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Department of Physics, METU

Based on PRD 95, 2017 with Ü.H. Coşkun, & G.C.Toga
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Timeline and Motivations

Warm Up: QHE on S2

Landau Problem on S2k−1

Hamiltonian & the Energy Spectrum

Dirac-Landau Problem on S2k−1

Concluding Remarks and Outlook
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A Short Timeline

• Haldane (1983) considered QHE on S2.

• Hu & Zhang (2000) obtained a generalization of QHE on S4.

• Karabali & Nair (2002) formulated QHE on CPN .

• QHE on even-dimensional spheres, S2k , Kimura & Hasebe (2004),
on S8 Bernevig et.al. (2004).

• QHE on S3 considered by Nair & Daemi (2004), and by Hasebe
(2014).

• We formulated QHE on Gr2(CN) (2014).
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Early and Recent Motivations

• In 2D edge excitations give spin zero particles (massless chiral bosons), in
4D edge excitations have higher spin particles like photons and gravitons.
However, other massless higher-spin states also occur.

• For S4 and CP2, effective Abelian and non-Abelian Chern-Simons theory
descriptions are given as generalizations of effective CS theory for QHE in
the low energy regime.

• Low energy dynamics of strings-D-branes configurations are effectively
captured by QHE on S2 and S4. Bernevig et.al. (2001), Fabinger (2002).

• Topological Insulators(TIs):

1. A-class TIs: T = 0, C = 0, S = T C = 0 and Z TI in even
dimensions. These can be realized as QHE on even spheres S2k .
(Hasebe(1) , 2014).

2. AIII -class TIs: T = 0, C = 0, S = 1 and Z TI in odd dimensions.
QHE on S3 can be seen as a realization of AIII -class TI in
3-dimensions. (Hasebe(2),2014).
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Landau Problem on S2

• There are motivations from condensed
matter physics.

- Rotational Invariance, leading to
invariance under magnetic
translations, explaining the
degeneracy of LL.

- Compact geometry leads to finite
number of degrees of freedom,
leading to finite degeneracy of
states at a given LL.

- When R → ∞, results on the
plane are recovered.

• A Dirac monopole placed at the center
of S2:

B⃗ =
g

r 3
r⃗ ,

• Dirac quantization condition is:

eg =
1

2
Iℏ , I ∈ Z .
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• The Hamiltonian for a charged particle on a sphere of radius R
under the influence of the monopole field is

H =
1

2mR2
Λ ·Λ =

ωc

Iℏ
Λ ·Λ , ωc =

eB

m
.

• We have

Λ = r × (−iℏ∇+ eA) , ∇× A = B r̂ , Λ · r̂ = r̂ ·Λ = 0 ,

[Λα ,Λβ] = iℏεαβγ(Λγ − Iℏ
2
r̂γ)

• Rotations are generated by

J = Λ+
Iℏ
2

r̂ , [Jα , Jβ] = iℏεαβγJγ , J · r̂ = r̂ · J =
Iℏ
2
,

• We have [J ,H] = 0.

• Eigenvalues of J2 should be ℏ2j(j + 1) where j = q + I
2 .
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• Spectrum of the Hamiltonian is then (B = Iℏ
2eR2 )

E =
eℏB
2m

(2q + 1) +
ℏ2

2mR2
q(q + 1) ,

• The lowest Landau level has the energy E = eℏB
2m .

• Each Landau level has finite degeneracy 2j + 1 = I + 1 + 2q.

• On SU(2), we have the Wigner functions D(j)
L3,R3

(g). Functions on

S2 may be viewed as the subset of functions on SU(2) invariant
under the U(1) subgroup.

• Suppose that there there is no B-field. What is the Hamiltonian for
an electron on the sphere?

H =
L2

2mR2
, E =

ℓ(ℓ+ 1)

2mR2
, ψℓm = Dℓ

m0(g) =

√
4π

2ℓ+ 1
Y ∗
ℓm(θ , ϕ) .

• Eigenvalue equation for H is solved by the wave functions:

Dj

L3
I
2

(g) , R3 =
I

2
, j = q +

I

2
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• Density correlation function between a pair of particles takes the
form

Ω(1, 2) = |Ψ1|2|Ψ2|2 − |Ψ∗1
Λ Ψ2

Λ|2,

= 1− e−2B|X⃗ 1−X⃗ 2|2 ,

• Ω(1, 2) approaches 1 at separations ≫ ℓB . Here ℓB =
√

1
B is the

magnetic length. Restoring e and ℏ it is ℓB =
√

ℏ
eB .

• Probability of finding two particles at the same location goes to zero.
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A String Theory Perspective

• Very briefly:

- Wrap a D2-brane on S2 and
dissolve N, D0-branes on it.

- Take K flat D6-branes ⊥
D2-brane and move them to the
center of D2-brane.

- K fundamental strings stretch
between D2 and D6-branes.

- Charged string-ends may be
viewed as K - charged particles
and in the low energy limit N is
interpreted as the number of
magnetic flux quantum with
ν = K

N
being the filling factor.

- Background magnetic field may
be viewed as density of
D0-branes on the D2-brane.
Thus, at low energies Quantum
Hall system on S2 appears to
emerge.
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Landau Problem on S2k−1: Basic Setup and Geometry

• To specify the coordinates of S2k−1 we may embed it in R2k .
S2k−1 ≡

⟨
X⃗ = (X1,X2, · · · ,X2k) ∈ R2k

∣∣X⃗ · X⃗ = R2
⟩
.

• It is a coset space: S2k−1 ≡ SO(2k)
SO(2k−1) .

• We will need the gamma matrices, Γa, a = (1, 2, . . . , 2k) in 2k-
dimensions. These are 2k × 2k matrices with {Γa , Γb} = 2δab.
Iteratively:

Γµ =
(

0 −iγµ

iγµ 0

)
, Γ2k =

(
0 1

2k−1

1
2k−1 0

)
, Γ2k+1 =

(−1
2k−1 0

0 1
2k−1

)
,

Where we have {γµ , γν} = 2δµν in (2k − 1)-dimensions.

• Σµν := − i
4
[γµ , γν ], generate the spinor IRR of SO(2k − 1) of dimension 2k−1.

• We also have

Ξab := −
i

4
[Γa , Γb] =

(
Ξ+
ab 0

0 Ξ−
ab

)
Fundamental spinor IRRs of SO(2k) are Ξ±

ab = (Ξ±
µν ,Ξ±

2kµ) = (Σµν ,∓ 1
2
γµ),

generating SO(2k). Each of dimension 2k−1.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Timeline and Motivations Warm Up: QHE on S2 Landau Problem on S2k−1 Hamiltonian & the Energy Spectrum Dirac-Landau Problem on S2k−1 Concluding Remarks and Outlook

Gauge Field Background

• We introduce the 2k -component spinor:

Ψ =
1√

2R(R + x2k)
((R+x2k)I2k+xµΓ

µ)ϕ , Ψ†Ψ = 1 , ϕ =
1√
2

(
ϕ̃

ϕ̃

)
• Coordinates of S2k−1 : Xa

R = Ψ†ΓaΨ

• SO(2k − 1) gauge field, (i.e. the spin connection) on S2k−1 is given
as

Aµ = Ψ†∂µΨ =⇒ Aµ = − 1

R(R + X2k)
ΣµνXν , A2k = 0 .

• Corresponding field strength is Fab = −i [Da,Db]. Here
Da = ∂a + iAa are the covariant derivatives. It takes the form

Fµν =
1

R2
(XνAµ − XµAν +Σµν) , F2kµ = −R + X2k

R2
Aµ .

• R4
∑

a<b F
2
ab =

∑
µ<ν Σ

2
µν = C 2

SO(2k−1)(
1
2 ) =

1
2

(
k − 1

2

)
(k−1)I2k−1 .
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Gauge Field Background Continued

• A natural choice for a constant gauge field background is the I -fold
symmetric tensor product1(

I

2

)
:=

(
I

2
, ...,

I

2

)
︸ ︷︷ ︸
(k−1) terms

=
I⊗

Sym

(
1

2
, ...,

1

2

)

• Thus we have:

R4
∑
a<b

F 2
ab =

∑
µ<ν

Σ2
µν = C 2

SO(2k−1)

(
I

2

)
=

I

2

(
I

2
+ (k − 1)

)
(k−1)Id

• d stands for the dimension of the representation
(
I
2

)
.

1Note: For IRRs we are using the highest weight labels.
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Hamiltonian for Charged Particles
• For the Hamiltonian of charged particles on S2k−1 in the constant
SO(2k − 1) gauge field background, we write

H =
ℏ

2MR2

∑
a<b

Λ2
ab , Λab := −i(XaDb − XbDa)

• Total angular momentum is: Orbital angular momentum of the
particles plus the angular momentum of the background gauge field.

Lab = Λab + R2Fab ,

[Lab, Lcd ] = i(δacLbd + δbdLac − δbcLad − δadLbc) .

• Lab generates the SO(2k) group.

• Hamiltonian commutes with the total angular momentum:
[H , Lab] = 0.

• Hamiltonian takes the form (Using ΛabFab = FabΛab = 0)

H =
ℏ

2MR2

(∑
a<b

L2ab −
∑
µ<ν

Σ2
µν

)
.
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Energy Spectrum

• What is the generic form of SO(2k) IRR carried by Lab?

• Its branching under SO(2k − 1) should include the
(
I
2 , ...,

I
2

)
IRR of

SO(2k − 1).

• From branching rules we find: (n + I
2 ,

I
2 , · · · ,

I
2 , s), n ≥ 0 ∈ Z and

|s| ≤ I
2 . Indeed we have:(

n +
I

2
,
I

2
, · · · , I

2
, s

)
=
⊕n+ I

2

µ1=
I
2

⊕ I
2

µ2=s

(
µ1,

I

2
, · · · , I

2
, µ2

)
.

• For the energy spectrum we find:

E =
ℏ

2MR2

(
C 2
SO(2k) − C 2

SO(2k−1)

)
=

ℏ
2MR2

(
n2 + s2 + n(I + 2k − 2) +

I

2
(k − 1)

)
.

• For a fixed I , (n, s) are the quantum numbers labeling the Landau
levels.
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Degenaracies
• Degeneracy d(n, I

2
, s) of each LL is given by the dimension of the IRR

(n + I
2
, I
2
, · · · , I

2
, s).

• n = 0, energy levels split into sub-levels with − I
2
≤ s ≤ I

2
. It is easily seen

that ∑
|s|≤ I

2

d(n,
I

2
, s)SO(2k) = d(0,

I

2
)SO(2k+1)

d(0, I
2
)SO(2k+1) being the degeneracy of LLL of QHE on S2k .

   New Section 5 Page 1       New Section 6 Page 1    
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Degeneracies & the LLL

• Degeneracy d(n, s) of each LL is given by the dimension of the IRR
(n + I

2 ,
I
2 , · · · ,

I
2 , s).

• LLL differ for odd and even values of I .

ELLL =

{
ℏ

2MR2
I
2 (k − 1) for even I , (n, s) = (0, 0) ,

ℏ
2MR2

(
I
2 (k − 1) + 1

4

)
for odd I , (n, s) = (0,± 1

2 )

• For large I , degeneracy at the LLL for all values of I is :

dLLL ≈ I
1
2 (k−1)(k+2) .

• In the limit I ,R −→ ∞ with finite ℓM = R√
I
.

E (n, s) −→ ℏ
2Mℓ2M

(
n +

1

2
(k − 1)

)
, ELLL =

ℏ
2Mℓ2M

k − 1

2
,

• Note that the spacing between LL levels remains finite.
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Wave Functions
• Wave functions corresponding to the LL: Wigner D-functions of
SO(2k): D(n+ I

2 ,
I
2 ,··· ,

I
2 ,s)(g)[L][R].

• For I = 1, LLL wave functions corresponding to s = ± 1
2 are

Ψ± = K±ϕ̃ , Ψ =

(
Ψ+

Ψ−

)
K± =

1

2

1√
R(R + X2k)

((R + X2k)I2k−1 ∓ ixµγ
µ)

• LLL-functions may be written as the I -fold symmetric tensor product
of Ψ±:

ΨI =
∑

α1 ,···αI

fα1 ···αI
Ψα1 · · ·ΨαI

,

• For N particles the LLL wave function can be obtained via the Slater
determinant

ΨI
N =

∑
α1 ,···αI

εα1 ···αI
ΨI

α1
(x1) · · ·ΨI

αI
(xN) ,
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The Equatorial S2k−2

We can see that constant gauge field backgrounds on even-spheres can
be accessed by confining to the equatorial spheres S2k−2.

• We first note that

(K±)2 =
1

R
(X2kI2k−1 ∓ iXµγ

µ) .

• On the equatorial S2k−2 this gives

(K±
0 )2 := (K±)2

∣∣∣
X2k=0

= ∓i
1

R
Xµγ

µ , R is the radius of S2k−2

• An idempotent on S2k−2 is

Q = i(K±
0 )2 , Q† = Q , Q2 = I2k−1 ,

• Rank-2k−2 projection operators are:

P± =
I2k−1 ± Q

2
.
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• If A denotes the algebra of functions on S2k−2. A free A-module is

A2k−1

= A⊗ C2k−1

.

• We may decompose the free A2k−1

-module as

A2k−1

= P+A2k−1

⊕ P−A2k−1

,

P±A2k−1

are the projective modules, each of dimension 2k−2.

• Connection two-forms associated with P± are

F± = P± d (P±) d (P±) .

• (k − 1)th Chern numbers are:

c±k−1 =
1

k!(2π)k

∫
S2k−2

Tr (F±)
k−1 .

• ck−1 = dS2k−2

LLL (k − 1) for I = 1. Higher rank projective modules an
be constructed to give ck−1(I ) which matches exactly with the
number of zero modes, i.e. the index of the gauged Dirac operator
on S2k−2.
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Example 1: S3

• Energy spectrum reads E = ℏ
2MR2 (n

2 + 2n + In + I
2 + s2).

• Degeneracy of the Landau levels are

d(n, s) = (n +
I

2
+ 1)2 − s2 ,

• LLL has

ELLL =
ℏ

2MR2

I

2
, (I even) , ELLL =

ℏ
2MR2

(
I

2
+

1

4

)
, (I odd)

• With the degeneracies

d(n = 0, s = 0) = (
I

2
+ 1)2 , d(n = 0, s = ±1

2
) =

1

4
(I +1)(I +3) ,

• On the equatorial S2: Q = σ · X̂ and P± = I2±σ·X̂
2

• This yields the usual abelian Dirac monopole field

Bµ =
1

2
εµνρFνρ =

I

2

Xi

R3
.

• c1(I ) = I gives the zero modes of the Dirac operator on S2 in the
Dirac monopole background.
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Example 2: S5

• Energy spectrum is : E = ℏ
2MR2 (n

2 + 4n + In + I + s2).
• For the LLL we find

ELLL =
ℏ

2MR2
I , (I even) , ELLL =

ℏ
2MR2

(
I +

1

4

)
, (I odd)

d(n = 0, s = 0) =
1

3 · 26
(I + 2)2(I + 3)(I + 4)2 , (I even) ,

d(n = 0, s = ±1

2
) =

1

3 · 26
(I + 1)(I + 3)3(I + 5) , (I odd) .

• On the equatorial S4: Q =
γµXµ

R and P± = I4±Q
2

• Curvature and connection take the form i = (1 , · · · , 4)

Fij =
1

R2
(XjAi − XiAj +Σ+

ij ) , F5i = −R + X5

R2
Ai ,

Ai = − 1

R(R + X5)
Σ+

ij Xj , A5 = 0 , Σ+
ij = −i

1

4
[σi , σj ]

• Number of zero modes of the Dirac operator on S4 with this SU(2)
background is c2(I ) =

1
6 I (I + 1)(I + 2).
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Gauged Dirac Operator on S2k−1

• Dirac operator on S2k−1 in the background of Fab has the form

D(1,2) =
1

2
(I∓ Γ2k+1)

∑
a<b

(
−Ξab(Lab − R2Fab) + k − 1

2

)
.

• Here Ξab carries
(
1
2 ,

1
2 , · · · ,

1
2

)
⊕
(
1
2 ,

1
2 , · · · ,−

1
2

)
representation of

SO(2k).
• On a symmetric coset space, say K ≡ G

/
H, with holonomy group H

taken as the gauge group (& identifying the gauge connection with
the spin connection), t is possible to write

(iDGauged)
2 = C 2(G )− C 2(H) +

R
8
,

• This fits perfectly to our problem!: Therefore, we can write:

(iD(1,2))
2 = C 2

SO(2k) (n + J, J, · · · , J,±s̃)−

C 2
SO(2k−1)

(
I

2
,
I

2
, · · · , I

2

)
+

1

4
(2k2 − 3k + 1) .

• R = 2(2k2 − 3k + 1) is the Ricci scalar of S2k−1.
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Spectrum of D2
(1,2) and Zero Modes

• We have |s̃| ≤ J and

J =

{
I
2 + 1

2 for spin up & I ≥ 0
I
2 − 1

2 for spin down & I ≥ 1

• Spectrum of (iD(1,2))
2 reads

E↑ = n(n + 2k − 1) + I (n + k − 1) + k(k − 1) + s̃2 , (I ≥ 0) ,

E↓ = n(n + I + 2k − 3) + s̃2 , (I ≥ 1)

• For even I , LLL is : ELLL
↓ (n = 0 , s̃ = ± 1

2 ) =
1
4 .

• For odd I , LLL is : ELLL
↓ (n = 0 , s̃ = 0) = 0. These are the zero

modes of the Dirac operator.

• Note that spectrum of (iD1)
2 and (iD2)

2 are the same. This can be
seen by taking s̃ → −s̃ in E↑ and E↓.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Timeline and Motivations Warm Up: QHE on S2 Landau Problem on S2k−1 Hamiltonian & the Energy Spectrum Dirac-Landau Problem on S2k−1 Concluding Remarks and Outlook

• For S3, we find the LLL degeneracies:

I (I + 2)

4
for even I

(I + 1)2

4
for odd I , (zero modes)

• For S5, LLL degeneracies are:

1

3 · 26
I (I + 2)3(I + 4) for even I

1

3 · 26
(I + 1)2(I + 2)(I + 3)2 for odd I , (zero modes)

• No index theorem in odd dimensions to relate the zero modes to a
topological number.

• For I = 0 and s̃ = ± 1
2 we recover the spectrum for vanishing gauge

background:

E↑ = (n + k − 1

2
)2 .

E↑ =
√
E↑ , E↓ = −

√
E↑

with n → n − 1 and s̃ → −s̃ in E↓.
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Concluding Remarks and Outlook

• We have solved the Landau problem and the Dirac Landau problem
for charged particles on S2k−1 in the background of SO(2k − 1)
gauge field. Obtained the energy spectrum and wave functions.

• It is possible to show that there is exact correspondence between the
direct sum of Hilbert spaces of LLLs with I ranging from 0 to
Imax = 2K or Imax = 2K + 1 correspond respectively to the Hilbert
spaces of the fuzzy CP3 or that of winding number ±1 line bundle
over CP3 at level K .
This correspondence also means that the quantum number s = ± 1

2
for the LLL over S5 is actually related to the winding number
κ = ±1 of the monopole bundles over CP3

F via s = κ
2 , which permits

us to give, in a sense, a topological meaning to the ±1 values of 2s.
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• We have noticed a peculiar relation between the Landau problem on
S2k−1 and that on the equatorial S2k−2, which allowed us to give
the background SO(2k − 2) gauge fields over S2k−2 by constructing
the relevant projective modules.

• LL on S2k−1 with n = 0 and |s| ≤ I
2 can be visualized as embedded

in the LLL of S2k where s is thought of as a latitude parameter with
discrete values. This picture can be described in terms of higher
dimensional fuzzy spheres (Hasebe,2016).
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HAPPY BIRTHDAY BAL!
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A Curious Connection with CP3
F :

• An exact correspondence between the direct sum of Hilbert spaces
of LLLs with I ranging from 0 to Imax = 2K or Imax = 2K + 1
correspond respectively to the Hilbert spaces of the fuzzy CP3 or
that of winding number ±1 line bundle over CP3 at level K .

• Recall that the isometry group SU(4) for CP3 is isomorphic to that
of S5, which is Spin(6) ≈ SO(6).

• Fuzzy CP3 at level K is given in term of the matrix algebra
Mat(dK ), where dK = 1

6 (K + 3)(K + 2)(K + 1). It covers all the
IRRs of SU(4) which emerge from the tensor product(

K

2
,
K

2
,
K

2

)
⊗
(
K

2
,
K

2
,−K

2

)
=

K⊕
k=0

(k, k , 0)

• Expansion of an element of Mat(dK ) in terms of SU(4) harmonics
carries the IRRs of SU(4) appearing in the direct sum decomposition
given in the r.h.s.

• Just observe, that each summand in the latter is equal to the
SU(4) ≈ SO(6) IRR carried by the LLL for I = 2k .

• So, for even I , (I = 2k), the direct sum of all the LLL Hilbert spaces
with 0 ≤ k ≤ K spans the matrix algebra Mat(dK ) of CP3

F .
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• Sections of complex line bundles with winding number 1 over CP3
F

are described via the tensor product decomposition(
K + 1

2
,
K + 1

2
,
K + 1

2

)
⊗
(
K

2
,
K

2
,−K

2

)
=

K⊕
k=0

(
k +

1

2
, k +

1

2
,
1

2

)
• Elements in this nontrivial line bundle are dK+1 × dK rectangular
matrices forming a right module A(1)(CP3

F ) under the action of
Mat(dK ).

• We observe that each summand corresponds to an SO(6) IRR
carried by the LLL for I = 2k + 1 and s = 1

2 .

• So the direct sum of all the LLL Hilbert spaces with 0 ≤ k ≤ K
spans A(1)(CP3

F ) over CP3
F .

• It is easy to check that the total number of states in this direct sum
of LLLs is precisely dK+1dK :

K∑
k=0

1

12
(k + 4)(k + 3)(k + 2)2(k + 1) = dK+1dK

• A similar correspondence also follows for A−1(CP3
F ).
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A Few Facts on QHE on S4

• Landau problem for charged particles on S4 formulated and solved
by Hu and Zhang (2000).

• Particles are under influence of a background SU(2) gauge field.
This is provided by a Yang monopole.

• Multiparticle problem: In LLL, with filling factor ν = 1, finite spatial
density occurs iff the charges particles carry infinitely large IRR’s of
SU(2).

• In 2D edge excitations give spin zero particles (massless chiral
bosons), in 4D edge excittions have higher spin particles like photons
and gravitons. However, other massless higher-spin states also occur.

• Effective Abelian and non-Abelian Chern-Simons theory descriptions
in 6 + 1 and 4 + 1, respectively are also given as generalizations of
effective CS theory for QHE in the low energy regime.
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