Quantum Physics: Fields,Particles, and Information Geometry
In honour of A. P. Balachandran on the occasion of his 80th birthday.
Dublin Institute for Advanced Studies
22-26 January 2018

Quantum Hall Effect on Odd-dimensional Spheres

S. Kürkçüoğlu

Department of Physics, METU

Based on PRD 95, 2017 with Ü.H. Coșkun, \& G.C.Toga

Timeline and Motivations

Warm Up: QHE on S^{2}

Landau Problem on $\mathbf{S}^{2 k-1}$

Hamiltonian \mathcal{E} the Energy Spectrum

Dirac-Landau Problem on $S^{2 k-1}$

Concluding Remarks and Outlook

A Short Timeline

- Haldane (1983) considered QHE on S^{2}.
- Hu \& Zhang (2000) obtained a generalization of QHE on S^{4}.
- Karabali \& Nair (2002) formulated QHE on $\mathbb{C} P^{N}$.
- QHE on even-dimensional spheres, $S^{2 k}$, Kimura \& Hasebe (2004), on S^{8} Bernevig et.al. (2004).
- QHE on S^{3} considered by Nair \& Daemi (2004), and by Hasebe (2014).
- We formulated QHE on $\mathbf{G r}_{2}\left(\mathbb{C}^{\mathbb{N}}\right)$ (2014).

Early and Recent Motivations

- In $2 D$ edge excitations give spin zero particles (massless chiral bosons), in $4 D$ edge excitations have higher spin particles like photons and gravitons. However, other massless higher-spin states also occur.
- For S^{4} and $\mathbb{C} P^{2}$, effective Abelian and non-Abelian Chern-Simons theory descriptions are given as generalizations of effective CS theory for QHE in the low energy regime.
- Low energy dynamics of strings-D-branes configurations are effectively captured by QHE on S^{2} and S^{4}. Bernevig et.al. (2001), Fabinger (2002).
- Topological Insulators(TIs):

1. A-class Tls: $\mathcal{T}=0, \mathcal{C}=0, \mathcal{S}=\mathcal{T C}=0$ and $\mathbb{Z} \mathrm{TI}$ in even dimensions. These can be realized as QHE on even spheres $S^{2 k}$. (Hasebe(1), 2014).
2. Alll-class TIs: $\mathcal{T}=0, \mathcal{C}=0, \mathcal{S}=1$ and $\mathbb{Z} \mathrm{TI}$ in odd dimensions. QHE on S^{3} can be seen as a realization of $A I I I$-class TI in 3-dimensions. (Hasebe (2), 2014).

Landau Problem on S^{2}

- There are motivations from condensed matter physics.
- Rotational Invariance, leading to invariance under magnetic translations, explaining the degeneracy of LL.
- Compact geometry leads to finite number of degrees of freedom, leading to finite degeneracy of states at a given LL.
- When $R \rightarrow \infty$, results on the plane are recovered.
- A Dirac monopole placed at the center
 of S^{2} :

$$
\vec{B}=\frac{g}{r^{3}} \vec{r},
$$

- Dirac quantization condition is:

$$
e g=\frac{1}{2} I \hbar, \quad I \in \mathbb{Z}
$$

- The Hamiltonian for a charged particle on a sphere of radius R under the influence of the monopole field is

$$
H=\frac{1}{2 m R^{2}} \boldsymbol{\Lambda} \cdot \boldsymbol{\Lambda}=\frac{\omega_{c}}{l \hbar} \boldsymbol{\Lambda} \cdot \boldsymbol{\Lambda}, \quad \omega_{c}=\frac{e B}{m} .
$$

- We have

$$
\begin{gathered}
\boldsymbol{\Lambda}=\boldsymbol{r} \times(-i \hbar \boldsymbol{\nabla}+e \boldsymbol{A}), \quad \boldsymbol{\nabla} \times \boldsymbol{A}=B \hat{\boldsymbol{r}}, \quad \boldsymbol{\Lambda} \cdot \hat{\boldsymbol{r}}=\hat{\boldsymbol{r}} \cdot \boldsymbol{\Lambda}=0, \\
{\left[\Lambda_{\alpha}, \Lambda_{\beta}\right]=i \hbar \varepsilon_{\alpha \beta \gamma}\left(\Lambda_{\gamma}-\frac{I \hbar}{2} \hat{r}_{\gamma}\right)}
\end{gathered}
$$

- Rotations are generated by

$$
\boldsymbol{J}=\boldsymbol{\Lambda}+\frac{I \hbar}{2} \hat{\boldsymbol{r}}, \quad\left[J_{\alpha}, J_{\beta}\right]=i \hbar \varepsilon_{\alpha \beta \gamma} J_{\gamma}, \quad \boldsymbol{J} \cdot \hat{\boldsymbol{r}}=\hat{\boldsymbol{r}} \cdot \boldsymbol{J}=\frac{I \hbar}{2},
$$

- We have $[J, H]=0$.
- Eigenvalues of \boldsymbol{J}^{2} should be $\hbar^{2} j(j+1)$ where $j=q+\frac{1}{2}$.
- Spectrum of the Hamiltonian is then $\left(B=\frac{1 \hbar}{2 e R^{2}}\right)$

$$
E=\frac{e \hbar B}{2 m}(2 q+1)+\frac{\hbar^{2}}{2 m R^{2}} q(q+1)
$$

- The lowest Landau level has the energy $E=\frac{e \hbar B}{2 m}$.
- Each Landau level has finite degeneracy $2 j+1=I+1+2 q$.
- On $S U(2)$, we have the Wigner functions $\mathcal{D}_{L_{3}, R_{3}}^{(j)}(g)$. Functions on S^{2} may be viewed as the subset of functions on $S U(2)$ invariant under the $U(1)$ subgroup.
- Suppose that there there is no B-field. What is the Hamiltonian for an electron on the sphere?

$$
H=\frac{L^{2}}{2 m R^{2}}, \quad E=\frac{\ell(\ell+1)}{2 m R^{2}}, \quad \psi_{\ell m}=D_{m 0}^{\ell}(g)=\sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell m}^{*}(\theta, \phi) .
$$

- Eigenvalue equation for H is solved by the wave functions:

$$
\mathcal{D}_{L_{3} \frac{1}{2}}^{j}(g), \quad R_{3}=\frac{l}{2}, \quad j=q+\frac{l}{2}
$$

- Density correlation function between a pair of particles takes the form

$$
\begin{aligned}
\Omega(1,2) & =\left|\Psi^{1}\right|^{2}\left|\Psi^{2}\right|^{2}-\left|\Psi_{\Lambda}^{* 1} \Psi_{\Lambda}^{2}\right|^{2}, \\
& =1-e^{-2 B\left|\vec{X}^{1}-\vec{x}^{2}\right|^{2}},
\end{aligned}
$$

- $\Omega(1,2)$ approaches 1 at separations $\gg \ell_{B}$. Here $\ell_{B}=\sqrt{\frac{1}{B}}$ is the magnetic length. Restoring e and \hbar it is $\ell_{B}=\sqrt{\frac{\hbar}{e B}}$.
- Probability of finding two particles at the same location goes to zero.

A String Theory Perspective

- Very briefly:
- Wrap a D2-brane on S^{2} and dissolve $N, D 0$-branes on it.
- Take K flat $D 6$-branes \perp D2-brane and move them to the center of D2-brane.
- K fundamental strings stretch between $D 2$ and $D 6$-branes.
- Charged string-ends may be viewed as K - charged particles and in the low energy limit N is interpreted as the number of magnetic flux quantum with

$\nu=\frac{K}{N}$ being the filling factor.
- Background magnetic field may be viewed as density of D0-branes on the D2-brane. Thus, at low energies Quantum Hall system on S^{2} appears to emerge.

Landau Problem on $S^{2 k-1}$: Basic Setup and Geometry

- To specify the coordinates of $S^{2 k-1}$ we may embed it in $\mathbb{R}^{2 k}$. $S^{2 k-1} \equiv\left\langle\vec{X}=\left(X_{1}, X_{2}, \cdots, X_{2 k}\right) \in \mathbb{R}^{2 k} \mid \vec{X} \cdot \vec{X}=R^{2}\right\rangle$.
- It is a coset space: $S^{2 k-1} \equiv \frac{S O(2 k)}{S O(2 k-1)}$.
- We will need the gamma matrices, $\Gamma_{a}, a=(1,2, \ldots, 2 k)$ in $2 k$ dimensions. These are $2^{k} \times 2^{k}$ matrices with $\left\{\Gamma_{a}, \Gamma_{b}\right\}=2 \delta_{a b}$. Iteratively:

$$
\Gamma^{\mu}=\left(\begin{array}{cc}
0 & -i \gamma_{\mu} \\
i \gamma_{\mu} & 0
\end{array}\right), \quad \Gamma^{2 k}=\left(\begin{array}{cc}
0 & 1_{2^{k-1}} \\
1_{2^{k-1}} & 0
\end{array}\right), \quad \Gamma^{2 k+1}=\left(\begin{array}{cc}
-1_{2^{k-1}} & 0 \\
0 & 1_{2} k-1
\end{array}\right),
$$

Where we have $\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu}$ in $(2 k-1)$-dimensions.

- $\Sigma_{\mu \nu}:=-\frac{i}{4}\left[\gamma_{\mu}, \gamma_{\nu}\right]$, generate the spinor IRR of $\operatorname{SO}(2 k-1)$ of dimension 2^{k-1}.
- We also have

$$
\Xi_{a b}:=-\frac{i}{4}\left[\Gamma_{a}, \Gamma_{b}\right]=\left(\begin{array}{cc}
\Xi_{a b}^{+} & 0 \\
0 & \Xi_{a b}^{-}
\end{array}\right)
$$

Fundamental spinor IRRs of $S O(2 k)$ are $\Xi_{a b}^{ \pm}=\left(\Xi_{\mu \nu}^{ \pm}, \Xi_{2 k \mu}^{ \pm}\right)=\left(\Sigma_{\mu \nu}, \mp \frac{1}{2} \gamma_{\mu}\right)$, generating $S O(2 k)$. Each of dimension 2^{k-1}.

Gauge Field Background

- We introduce the 2^{k}-component spinor:

$$
\Psi=\frac{1}{\sqrt{2 R\left(R+x_{2 k}\right)}}\left(\left(R+x_{2 k}\right) \mathbb{I}_{2^{k}}+x_{\mu} \Gamma^{\mu}\right) \phi, \quad \Psi^{\dagger} \Psi=1, \quad \phi=\frac{1}{\sqrt{2}}\binom{\tilde{\phi}}{\tilde{\phi}}
$$

- Coordinates of $S^{2 k-1}: \frac{X_{a}}{R}=\Psi^{\dagger} \Gamma_{a} \psi$
- $S O(2 k-1)$ gauge field, (i.e. the spin connection) on $S^{2 k-1}$ is given as

$$
A_{\mu}=\Psi^{\dagger} \partial_{\mu} \psi \Longrightarrow A_{\mu}=-\frac{1}{R\left(R+X_{2 k}\right)} \Sigma_{\mu \nu} X_{\nu}, \quad A_{2 k}=0
$$

- Corresponding field strength is $F_{a b}=-i\left[D_{a}, D_{b}\right]$. Here $D_{a}=\partial_{a}+i A_{a}$ are the covariant derivatives. It takes the form

$$
F_{\mu \nu}=\frac{1}{R^{2}}\left(X_{\nu} A_{\mu}-X_{\mu} A_{\nu}+\Sigma_{\mu \nu}\right), \quad F_{2 k \mu}=-\frac{R+X_{2 k}}{R^{2}} A_{\mu} .
$$

- $R^{4} \sum_{a<b} F_{a b}^{2}=\sum_{\mu<\nu} \Sigma_{\mu \nu}^{2}=C_{S O(2 k-1)}^{2}\left(\frac{1}{2}\right)=\frac{1}{2}\left(k-\frac{1}{2}\right)(k-1) \mathbb{I}_{2^{k-1}}$.

Gauge Field Background Continued

- A natural choice for a constant gauge field background is the l-fold symmetric tensor product ${ }^{1}$

$$
\left(\frac{I}{2}\right):=\underbrace{\left(\frac{I}{2}, \ldots, \frac{I}{2}\right)}_{(k-1) \text { terms }}=\bigotimes_{\text {Sym }}^{l}\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)
$$

- Thus we have:

$$
R^{4} \sum_{a<b} F_{a b}^{2}=\sum_{\mu<\nu} \Sigma_{\mu \nu}^{2}=C_{S O(2 k-1)}^{2}\left(\frac{l}{2}\right)=\frac{l}{2}\left(\frac{l}{2}+(k-1)\right)(k-1) \mathbb{I}_{d}
$$

- d stands for the dimension of the representation $\left(\frac{l}{2}\right)$.

Hamiltonian for Charged Particles

- For the Hamiltonian of charged particles on $S^{2 k-1}$ in the constant $S O(2 k-1)$ gauge field background, we write

$$
H=\frac{\hbar}{2 M R^{2}} \sum_{a<b} \Lambda_{a b}^{2}, \quad \Lambda_{a b}:=-i\left(X_{a} D_{b}-X_{b} D_{a}\right)
$$

- Total angular momentum is: Orbital angular momentum of the particles plus the angular momentum of the background gauge field.

$$
\begin{aligned}
L_{a b} & =\Lambda_{a b}+R^{2} F_{a b}, \\
{\left[L_{a b}, L_{c d}\right] } & =i\left(\delta_{a c} L_{b d}+\delta_{b d} L_{a c}-\delta_{b c} L_{a d}-\delta_{a d} L_{b c}\right) .
\end{aligned}
$$

- $L_{a b}$ generates the $S O(2 k)$ group.
- Hamiltonian commutes with the total angular momentum: $\left[H, L_{a b}\right]=0$.
- Hamiltonian takes the form (Using $\Lambda_{a b} F_{a b}=F_{a b} \Lambda_{a b}=0$)

$$
H=\frac{\hbar}{2 M R^{2}}\left(\sum_{a<b} L_{a b}^{2}-\sum_{\mu<\nu} \Sigma_{\mu \nu}^{2}\right)
$$

Energy Spectrum

- What is the generic form of $S O(2 k)$ IRR carried by $L_{a b}$?
- Its branching under $S O(2 k-1)$ should include the $\left(\frac{l}{2}, \ldots, \frac{l}{2}\right)$ IRR of $S O(2 k-1)$.
- From branching rules we find: $\left(n+\frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}, s\right), n \geq 0 \in \mathbb{Z}$ and $|s| \leq \frac{1}{2}$. Indeed we have:

$$
\left(n+\frac{l}{2}, \frac{l}{2}, \cdots, \frac{l}{2}, s\right)=\bigoplus_{\mu_{1}=\frac{1}{2}}^{n+\frac{l}{2}} \bigoplus_{\mu_{2}=s}^{\frac{1}{2}}\left(\mu_{1}, \frac{l}{2}, \cdots, \frac{l}{2}, \mu_{2}\right)
$$

- For the energy spectrum we find:

$$
\begin{aligned}
E & =\frac{\hbar}{2 M R^{2}}\left(C_{S O(2 k)}^{2}-C_{S O(2 k-1)}^{2}\right) \\
& =\frac{\hbar}{2 M R^{2}}\left(n^{2}+s^{2}+n(I+2 k-2)+\frac{l}{2}(k-1)\right) .
\end{aligned}
$$

- For a fixed $I,(n, s)$ are the quantum numbers labeling the Landau levels.

Degenaracies

- Degeneracy $d\left(n, \frac{1}{2}, s\right)$ of each LL is given by the dimension of the IRR $\left(n+\frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}, s\right)$.
- $n=0$, energy levels split into sub-levels with $-\frac{1}{2} \leq s \leq \frac{1}{2}$. It is easily seen that

$$
\sum_{|s| \leq \frac{l}{2}} d\left(n, \frac{l}{2}, s\right)_{S O(2 k)}=d\left(0, \frac{l}{2}\right)_{S O(2 k+1)}
$$

$d\left(0, \frac{1}{2}\right)_{\text {SO(} 2 k+1)}$ being the degeneracy of LLL of QHE on $S^{2 k}$.

I: eren

Degeneracies 6 the LLL

- Degeneracy $d(n, s)$ of each LL is given by the dimension of the IRR $\left(n+\frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}, s\right)$.
- LLL differ for odd and even values of I.

$$
E_{L L L}= \begin{cases}\frac{\hbar}{2 M R^{2}} \frac{l}{2}(k-1) & \text { for even } I,(n, s)=(0,0), \\ \frac{\hbar}{2 M R^{2}}\left(\frac{l}{2}(k-1)+\frac{1}{4}\right) & \text { for odd } I,(n, s)=\left(0, \pm \frac{1}{2}\right)\end{cases}
$$

- For large I, degeneracy at the LLL for all values of I is :

$$
d_{L L L} \approx I^{\frac{1}{2}(k-1)(k+2)}
$$

- In the limit $I, R \longrightarrow \infty$ with finite $\ell_{M}=\frac{R}{\sqrt{1}}$.

$$
E(n, s) \longrightarrow \frac{\hbar}{2 M \ell_{M}^{2}}\left(n+\frac{1}{2}(k-1)\right), \quad E_{L L L}=\frac{\hbar}{2 M \ell_{M}^{2}} \frac{k-1}{2},
$$

- Note that the spacing between LL levels remains finite.

Wave Functions

- Wave functions corresponding to the LL: Wigner \mathcal{D}-functions of $S O(2 k): \mathcal{D}^{\left(n+\frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}, s\right)}(g)_{[L][R]}$.
- For $I=1$, LLL wave functions corresponding to $s= \pm \frac{1}{2}$ are

$$
\begin{aligned}
\Psi^{ \pm} & =K^{ \pm} \tilde{\phi}, \quad \Psi=\binom{\Psi^{+}}{\Psi^{-}} \\
K^{ \pm} & =\frac{1}{2} \frac{1}{\sqrt{R\left(R+X_{2 k}\right)}}\left(\left(R+X_{2 k}\right) \mathbb{I}_{2^{k-1}} \mp i x_{\mu} \gamma^{\mu}\right)
\end{aligned}
$$

- LLL-functions may be written as the I-fold symmetric tensor product of $\Psi^{ \pm}$:

$$
\Psi^{\prime}=\sum_{\alpha_{1}, \cdots \alpha_{l}} f_{\alpha_{1} \cdots \alpha_{l}} \Psi_{\alpha_{1}} \cdots \Psi_{\alpha_{l}}
$$

- For N particles the LLL wave function can be obtained via the Slater determinant

$$
\Psi_{N}^{\prime}=\sum_{\alpha_{1}, \cdots \alpha_{l}} \varepsilon_{\alpha_{1} \cdots \alpha_{l}} \Psi_{\alpha_{1}}^{\prime}\left(x_{1}\right) \cdots \Psi_{\alpha_{l}}^{\prime}\left(x_{N}\right)
$$

The Equatorial $S^{2 k-2}$

We can see that constant gauge field backgrounds on even-spheres can be accessed by confining to the equatorial spheres $S^{2 k-2}$.

- We first note that

$$
\left(K^{ \pm}\right)^{2}=\frac{1}{R}\left(X_{2 k} \mathbb{I}_{2^{k-1}} \mp i X_{\mu} \gamma^{\mu}\right) .
$$

- On the equatorial $S^{2 k-2}$ this gives

$$
\left(K_{0}^{ \pm}\right)^{2}:=\left.\left(K^{ \pm}\right)^{2}\right|_{X_{2 k}=0}=\mp i \frac{1}{R} X_{\mu} \gamma^{\mu}, \quad R \text { is the radius of } S^{2 k-2}
$$

- An idempotent on $S^{2 k-2}$ is

$$
Q=i\left(K_{0}^{ \pm}\right)^{2}, \quad Q^{\dagger}=Q, \quad Q^{2}=\mathbb{I}_{2^{k-1}},
$$

- Rank- 2^{k-2} projection operators are:

$$
\mathcal{P}_{ \pm}=\frac{\mathbb{I}_{2^{k-1}} \pm Q}{2} .
$$

- If \mathcal{A} denotes the algebra of functions on $S^{2 k-2}$. A free \mathcal{A}-module is $\mathcal{A}^{2^{k-1}}=\mathcal{A} \otimes \mathbb{C}^{2^{k-1}}$.
- We may decompose the free $\mathcal{A}^{2^{k-1}}$-module as

$$
\mathcal{A}^{2^{k-1}}=\mathcal{P}_{+} \mathcal{A}^{2^{k-1}} \oplus \mathcal{P}_{-} \mathcal{A}^{2^{k-1}}
$$

$\mathcal{P}_{ \pm} \mathcal{A}^{2^{k-1}}$ are the projective modules, each of dimension 2^{k-2}.

- Connection two-forms associated with $\mathcal{P}_{ \pm}$are

$$
\mathcal{F}_{ \pm}=\mathcal{P}_{ \pm} d\left(\mathcal{P}_{ \pm}\right) d\left(\mathcal{P}_{ \pm}\right)
$$

- $(k-1)^{t h}$ Chern numbers are:

$$
c_{k-1}^{ \pm}=\frac{1}{k!(2 \pi)^{k}} \int_{S^{2 k-2}} \operatorname{Tr}\left(\mathcal{F}_{ \pm}\right)^{k-1}
$$

- $c_{k-1}=d_{L L L}^{S^{2 k-2}}(k-1)$ for $I=1$. Higher rank projective modules an be constructed to give $c_{k-1}(I)$ which matches exactly with the number of zero modes, i.e. the index of the gauged Dirac operator on $S^{2 k-2}$.

Example 1: S^{3}

- Energy spectrum reads $E=\frac{\hbar}{2 M R^{2}}\left(n^{2}+2 n+I n+\frac{1}{2}+s^{2}\right)$.
- Degeneracy of the Landau levels are

$$
d(n, s)=\left(n+\frac{l}{2}+1\right)^{2}-s^{2}
$$

- LLL has

$$
\begin{equation*}
E_{L L L}=\frac{\hbar}{2 M R^{2}} \frac{I}{2}, \quad(\text { I even }), \quad E_{L L L}=\frac{\hbar}{2 M R^{2}}\left(\frac{I}{2}+\frac{1}{4}\right) \tag{lodd}
\end{equation*}
$$

- With the degeneracies

$$
d(n=0, s=0)=\left(\frac{I}{2}+1\right)^{2}, \quad d\left(n=0, s= \pm \frac{1}{2}\right)=\frac{1}{4}(I+1)(I+3)
$$

- On the equatorial $S^{2}: Q=\boldsymbol{\sigma} \cdot \hat{\boldsymbol{X}}$ and $\mathcal{P}_{ \pm}=\frac{\mathbb{I}_{2} \pm \boldsymbol{\sigma} \cdot \hat{\boldsymbol{X}}}{2}$
- This yields the usual abelian Dirac monopole field

$$
B_{\mu}=\frac{1}{2} \varepsilon_{\mu \nu \rho} F_{\nu \rho}=\frac{I}{2} \frac{X_{i}}{R^{3}}
$$

- $c_{1}(I)=I$ gives the zero modes of the Dirac operator on S^{2} in the Dirac monopole background.

Example 2: S^{5}

- Energy spectrum is: $E=\frac{\hbar}{2 M R^{2}}\left(n^{2}+4 n+\ln +I+s^{2}\right)$.
- For the LLL we find

$$
\begin{gathered}
E_{L L L}=\frac{\hbar}{2 M R^{2}} I, \quad(I \text { even }), \quad E_{L L L}=\frac{\hbar}{2 M R^{2}}\left(I+\frac{1}{4}\right), \quad(I \circ \\
d(n=0, s=0)=\frac{1}{3 \cdot 2^{6}}(I+2)^{2}(I+3)(I+4)^{2}, \quad(I \text { even }), \\
d\left(n=0, s= \pm \frac{1}{2}\right)=\frac{1}{3 \cdot 2^{6}}(I+1)(I+3)^{3}(I+5), \quad(I \text { odd }) .
\end{gathered}
$$

- On the equatorial $S^{4}: Q=\frac{\gamma_{\mu} X_{\mu}}{R}$ and $\mathcal{P}_{ \pm}=\frac{\mathbb{I}_{4} \pm Q}{2}$
- Curvature and connection take the form $i=(1, \cdots, 4)$

$$
\begin{aligned}
F_{i j} & =\frac{1}{R^{2}}\left(X_{j} A_{i}-X_{i} A_{j}+\Sigma_{i j}^{+}\right), \quad F_{5 i}=-\frac{R+X_{5}}{R^{2}} A_{i} \\
A_{i} & =-\frac{1}{R\left(R+X_{5}\right)} \Sigma_{i j}^{+} X_{j}, \quad A_{5}=0, \quad \sum_{i j}^{+}=-i \frac{1}{4}\left[\sigma_{i}, \sigma_{j}\right]
\end{aligned}
$$

- Number of zero modes of the Dirac operator on S^{4} with this $S U(2)$ background is $c_{2}(I)=\frac{1}{6} I(I+1)(I+2)$.

Gauged Dirac Operator on $S^{2 k-1}$

- Dirac operator on $S^{2 k-1}$ in the background of $F_{a b}$ has the form

$$
\mathcal{D}_{(1,2)}=\frac{1}{2}\left(\mathbb{I} \mp \Gamma_{2 k+1}\right) \sum_{a<b}\left(-\bar{\Xi}_{a b}\left(L_{a b}-R^{2} F_{a b}\right)+k-\frac{1}{2}\right)
$$

- Here $\Xi_{a b}$ carries $\left(\frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}\right) \oplus\left(\frac{1}{2}, \frac{1}{2}, \cdots,-\frac{1}{2}\right)$ representation of SO(2k).
- On a symmetric coset space, say $K \equiv G / H$, with holonomy group H taken as the gauge group (\& identifying the gauge connection with the spin connection), t is possible to write

$$
\left(i \mathcal{D}_{G a u g e d}\right)^{2}=C^{2}(G)-C^{2}(H)+\frac{\mathcal{R}}{8}
$$

- This fits perfectly to our problem!: Therefore, we can write:

$$
\begin{aligned}
& \left(i \mathcal{D}_{(1,2)}\right)^{2}=C_{S O(2 k)}^{2}(n+J, J, \cdots, J, \pm \tilde{s})- \\
& \quad C_{S O(2 k-1)}^{2}\left(\frac{l}{2}, \frac{l}{2}, \cdots, \frac{l}{2}\right)+\frac{1}{4}\left(2 k^{2}-3 k+1\right) .
\end{aligned}
$$

- $\mathcal{R}=2\left(2 k^{2}-3 k+1\right)$ is the Ricci scalar of $S^{2 k-1}$.

Spectrum of $\mathcal{D}_{(1,2)}^{2}$ and Zero Modes

- We have $|\tilde{s}| \leq J$ and

$$
J= \begin{cases}\frac{l}{2}+\frac{1}{2} & \text { for } \operatorname{spin} \text { up \& } \quad I \geq 0 \\ \frac{l}{2}-\frac{1}{2} & \text { for spin down } \& \quad I \geq 1\end{cases}
$$

- Spectrum of $\left(i \mathcal{D}_{(1,2)}\right)^{2}$ reads

$$
\begin{aligned}
& \mathcal{E}_{\uparrow}=n(n+2 k-1)+I(n+k-1)+k(k-1)+\tilde{s}^{2}, \quad(I \geq 0), \\
& \mathcal{E}_{\downarrow}=n(n+I+2 k-3)+\tilde{s}^{2}, \quad(I \geq 1)
\end{aligned}
$$

- For even I, LLL is : $\mathcal{E}_{\downarrow}^{L L L}\left(n=0, \tilde{s}= \pm \frac{1}{2}\right)=\frac{1}{4}$.
- For odd I, LLL is : $\mathcal{E}_{\downarrow}^{L L L}(n=0, \tilde{s}=0)=0$. These are the zero modes of the Dirac operator.
- Note that spectrum of $\left(i \mathcal{D}_{1}\right)^{2}$ and $\left(i \mathcal{D}_{2}\right)^{2}$ are the same. This can be seen by taking $\tilde{s} \rightarrow-\tilde{s}$ in \mathcal{E}_{\uparrow} and \mathcal{E}_{\downarrow}.
- For S^{3}, we find the LLL degeneracies:

$$
\begin{array}{lc}
\frac{I(I+2)}{4} & \text { for even } I \\
\frac{(I+1)^{2}}{4} & \text { for odd } I,(\text { zero modes })
\end{array}
$$

- For S^{5}, LLL degeneracies are:

$$
\begin{array}{ll}
\frac{1}{3 \cdot 2^{6}} I(I+2)^{3}(I+4) & \text { for even } I \\
\frac{1}{3 \cdot 2^{6}}(I+1)^{2}(I+2)(I+3)^{2} & \text { for odd } I,(\text { zero modes })
\end{array}
$$

- No index theorem in odd dimensions to relate the zero modes to a topological number.
- For $I=0$ and $\tilde{s}= \pm \frac{1}{2}$ we recover the spectrum for vanishing gauge background:

$$
\begin{gathered}
\mathcal{E}_{\uparrow}=\left(n+k-\frac{1}{2}\right)^{2} . \\
E_{\uparrow}=\sqrt{\mathcal{E}_{\uparrow}}, \quad E_{\downarrow}=-\sqrt{\mathcal{E}_{\uparrow}}
\end{gathered}
$$

with $n \rightarrow n-1$ and $\tilde{s} \rightarrow-\tilde{s}$ in E_{\downarrow}.

Concluding Remarks and Outlook

- We have solved the Landau problem and the Dirac Landau problem for charged particles on $S^{2 k-1}$ in the background of $S O(2 k-1)$ gauge field. Obtained the energy spectrum and wave functions.
- It is possible to show that there is exact correspondence between the direct sum of Hilbert spaces of LLLs with / ranging from 0 to $I_{\text {max }}=2 K$ or $I_{\text {max }}=2 K+1$ correspond respectively to the Hilbert spaces of the fuzzy $\mathbb{C} P^{3}$ or that of winding number ± 1 line bundle over $\mathbb{C} P^{3}$ at level K.
This correspondence also means that the quantum number $s= \pm \frac{1}{2}$ for the LLL over S^{5} is actually related to the winding number $\kappa= \pm 1$ of the monopole bundles over $\mathbb{C} P_{F}^{3}$ via $s=\frac{\kappa}{2}$, which permits us to give, in a sense, a topological meaning to the ± 1 values of 2 s .
- We have noticed a peculiar relation between the Landau problem on $S^{2 k-1}$ and that on the equatorial $S^{2 k-2}$, which allowed us to give the background $S O(2 k-2)$ gauge fields over $S^{2 k-2}$ by constructing the relevant projective modules.
- LL on $S^{2 k-1}$ with $n=0$ and $|s| \leq \frac{1}{2}$ can be visualized as embedded in the LLL of $S^{2 k}$ where s is thought of as a latitude parameter with discrete values. This picture can be described in terms of higher dimensional fuzzy spheres (Hasebe, 2016).

$\mathbb{H} A \mathbb{P P P Y}$
 BIIRTHIDAY

A Curious Connection with $\mathbb{C} P_{F}^{3}$:

- An exact correspondence between the direct sum of Hilbert spaces of LLLs with I ranging from 0 to $I_{\text {max }}=2 K$ or $I_{\text {max }}=2 K+1$ correspond respectively to the Hilbert spaces of the fuzzy $\mathbb{C} P^{3}$ or that of winding number ± 1 line bundle over $\mathbb{C} P^{3}$ at level K.
- Recall that the isometry group $S U(4)$ for $\mathbb{C} P^{3}$ is isomorphic to that of S^{5}, which is $\operatorname{Spin}(6) \approx S O(6)$.
- Fuzzy $\mathbb{C} P^{3}$ at level K is given in term of the matrix algebra $\operatorname{Mat}\left(d_{K}\right)$, where $d_{K}=\frac{1}{6}(K+3)(K+2)(K+1)$. It covers all the IRRs of $S U(4)$ which emerge from the tensor product

$$
\left(\frac{K}{2}, \frac{K}{2}, \frac{K}{2}\right) \otimes\left(\frac{K}{2}, \frac{K}{2},-\frac{K}{2}\right)=\bigoplus_{k=0}^{K}(k, k, 0)
$$

- Expansion of an element of $\operatorname{Mat}\left(d_{K}\right)$ in terms of $\operatorname{SU}(4)$ harmonics carries the IRRs of $S U(4)$ appearing in the direct sum decomposition given in the r.h.s.
- Just observe, that each summand in the latter is equal to the $S U(4) \approx S O(6)$ IRR carried by the LLL for $I=2 k$.
- So, for even $I,(I=2 k)$, the direct sum of all the LLL Hilbert spaces with $0 \leq k \leq K$ spans the matrix algebra $\operatorname{Mat}\left(d_{K}\right)$ of $\mathbb{C} P_{F}^{3}$.
- Sections of complex line bundles with winding number 1 over $\mathbb{C} P_{F}^{3}$ are described via the tensor product decomposition

$$
\left(\frac{K+1}{2}, \frac{K+1}{2}, \frac{K+1}{2}\right) \otimes\left(\frac{K}{2}, \frac{K}{2},-\frac{K}{2}\right)=\bigoplus_{k=0}^{K}\left(k+\frac{1}{2}, k+\frac{1}{2}, \frac{1}{2}\right)
$$

- Elements in this nontrivial line bundle are $d_{K+1} \times d_{K}$ rectangular matrices forming a right module $\mathcal{A}^{(1)}\left(\mathbb{C} P_{F}^{3}\right)$ under the action of $\operatorname{Mat}\left(d_{K}\right)$.
- We observe that each summand corresponds to an SO(6) IRR carried by the LLL for $I=2 k+1$ and $s=\frac{1}{2}$.
- So the direct sum of all the LLL Hilbert spaces with $0 \leq k \leq K$ spans $\mathcal{A}^{(1)}\left(\mathbb{C} P_{F}^{3}\right)$ over $\mathbb{C} P_{F}^{3}$.
- It is easy to check that the total number of states in this direct sum of LLLs is precisely $d_{K+1} d_{K}$:

$$
\sum_{k=0}^{K} \frac{1}{12}(k+4)(k+3)(k+2)^{2}(k+1)=d_{K+1} d_{K}
$$

- A similar correspondence also follows for $\mathcal{A}^{-1}\left(\mathbb{C} P_{F}^{3}\right)$.

A Few Facts on QHE on S^{4}

- Landau problem for charged particles on S^{4} formulated and solved by Hu and Zhang (2000).
- Particles are under influence of a background $S U(2)$ gauge field. This is provided by a Yang monopole.
- Multiparticle problem: In LLL, with filling factor $\nu=1$, finite spatial density occurs iff the charges particles carry infinitely large IRR's of $S U(2)$.
- In $2 D$ edge excitations give spin zero particles (massless chiral bosons), in $4 D$ edge excittions have higher spin particles like photons and gravitons. However, other massless higher-spin states also occur.
- Effective Abelian and non-Abelian Chern-Simons theory descriptions in $6+1$ and $4+1$, respectively are also given as generalizations of effective CS theory for QHE in the low energy regime.

