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TIMELINE AND MOTIVATIONS

A Short Timeline

Haldane (1983) considered QHE on S2.
Hu & Zhang (2000) obtained a generalization of QHE on S*.
Karabali & Nair (2002) formulated QHE on CPN.

e QHE on even-dimensional spheres, $%¢, Kimura & Hasebe (2004),
on S8 Bernevig et.al. (2004).

e QHE on S3 considered by Nair & Daemi (2004), and by Hasebe
(2014).
o We formulated QHE on Gry(CY) (2014).
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FEarly and Recent Motivations

e In 2D edge excitations give spin zero particles (massless chiral bosons), in
4D edge excitations have higher spin particles like photons and gravitons.
However, other massless higher-spin states also occur.

e For §* and CP?, effective Abelian and non-Abelian Chern-Simons theory
descriptions are given as generalizations of effective CS theory for QHE in
the low energy regime.

e Low energy dynamics of strings-D-branes configurations are effectively
captured by QHE on S? and S*. Bernevig et.al. (2001), Fabinger (2002).

e Topological Insulators(Tls):

1. Aclass Tls: T=0,C=0,8S§=7C=0and Z Tl in even
dimensions. These can be realized as QHE on even spheres 52
(Hasebe(1) , 2014).

2. Alll-class Tls: T=0,C=0,S=1and Z Tl in odd dimensions.
QHE on S3 can be seen as a realization of Alll-class Tl in
3-dimensions. (Hasebe(2),2014).
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Landau Problem on S?

e There are motivations from condensed
matter physics.

- Rotational Invariance, leading to
invariance under magnetic
translations, explaining the
degeneracy of LL.

- Compact geometry leads to finite
number of degrees of freedom,
leading to finite degeneracy of
states at a given LL.

- When R — oo, results on the
plane are recovered.

e A Dirac monopole placed at the center
of 5% g
B == ﬁ 5

e Dirac quantization condition is:



‘WarMm Up: QHE oN s2

e The Hamiltonian for a charged particle on a sphere of radius R
under the influence of the monopole field is

1 We eB
e We have
A=rx(—-ihV +eA), VxA=BF, A-F=F-A=0,
. Ih
Ao s Agl = iheapy (N — ?r’v)
e Rotations are generated by
Ih Ih
J:A+?F, Ua , Jg] = ifieapydy J-F:f~J:?,

e We have [J,H] =0.
o Eigenvalues of J? should be 72j(j + 1) where j = g + %.



‘WarMm Up: QHE oN s2

Ih
2eR?

Spectrum of the Hamiltonian is then (B =

ehB h?

E = —(2q+ 1)+ WQ(

1
o qg+1),

ehB
2m

Each Landau level has finite degeneracy 2j +1 =1+ 1+ 2g.
On SU(2), we have the Wigner functions Do) #,(g). Functions on

S? may be viewed as the subset of functions on SU(2) invariant
under the U(1) subgroup.

The lowest Landau level has the energy E =

Suppose that there there is no B-field. What is the Hamiltonian for
an electron on the sphere?

12 00+ 1) , [4n
=5 R2 E_W’ Yem = Dpolg) = 2£+1Y6m(9 P) .

Eigenvalue equation for H is solved by the wave functions:

D), Ri=5. j=q+;

[
L33



‘WarMm Up: QHE oN s2

e Density correlation function between a pair of particles takes the
form

Q(1,2) = [WH2W)2 — WRWRP,

_ w1l _ 2|2
—1_e 2B|X x|’

e (1,2) approaches 1 at separations > {g. Here {g = \/% is the
magnetic length. Restoring e and f it is /g = V%-

e Probability of finding two particles at the same location goes to zero.
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A String Theory Perspective

e Very briefly:

- Wrap a D2-brane on S? and
dissolve N, DO-branes on it.

- Take K flat D6-branes L
D2-brane and move them to the
center of D2-brane.

Po+d2

- K fundamental strings stretch

between D2 and D6-branes. ’ @
- Charged string-ends may be

viewed as K- charged particles

and in the low energy limit N is

interpreted as the number of

magnetic flux quantum with

V= % being the filling factor.
- Background magnetic field may

be viewed as density of

DO0-branes on the D2-brane.

Thus, at low energies Quantum

Hall system on S? appears to

emerge.
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Landau Problem on S*~': Basic Setup and Geometry

o To specify the coordinates of %=1 e may embed it in R2k,
S2k—1 = <X = (Xl,XQ, s ,XQk) € R2"|X - X = R2>

. . c2k—1 — _SO(2k)
e |t is a coset space: S = S00k—1)"

o We will need the gamma matrices, [, a = (1,2,...,2k) in 2k-

dimensions. These are 2X x 2% matrices with {I,, T} = 25.p.
Iteratively:

e = (9 —w r2k — 0 Lk—1 P2kt — (Tlk-1 0
=i 0o ) T \1p-1 O ) = 0 ly_1 )

Where we have {7y, ,7} = 20,4, in (2k — 1)-dimensions.

® Y, = 7£['y# ,7v], generate the spinor IRR of SO(2k — 1) of dimension 2k—1.
® \We also have

= -_,i[r ] = =, 0

—ab -— 2 a,lpl = 0 E;)

Fundamental spinor IRRs of SO(2k) are =3, = (Effl, ,Eiu) = (X, ¥%'y#),
generating SO(2k). Each of dimension 2¢—1,
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Gauge Field Background

We introduce the 2¥-component spinor:

1 1
V= ((Rtx)Ipp+x,[")p, VW =1 o= (

V2R(R + xak) V2

Coordinates of §2k—1 . Xa — yir vy

R
SO(2k — 1) gauge field, (i.e. the spin connection) on S%¢~1 is given
as

10

)

1
AH = \UTQMW — Au = _mzpyxuv Az =0.

Corresponding field strength is Fap = —i[D,, Dp]. Here
D, = 0, + iA, are the covariant derivatives. It takes the form
1 R+ sz

E(XI/A/L - X/I,Al/ + zp,u) > F2ku = 77/4” .

I:IJ,I/ = R2

R Za<b FaQb = Zu<u Z;zw = CEO(2k71)(%) = % (k - %) (k=11 .
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Gauge Field Background Continued

e A natural choice for a constant gauge field background is the /-fold
symmetric tensor product?

/
/ / / 1 1
() (b))~ @ (5 d)
\ , Sym
(k—1) terms

e Thus we have:

N (1
RYS FH=)Y %, = Copi- <2> =3 (2 + (k- 1)) (k—1)I4

a<b n<v

e d stands for the dimension of the representation (%)

LNote: For IRRs we are using the highest weight labels.
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Hamiltonian for Charged Particles

52k—1

For the Hamiltonian of charged particles on in the constant

S50(2k — 1) gauge field background, we write

h
H=oo > Ny Aapi= —i(XaDp — XsDs)
2 ab> a a a
2MR =

Total angular momentum is: Orbital angular momentum of the
particles plus the angular momentum of the background gauge field.
Lab = /\ab + RzFab ’
[LabaLcd] = i(aacLbd +’5deac‘7 5bcLad "6adLbc)-

L. generates the SO(2k) group.

Hamiltonian commutes with the total angular momentum:
[H, L] =0.
Hamiltonian takes the form (Using A,pFap = FapNap = 0)

h
H:W<ZL§b—Zziy> .

a<b pu<v



HAMILTONIAN & THE ENERGY SPECTRUM

Energy Spectrum

What is the generic form of SO(2k) IRR carried by L,p?

Its branching under SO(2k — 1) should include the (4, ..., ) IRR of
SO(2k —1).
11 I

From branching rules we find: (n+5,5,---,5,s), n>0 € Z and
|s| < L. Indeed we have:

I / n+3 3 / /
<n+27’...72’5>@ﬂlé@ﬂ25 Mlviv"’aivﬂQ .
For the energy spectrum we find:

h
E = SMR2 (C520(2k) - C§O(2k—1)>

h (o /
= 2MR2<n +s +n(l+2k—2)+2(k—1)).

For a fixed I, (n,s) are the quantum numbers labeling the Landau
levels.
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Degenaracies
e Degeneracy d(n, %, s) of each LL is given by the dimension of the IRR
11 !
(n+ 2129 1575)-
e n =0, energy levels split into sub-levels with —é <s< é It is easily seen
that

/ /
Z d(n, 575)50(2k) =d(0, 5)50(2k+1)

1
|5\§§

d(0, é)so(zkﬂ) being the degeneracy of LLL of QHE on §2.

PROBI



HAMILTONIAN & THE ENERGY SPECTRUM

Degeneracies € the LLL

e Degeneracy d(n,s) of each LL is given by the dimension of the IRR

(n+ évév o 7%;5)'
e LLL differ for odd and even values of /.
! for even | ,
ELLL:{WR 3k —1) N (n.5) = (0, )1
2MR2( -1) E) for odd 1, (n,s) = (0,£3)

e For large I, degeneracy at the LLL for all values of [ is :
dyyy ~ 12Dk+2)

e In the limit /, R — oo with finite £y = %

h 1 hok—1
E(ns) —s — S(k—1 E = K==
(n,s) 2ME, (”+ 5 )>  FHLT oM@ T

e Note that the spacing between LL levels remains finite.



HAMILTONIAN & THE ENERGY SPECTRUM

Wave Functions

Wave functions corresponding to the LL: Wigner D-functions of
S0(2k): D('H'%’%’m’%’S)(g)[L][R].

For I =1, LLL wave functions corresponding to s = :l:% are

- +
vt = K*g, w—($_>
ke = 2l (R4 Xer)yen T ixur”)
= —— k—1 "
2 /R(R + Xor) 272 di

LLL-functions may be written as the /-fold symmetric tensor product
of W#:
Z foq o7} Ozl o OC/ I

aq

For N particles the LLL wave function can be obtained via the Slater
determinant

Z 60&1 Oé/ Xl) \U(I)(/(XN) ?

a1, oy
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The Equatorial S22

We can see that constant gauge field backgrounds on even-spheres can
be accessed by confining to the equatorial spheres S22,

o We first note that
1 .
(K¥)? = 7 (Xorlois F X, 7")
e On the equatorial S22 this gives

1
(Koi)2 = (K*)? o :F/EX;KY’L, R is the radius of §%k—2
2k —

e An idempotent on S%~2 s
Q=i(Ky), Q'=Q, Q =TIy,
e Rank-2%=2 projection operators are:

Ty £ Q

Py 5



HAMILTONIAN & THE ENERGY SPECTRUM

If A denotes the algebra of functions on S22 A free .A-module is
Azk—l _ A® Czkfl.
We may decompose the free A2 _module as

AT —p A P AT

PiA2k71 are the projective modules, each of dimension 242

Connection two-forms associated with P1 are
Fr=Pyrd(Py)d(Py).

(k — 1)t Chern numbers are:

1

+ k—1
= Tr(Fa) L.
k-1 k|(271')k \/Szkfz r( i)
2k—2

ck—1=d;,, (k—1)for | =1. Higher rank projective modules an
be constructed to give cx—1(/) which matches exactly with the
number of zero modes, i.e. the index of the gauged Dirac operator
on §%k=2,
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Example 1: S3

Energy spectrum reads E = 2MR2(” +2n+In —|— + 52).
Degeneracy of the Landau levels are

/

d(n,s) = (n+§+1)2—s2,

LLL has
h | h I 1

Eiil = SWRED (I even), Eii = SMR? (2 + 4> , (I odd)
With the degeneracies

/ 1 1
d(n=0,s=0)= (§+1)2, d(n:O,S:ii) = Z(/+1)(/+3),

On the equatorial $?: Q =0 - X and Py = Hzi" X
This yields the usual abelian Dirac monopole fleld
1 I X;
Bl“ = EEP‘VPFVP = Eﬁ .

ci(l) = I gives the zero modes of the Dirac operator on S2 in the
Dirac monopole background.
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2k — 3
S} ! HAMILTONIAN & THE ENERGY SPECTRUM  DiRAc-

Example 2: S°

o Energy spectrum is : E = 5h>(n® +4n+ In+ | + 52).
e For the LLL we find

h h 1
EL[_[_ = m/, (| even), EL[_[_ = m </ + 4> 5 (| Odd)
dn=05=0)= ; el H 2P 43)(1+ 4, (even),

5) =356+ 1D +3°(/+5), (I odd).

e On the equatorial $*: Q = 7“,;(“ and Py = L@

2
e Curvature and connection take the form i = (1,--

,4)

1 R+ Xs
1 +

1
- YFX:, As=0, Yf=—iZ[o,0;
R(R+Xg) 07 7% Ty '4[0 gl

Aia

=

o Number of zero modes of the Dirac operator on $* with this SU(2)

background is ca(/) = 2/(/ + 1)(I + 2).
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Gauged Dirac Operator on 21

Dirac operator on 521 in the background of F,5 has the form

D12 = %(H F Mokt1) Z (—Eab(Lab — R?Fap) + k — ;) .
a<b

Here =, carries (%, %, SRR %) &) (%, %, ceey —%) representation of
S0(2k).
On a symmetric coset space, say K = G/H, with holonomy group H
taken as the gauge group (& identifying the gauge connection with
the spin connection), t is possible to write
R
g’
This fits perfectly to our problem!: Therefore, we can write:

(iZDGauged)2 = Cz(G) — CZ(H) +

(iD(112))2 = CS20(2k) (n + J7 J7 U 7J7 :|:§) -

I / 1
C§O(2k—1) (27 50 ,2) + Z(2k2 —3k+1).

R = 2(2k? — 3k + 1) is the Ricci scalar of §2k—1.
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Spectrum of D(2172) and Zero Modes

We have |5| < J and

.

Spectrum of (/D1 2))? reads

+

forspinup & [ >0
for spin down & [>1

NI~ NI~
NI= NI

E = n(n+2k—-1)+I(n+k—-1)+k(k-1)+5, (1>0),
E = n(n+1+2k-3)+8, (I>1)

For even I, LLL is : Ef“-(n =0,5=+1)=1.
For odd /, LLL is : €fLL(n =0,5=0) =0. These are the zero
modes of the Dirac operator.

Note that spectrum of (iD;)? and (iD;)? are the same. This can be
seen by taking § —+ —5 in & and &;.
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For S3, we find the LLL degeneracies:

/
(+2) for even /
4
2
u J;l) for odd /, (zero modes)

For S, LLL degeneracies are:

1 3
ﬁ/(/+2) (I+4) for eVenI
1
3.26
No index theorem in odd dimensions to relate the zero modes to a
topological number.

(I 4+ 1)2(1 +2)(1 + 3)? for odd /, (zero modes)

For / =0and 5§ = j:% we recover the spectrum for vanishing gauge
background:

1
5¢=(n+k—§)2.

Er=v&, E=-V&

withn —+n—1and § - —5in E|.



Concluding Remarks and Outlook

e We have solved the Landau problem and the Dirac Landau problem
for charged particles on $?*~1 in the background of SO(2k — 1)
gauge field. Obtained the energy spectrum and wave functions.

e It is possible to show that there is exact correspondence between the
direct sum of Hilbert spaces of LLLs with / ranging from 0 to
Imax = 2K or lhax = 2K + 1 correspond respectively to the Hilbert
spaces of the fuzzy CP? or that of winding number £1 line bundle
over CP? at level K.
This correspondence also means that the quantum number s = :I:%
for the LLL over S° is actually related to the winding number
k = %1 of the monopole bundles over CPE via s = 5, which permits
us to give, in a sense, a topological meaning to the +1 values of 2s.



e We have noticed a peculiar relation between the Landau problem on
S%k=1 and that on the equatorial $?~2, which allowed us to give
the background SO(2k — 2) gauge fields over S22 by constructing
the relevant projective modules.

o LL on §%71 with n =0 and |s| < % can be visualized as embedded
in the LLL of S%¢ where s is thought of as a latitude parameter with
discrete values. This picture can be described in terms of higher
dimensional fuzzy spheres (Hasebe,2016).
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A Curious Connection with (CPE:

An exact correspondence between the direct sum of Hilbert spaces
of LLLs with / ranging from 0 to /,.x = 2K of Iy = 2K + 1
correspond respectively to the Hilbert spaces of the fuzzy CP? or
that of winding number £1 line bundle over CP3 at level K.

Recall that the isometry group SU(4) for CP3 is isomorphic to that
of S°, which is Spin(6) ~ SO(6).

Fuzzy CP? at level K is given in term of the matrix algebra
Mat(dk), where dx = £(K + 3)(K + 2)(K + 1). It covers all the
IRRs of SU(4) which emerge from the tensor product

K K K K K K ~

(2’ 2’ 2) ®(2’ 2’ 2) 7/(6:90(/(7[(70)
Expansion of an element of Mat(dk) in terms of SU(4) harmonics
carries the IRRs of SU(4) appearing in the direct sum decomposition
given in the r.h.s.
Just observe, that each summand in the latter is equal to the
SU(4) =~ SO(6) IRR carried by the LLL for | = 2k.
So, for even I, (I = 2k), the direct sum of all the LLL Hilbert spaces
with 0 < k < K spans the matrix algebra Mat(dk )-of CP?,—.



Sections of complex line bundles with winding number 1 over CP3
are described via the tensor product decomposition

K
K+1 K+1 K+1 K K K 1 11
( 2 72 2 >®<2 2’ 2> k@)(k+2k+2’2>

Elements in this nontrivial line bundle are dx41 X dk rectangular
matrices forming a right module A®)(CP2) under the action of
Mat(dK).

We observe that each summand corresponds to an SO(6) IRR
carried by the LLL for / =2k + 1 and s = 3.

So the direct sum of all the LLL Hilbert spaces with 0 < k < K
spans A (CPE) over CPE.

It is easy to check that the total number of states in this direct sum
of LLLs is precisely dk11dk:

K
1
ZE (k4 4)(k +3)(k +2)?(k + 1) = dk1dk
k=0

A similar correspondence also follows for A~1(CP2).



A Few Facts on QHE on S*

Landau problem for charged particles on S* formulated and solved
by Hu and Zhang (2000).

Particles are under influence of a background SU(2) gauge field.
This is provided by a Yang monopole.

Multiparticle problem: In LLL, with filling factor v = 1, finite spatial
density occurs iff the charges particles carry infinitely large IRR's of
SU(2).

In 2D edge excitations give spin zero particles (massless chiral
bosons), in 4D edge excittions have higher spin particles like photons
and gravitons. However, other massless higher-spin states also occur.

Effective Abelian and non-Abelian Chern-Simons theory descriptions
in 6+ 1 and 4 + 1, respectively are also given as generalizations of
effective CS theory for QHE in the low energy regime.
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