell}_{m0}(g) = \sqrt{\frac{4\pi}{2\ell+1}} Y^*_{\ell m}(\theta, \phi).$$

• Eigenvalue equation for H is solved by the wave functions:

$$\mathcal{D}^{j}_{L_{3}\frac{j}{2}}(g), \quad R_{3}=\frac{l}{2}, \quad j=q+\frac{l}{2}$$

• Density correlation function between a pair of particles takes the form

$$\begin{split} \Omega(1,2) &= |\Psi^{1}|^{2} |\Psi^{2}|^{2} - |\Psi^{*1}_{\Lambda}\Psi^{2}_{\Lambda}|^{2}, \\ &= 1 - e^{-2B} |\vec{x}^{1} - \vec{x}^{2}|^{2}, \end{split}$$

- Ω(1,2) approaches 1 at separations ≫ ℓ_B. Here ℓ_B = √¹/_B is the magnetic length. Restoring e and ħ it is ℓ_B = √<sup><u>ħ</u>/_{eB}.
 </sup>
- Probability of finding two particles at the same location goes to zero.

A String Theory Perspective

- Very briefly:
 - Wrap a *D*2-brane on *S*² and dissolve *N*, *D*0-branes on it.
 - Take K flat D6-branes \perp D2-brane and move them to the center of D2-brane.
 - *K* fundamental strings stretch between *D*2 and *D*6-branes.
 - Charged string-ends may be viewed as *K*- charged particles and in the low energy limit *N* is interpreted as the number of magnetic flux quantum with $\nu = \frac{\kappa}{N}$ being the filling factor.
 - Background magnetic field may be viewed as density of D0-branes on the D2-brane. Thus, at low energies Quantum Hall system on S^2 appears to emerge.

Timeline and Motivations Warm Up: QHE on S^2 Landau Problem on S^{2k-1} Hamiltonian & the Energy Spectrum Dirac-Landau Probl

Landau Problem on S^{2k-1} : Basic Setup and Geometry

- To specify the coordinates of S^{2k-1} we may embed it in \mathbb{R}^{2k} . $S^{2k-1} \equiv \langle \vec{X} = (X_1, X_2, \cdots, X_{2k}) \in \mathbb{R}^{2k} | \vec{X} \cdot \vec{X} = R^2 \rangle.$
- It is a coset space: $S^{2k-1} \equiv \frac{SO(2k)}{SO(2k-1)}$.
- We will need the gamma matrices, Γ_a, a = (1,2,...,2k) in 2kdimensions. These are 2^k × 2^k matrices with {Γ_a, Γ_b} = 2δ_{ab}. Iteratively:

$$\Gamma^{\mu} = \begin{pmatrix} 0 & -i\gamma_{\mu} \\ i\gamma_{\mu} & 0 \end{pmatrix}, \quad \Gamma^{2k} = \begin{pmatrix} 0 & \mathbf{1}_{2^{k-1}} \\ \mathbf{1}_{2^{k-1}} & 0 \end{pmatrix}, \quad \Gamma^{2k+1} = \begin{pmatrix} -\mathbf{1}_{2^{k-1}} & 0 \\ 0 & \mathbf{1}_{2^{k-1}} \end{pmatrix},$$

Where we have $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}$ in (2k-1)-dimensions.

Σ_{μν} := -ⁱ/₄[γ_μ, γ_ν], generate the spinor IRR of SO(2k − 1) of dimension 2^{k−1}.
 We also have

$$\Xi_{ab} := -\frac{i}{4} [\Gamma_a, \Gamma_b] = \begin{pmatrix} \Xi_{ab}^+ & 0\\ 0 & \Xi_{ab}^- \end{pmatrix}$$

Fundamental spinor IRRs of SO(2k) are $\Xi_{ab}^{\pm} = (\Xi_{\mu\nu}^{\pm}, \Xi_{2k\mu}^{\pm}) = (\Sigma_{\mu\nu}, \mp_{2}^{1}\gamma_{\mu})$, generating SO(2k). Each of dimension 2^{k-1} .

Gauge Field Background

• We introduce the 2^k-component spinor:

$$\Psi = rac{1}{\sqrt{2R(R+x_{2k})}}((R+x_{2k})\mathbb{I}_{2^k}+x_\mu\Gamma^\mu)\phi\,,\quad \Psi^\dagger\Psi = 1\,,\quad \phi = rac{1}{\sqrt{2}}\left(egin{array}{c} ilde{\phi} \ ilde{\phi} \end{array}
ight)$$

- Coordinates of S^{2k-1} : $\frac{X_a}{P} = \Psi^{\dagger} \Gamma_a \Psi$
- SO(2k-1) gauge field, (i.e. the spin connection) on S^{2k-1} is given as

$$egin{aligned} \mathcal{A}_\mu = \Psi^\dagger \partial_\mu \Psi \implies \mathcal{A}_\mu = -rac{1}{R(R+X_{2k})} \Sigma_{\mu
u} X_
u \,, \quad \mathcal{A}_{2k} = 0 \,. \end{aligned}$$

• Corresponding field strength is $F_{ab} = -i[D_a, D_b]$. Here $D_a = \partial_a + iA_a$ are the covariant derivatives. It takes the form

$$F_{\mu
u} = rac{1}{R^2} (X_
u A_\mu - X_\mu A_
u + \Sigma_{\mu
u}) \,, \quad F_{2k\mu} = -rac{R+X_{2k}}{R^2} A_\mu \,.$$

•
$$R^4 \sum_{a < b} F_{ab}^2 = \sum_{\mu < \nu} \sum_{\mu \nu}^2 = C_{SO(2k-1)}^2 (\frac{1}{2}) = \frac{1}{2} \left(k - \frac{1}{2} \right) (k-1) \mathbb{I}_{2^{k-1}}.$$

Gauge Field Background Continued

 A natural choice for a constant gauge field background is the *I*-fold symmetric tensor product¹

$$\binom{l}{2} := \underbrace{\binom{l}{2}, ..., \frac{l}{2}}_{(k-1) \text{ terms}} = \bigotimes_{Sym}^{l} \binom{1}{2}, ..., \frac{1}{2}$$

• Thus we have:

$$R^{4} \sum_{a < b} F_{ab}^{2} = \sum_{\mu < \nu} \Sigma_{\mu\nu}^{2} = C_{SO(2k-1)}^{2} \left(\frac{l}{2}\right) = \frac{l}{2} \left(\frac{l}{2} + (k-1)\right) (k-1) \mathbb{I}_{d}$$

• d stands for the dimension of the representation $\left(\frac{1}{2}\right)$.

¹Note: For IRRs we are using the highest weight labels. $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rightarrow \langle \Xi \rangle \rightarrow \langle \Box \rangle$

Hamiltonian for Charged Particles

• For the Hamiltonian of charged particles on S^{2k-1} in the constant SO(2k-1) gauge field background, we write

$$H = \frac{\hbar}{2MR^2} \sum_{a < b} \Lambda_{ab}^2, \quad \Lambda_{ab} := -i(X_a D_b - X_b D_a)$$

• Total angular momentum is: Orbital angular momentum of the particles plus the angular momentum of the background gauge field.

$$\begin{aligned} L_{ab} &= \Lambda_{ab} + R^2 F_{ab} \,, \\ [L_{ab}, L_{cd}] &= i (\delta_{ac} L_{bd} + \delta_{bd} L_{ac} - \delta_{bc} L_{ad} - \delta_{ad} L_{bc}) \,. \end{aligned}$$

- L_{ab} generates the SO(2k) group.
- Hamiltonian commutes with the total angular momentum: $[H, L_{ab}] = 0.$
- Hamiltonian takes the form (Using $\Lambda_{ab}F_{ab} = F_{ab}\Lambda_{ab} = 0$)

$$H = \frac{\hbar}{2MR^2} \left(\sum_{a < b} L_{ab}^2 - \sum_{\mu < \nu} \Sigma_{\mu\nu}^2 \right).$$

Energy Spectrum

- What is the generic form of SO(2k) IRR carried by L_{ab} ?
- Its branching under SO(2k-1) should include the $(\frac{1}{2}, ..., \frac{1}{2})$ IRR of SO(2k-1).
- From branching rules we find: $(n + \frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, s)$, $n \ge 0 \in \mathbb{Z}$ and $|s| \le \frac{1}{2}$. Indeed we have:

$$\left(n+\frac{l}{2},\frac{l}{2},\cdots,\frac{l}{2},s\right) = \bigoplus_{\mu_1=\frac{l}{2}}^{n+\frac{l}{2}} \bigoplus_{\mu_2=s}^{\frac{l}{2}} \left(\mu_1,\frac{l}{2},\cdots,\frac{l}{2},\mu_2\right) \,.$$

• For the energy spectrum we find:

$$E = \frac{\hbar}{2MR^2} \left(C_{SO(2k)}^2 - C_{SO(2k-1)}^2 \right)$$

= $\frac{\hbar}{2MR^2} \left(n^2 + s^2 + n(l+2k-2) + \frac{l}{2}(k-1) \right).$

• For a fixed *I*, (*n*, *s*) are the quantum numbers labeling the Landau levels.

Degenaracies

- Degeneracy $d(n, \frac{l}{2}, s)$ of each LL is given by the dimension of the IRR $(n + \frac{l}{2}, \frac{l}{2}, \cdots, \frac{l}{2}, s)$.
- n = 0, energy levels split into sub-levels with $-\frac{l}{2} \le s \le \frac{l}{2}$. It is easily seen that

$$\sum_{|s| \le \frac{l}{2}} d(n, \frac{l}{2}, s)_{SO(2k)} = d(0, \frac{l}{2})_{SO(2k+1)}$$

 $d(0, \frac{l}{2})_{SO(2k+1)}$ being the degeneracy of LLL of QHE on S^{2k} .

I i even

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Degeneracies & the LLL

- Degeneracy d(n, s) of each LL is given by the dimension of the IRR $(n + \frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}, s)$.
- LLL differ for odd and even values of *I*.

$$E_{LLL} = \begin{cases} \frac{\hbar}{2MR^2} \frac{I}{2}(k-1) & \text{for even } I, (n,s) = (0,0), \\ \frac{\hbar}{2MR^2} \left(\frac{I}{2}(k-1) + \frac{1}{4}\right) & \text{for odd } I, (n,s) = (0, \pm \frac{1}{2}) \end{cases}$$

• For large I, degeneracy at the LLL for all values of I is :

$$d_{LLL}\approx I^{\frac{1}{2}(k-1)(k+2)}$$

• In the limit $I, R \longrightarrow \infty$ with finite $\ell_M = \frac{R}{\sqrt{I}}$.

$$E(n,s) \longrightarrow \frac{\hbar}{2M\ell_M^2} \left(n + \frac{1}{2}(k-1)\right), \quad E_{LLL} = \frac{\hbar}{2M\ell_M^2} \frac{k-1}{2},$$

• Note that the spacing between LL levels remains finite.

Wave Functions

- Wave functions corresponding to the LL: Wigner D-functions of SO(2k): D^(n+¹/₂,¹/₂,...,¹/₂,s)(g)_{[L][R]}.
- For I=1, LLL wave functions corresponding to $s=\pm rac{1}{2}$ are

$$\begin{split} \Psi^{\pm} &= K^{\pm} \tilde{\phi} \,, \quad \Psi = \left(\begin{array}{c} \Psi^{+} \\ \Psi^{-} \end{array} \right) \\ K^{\pm} &= \frac{1}{2} \frac{1}{\sqrt{R(R + X_{2k})}} ((R + X_{2k}) \mathbb{I}_{2^{k-1}} \mp i x_{\mu} \gamma^{\mu}) \end{split}$$

• LLL-functions may be written as the I-fold symmetric tensor product of Ψ^\pm :

$$\Psi' = \sum_{\alpha_1, \cdots \alpha_l} f_{\alpha_1 \cdots \alpha_l} \Psi_{\alpha_1} \cdots \Psi_{\alpha_l},$$

• For *N* particles the LLL wave function can be obtained via the Slater determinant

$$\Psi'_{N} = \sum_{\alpha_{1}, \cdots \alpha_{l}} \varepsilon_{\alpha_{1} \cdots \alpha_{l}} \Psi'_{\alpha_{1}}(x_{1}) \cdots \Psi'_{\alpha_{l}}(x_{N}),$$

The Equatorial S^{2k-2}

We can see that constant gauge field backgrounds on even-spheres can be accessed by confining to the equatorial spheres S^{2k-2} .

• We first note that

$$(K^{\pm})^2 = \frac{1}{R} (X_{2k} \mathbb{I}_{2^{k-1}} \mp i X_{\mu} \gamma^{\mu}).$$

• On the equatorial S^{2k-2} this gives

$$(K_0^{\pm})^2 := (K^{\pm})^2 \Big|_{X_{2k}=0} = \mp i \frac{1}{R} X_{\mu} \gamma^{\mu} , \quad R \text{ is the radius of } S^{2k-2}$$

• An idempotent on S^{2k-2} is

$$Q = i(K_0^{\pm})^2, \quad Q^{\dagger} = Q, \quad Q^2 = \mathbb{I}_{2^{k-1}},$$

• Rank- 2^{k-2} projection operators are:

$$\mathcal{P}_{\pm} = \frac{\mathbb{I}_{2^{k-1}} \pm Q}{2}$$

- If \mathcal{A} denotes the algebra of functions on S^{2k-2} . A free \mathcal{A} -module is $\mathcal{A}^{2^{k-1}} = \mathcal{A} \otimes \mathbb{C}^{2^{k-1}}$.
- We may decompose the free $\mathcal{A}^{2^{k-1}}$ -module as

$$\mathcal{A}^{2^{k-1}} = \mathcal{P}_+ \mathcal{A}^{2^{k-1}} \oplus \mathcal{P}_- \mathcal{A}^{2^{k-1}},$$

 $\mathcal{P}_{\pm}\mathcal{A}^{2^{k-1}}$ are the projective modules, each of dimension $2^{k-2}.$

- Connection two-forms associated with \mathcal{P}_\pm are

$$\mathcal{F}_{\pm} = \mathcal{P}_{\pm} d(\mathcal{P}_{\pm}) d(\mathcal{P}_{\pm}).$$

• $(k-1)^{th}$ Chern numbers are:

$$c_{k-1}^{\pm} = rac{1}{k!(2\pi)^k} \int_{S^{2k-2}} \operatorname{Tr} \left(\mathcal{F}_{\pm}\right)^{k-1}.$$

• $c_{k-1} = d_{LLL}^{S^{2k-2}}(k-1)$ for l = 1. Higher rank projective modules an be constructed to give $c_{k-1}(l)$ which matches exactly with the number of zero modes, i.e. the index of the gauged Dirac operator on S^{2k-2} .

Example 1: S^3

- Energy spectrum reads $E = \frac{\hbar}{2MR^2}(n^2 + 2n + \ln + \frac{l}{2} + s^2).$
- Degeneracy of the Landau levels are

$$d(n,s) = (n + \frac{l}{2} + 1)^2 - s^2$$

LLL has

$$E_{LLL} = rac{\hbar}{2MR^2}rac{I}{2}$$
, (I even), $E_{LLL} = rac{\hbar}{2MR^2}\left(rac{I}{2} + rac{1}{4}
ight)$, (I odd)

• With the degeneracies

$$d(n = 0, s = 0) = (\frac{l}{2} + 1)^2, \quad d(n = 0, s = \pm \frac{1}{2}) = \frac{1}{4}(l + 1)(l + 3),$$

- On the equatorial S^2 : $Q = \boldsymbol{\sigma} \cdot \hat{\boldsymbol{X}}$ and $\mathcal{P}_{\pm} = rac{\mathbb{I}_2 \pm \boldsymbol{\sigma} \cdot \hat{\boldsymbol{X}}}{2}$
- This yields the usual abelian Dirac monopole field

$$B_{\mu} = \frac{1}{2} \varepsilon_{\mu\nu\rho} F_{\nu\rho} = \frac{I}{2} \frac{X_i}{R^3} \,.$$

 c₁(1) = 1 gives the zero modes of the Dirac operator on S² in the Dirac monopole background.

Example 2: S^5

- Energy spectrum is : $E = \frac{\hbar}{2MR^2}(n^2 + 4n + ln + l + s^2)$.
- For the LLL we find

$$E_{LLL} = \frac{\hbar}{2MR^2}I, \quad (I \text{ even}), \qquad E_{LLL} = \frac{\hbar}{2MR^2}\left(I + \frac{1}{4}\right), \quad (I \text{ odd})$$
$$d(n = 0, s = 0) = \frac{1}{3 \cdot 2^6}(I + 2)^2(I + 3)(I + 4)^2, \quad (I \text{ even}),$$
$$d(n = 0, s = \pm \frac{1}{2}) = \frac{1}{3 \cdot 2^6}(I + 1)(I + 3)^3(I + 5), \quad (I \text{ odd}).$$

- On the equatorial S^4 : $Q=rac{\gamma_\mu X_\mu}{R}$ and $\mathcal{P}_\pm=rac{\mathbb{I}_4\pm Q}{2}$
- Curvature and connection take the form $i = (1, \cdots, 4)$

$$\begin{aligned} F_{ij} &= \frac{1}{R^2} (X_j A_i - X_i A_j + \Sigma_{ij}^+), \quad F_{5i} &= -\frac{R + X_5}{R^2} A_i, \\ A_i &= -\frac{1}{R(R + X_5)} \Sigma_{ij}^+ X_j, \quad A_5 &= 0, \quad \Sigma_{ij}^+ &= -i \frac{1}{4} [\sigma_i, \sigma_j] \end{aligned}$$

• Number of zero modes of the Dirac operator on S^4 with this SU(2) background is $c_2(I) = \frac{1}{6}I(I+1)(I+2)$.

Gauged Dirac Operator on S^{2k-1}

• Dirac operator on S^{2k-1} in the background of F_{ab} has the form

$$\mathcal{D}_{(1,2)} = \frac{1}{2} (\mathbb{I} \mp \Gamma_{2k+1}) \sum_{a < b} \left(-\Xi_{ab} (L_{ab} - R^2 F_{ab}) + k - \frac{1}{2} \right) \,.$$

- Here \equiv_{ab} carries $(\frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}) \oplus (\frac{1}{2}, \frac{1}{2}, \cdots, -\frac{1}{2})$ representation of SO(2k).
- On a symmetric coset space, say $K \equiv G/H$, with holonomy group H taken as the gauge group (& identifying the gauge connection with the spin connection), t is possible to write

$$(i\mathcal{D}_{Gauged})^2 = C^2(G) - C^2(H) + \frac{\mathcal{R}}{8},$$

• This fits perfectly to our problem !: Therefore, we can write:

$$(i\mathcal{D}_{(1,2)})^2 = C_{SO(2k)}^2 (n+J, J, \cdots, J, \pm \tilde{s}) - C_{SO(2k-1)}^2 \left(\frac{l}{2}, \frac{l}{2}, \cdots, \frac{l}{2}\right) + \frac{1}{4}(2k^2 - 3k + 1).$$

• $\mathcal{R} = 2(2k^2 - 3k + 1)$ is the Ricci scalar of S^{2k-1} .

Spectrum of $\mathcal{D}^2_{(1,2)}$ and Zero Modes

• We have $|\widetilde{s}| \leq J$ and

$$J = \begin{cases} \frac{l}{2} + \frac{1}{2} & \text{for spin up \& } l \ge 0\\ \frac{l}{2} - \frac{1}{2} & \text{for spin down \& } l \ge 1 \end{cases}$$

• Spectrum of $(i\mathcal{D}_{(1,2)})^2$ reads

$$\begin{split} \mathcal{E}_{\uparrow} &= n(n+2k-1) + l(n+k-1) + k(k-1) + \tilde{s}^2 \,, \quad (l \ge 0) \,, \\ \mathcal{E}_{\downarrow} &= n(n+l+2k-3) + \tilde{s}^2 \,, \quad (l \ge 1) \end{split}$$

• For even I, LLL is : $\mathcal{E}^{LLL}_{\downarrow}(n=0\,,\widetilde{s}=\pm\frac{1}{2})=\frac{1}{4}$.

- For odd *I*, LLL is : *E*^{LLL}_↓(*n* = 0, *š* = 0) = 0. These are the zero modes of the Dirac operator.
- Note that spectrum of (*iD*₁)² and (*iD*₂)² are the same. This can be seen by taking s̃ → -s̃ in E_↑ and E_↓.

• For S^3 , we find the LLL degeneracies:

$$\frac{I(I+2)}{4} \qquad \text{for even } I$$
$$\frac{(I+1)^2}{4} \qquad \text{for odd } I, \text{(zero modes)}$$

• For S⁵, LLL degeneracies are:

$$\frac{1}{3 \cdot 2^6} I(I+2)^3 (I+4)$$
 for even *I*
$$\frac{1}{3 \cdot 2^6} (I+1)^2 (I+2) (I+3)^2$$
 for odd *I*, (zero modes)

- No index theorem in odd dimensions to relate the zero modes to a topological number.
- For *I* = 0 and *s* = ±¹/₂ we recover the spectrum for vanishing gauge background:

$$\mathcal{E}_{\uparrow} = (n + k - rac{1}{2})^2 \, .$$

 $E_{\uparrow} = \sqrt{\mathcal{E}_{\uparrow}} \, , \quad E_{\downarrow} = -\sqrt{\mathcal{E}_{\uparrow}}$

with $n \to n-1$ and $\tilde{s} \to -\tilde{s}$ in E_{\downarrow} .

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Concluding Remarks and Outlook

- We have solved the Landau problem and the Dirac Landau problem for charged particles on S^{2k-1} in the background of SO(2k-1)gauge field. Obtained the energy spectrum and wave functions.
- It is possible to show that there is exact correspondence between the direct sum of Hilbert spaces of LLLs with *I* ranging from 0 to
 I_{max} = 2*K* or *I_{max}* = 2*K* + 1 correspond respectively to the Hilbert spaces of the fuzzy CP³ or that of winding number ±1 line bundle over CP³ at level *K*.

This correspondence also means that the quantum number $s = \pm \frac{1}{2}$ for the LLL over S^5 is actually related to the winding number $\kappa = \pm 1$ of the monopole bundles over $\mathbb{C}P_F^3$ via $s = \frac{\kappa}{2}$, which permits us to give, in a sense, a topological meaning to the ± 1 values of 2s.

- We have noticed a peculiar relation between the Landau problem on S^{2k-1} and that on the equatorial S^{2k-2} , which allowed us to give the background SO(2k-2) gauge fields over S^{2k-2} by constructing the relevant projective modules.
- LL on S^{2k-1} with n = 0 and |s| ≤ ¹/₂ can be visualized as embedded in the LLL of S^{2k} where s is thought of as a latitude parameter with discrete values. This picture can be described in terms of higher dimensional fuzzy spheres (Hasebe,2016).

A Curious Connection with $\mathbb{C}P_F^3$:

- An exact correspondence between the direct sum of Hilbert spaces of LLLs with *I* ranging from 0 to *I_{max}* = 2*K* or *I_{max}* = 2*K* + 1 correspond respectively to the Hilbert spaces of the fuzzy CP³ or that of winding number ±1 line bundle over CP³ at level *K*.
- Recall that the isometry group SU(4) for CP³ is isomorphic to that of S⁵, which is Spin(6) ≈ SO(6).
- Fuzzy $\mathbb{C}P^3$ at level K is given in term of the matrix algebra $Mat(d_K)$, where $d_K = \frac{1}{6}(K+3)(K+2)(K+1)$. It covers all the IRRs of SU(4) which emerge from the tensor product

$$\left(\frac{K}{2},\frac{K}{2},\frac{K}{2}\right)\otimes\left(\frac{K}{2},\frac{K}{2},-\frac{K}{2}\right)=\bigoplus_{k=0}^{K}(k,k,0)$$

- Expansion of an element of $Mat(d_{\kappa})$ in terms of SU(4) harmonics carries the IRRs of SU(4) appearing in the direct sum decomposition given in the r.h.s.
- Just observe, that each summand in the latter is equal to the $SU(4) \approx SO(6)$ IRR carried by the LLL for I = 2k.
- So, for even *I*, (I = 2k), the direct sum of all the LLL Hilbert spaces with $0 \le k \le K$ spans the matrix algebra $Mat(d_K)$ of $\mathbb{C}P^3_F$.

 Sections of complex line bundles with winding number 1 over CP³_F are described via the tensor product decomposition

$$\left(\frac{K+1}{2},\frac{K+1}{2},\frac{K+1}{2}\right)\otimes\left(\frac{K}{2},\frac{K}{2},-\frac{K}{2}\right)=\bigoplus_{k=0}^{K}\left(k+\frac{1}{2},k+\frac{1}{2},\frac{1}{2}\right)$$

- Elements in this nontrivial line bundle are d_{K+1} × d_K rectangular matrices forming a right module A⁽¹⁾(CP³_F) under the action of Mat(d_K).
- We observe that each summand corresponds to an SO(6) IRR carried by the LLL for I = 2k + 1 and s = ¹/₂.
- So the direct sum of all the LLL Hilbert spaces with 0 ≤ k ≤ K spans A⁽¹⁾(ℂP³_F) over ℂP³_F.
- It is easy to check that the total number of states in this direct sum of LLLs is precisely d_{K+1}d_K:

$$\sum_{k=0}^{K} \frac{1}{12}(k+4)(k+3)(k+2)^2(k+1) = d_{K+1}d_K$$

• A similar correspondence also follows for $\mathcal{A}^{-1}(\mathbb{C}P^3_F)$.

A Few Facts on QHE on S^4

- Landau problem for charged particles on S^4 formulated and solved by Hu and Zhang (2000).
- Particles are under influence of a background SU(2) gauge field. This is provided by a Yang monopole.
- Multiparticle problem: In LLL, with filling factor $\nu = 1$, finite spatial density occurs iff the charges particles carry infinitely large IRR's of SU(2).
- In 2D edge excitations give spin zero particles (massless chiral bosons), in 4D edge excittions have higher spin particles like photons and gravitons. However, other massless higher-spin states also occur.
- Effective Abelian and non-Abelian Chern-Simons theory descriptions in 6 + 1 and 4 + 1, respectively are also given as generalizations of effective CS theory for QHE in the low energy regime.