

Ground-based Gamma-ray Astronomy

Jim Hinton University of Leicester, UK

1st CAPPA School, Dublin, 8th July 2011

Outline

First Part

- Motivation
- Techniques
- Current Instruments

Second Part

- The TeV Sky
- The Future

Why Ground-based?

 To do astronomy at the highest (photon) energies with high statistics

- Typical flux $\sim 10^{-12}$ erg cm⁻² s⁻¹:
 - > ~1 photon/day/m² @1 GeV
 - > ~0.2 photons per year per m² @ 1 TeV
 - > (or ~20 per hour per km²)
- Why?
 - Establish the origin and role of ultra-relativistic particles in astrophysical environments
 - ▶ Fundamental physics (LIV, DM, ...)
 - Frontier astrophysics (discoveries!)

The 'Non-Thermal Windows'

Comparison of Tracers

 $\sim 1 \text{ km}^2$

• X-rays

- Soft X-rays still dominated by thermal emission
- 2-10 keV band excellent resolution, very sensitive instruments
 - but Synchrotron emission gives information only on energetic electrons (×B²), usually small FoV $\sim 1 \text{ m}^2$
- Hard X-ray detectors not yet as sensitive
- MeV-GeV γ-rays?
 - Hard to launch large detectors, poor angular resolution (< a few GeV), full sky coverage
- TeV Neutrinos?
 - $\sim 1 \text{ m}^2$ Unambiguous, but small effective collection area (neutrino cross-section!), atmospheric background
- TeV γ-rays?
 - Large detection areas, better angular resolution...

Combination of **all** is extremely powerful

Angular Resolution

 ~1' resolution achievable with next generation IACT arrays

 Fundamental limit is ~10" above a few TeV

Angular Resolution

5 decades of energy are accessible from the ground for gamma-ray astronomy
 ~1 decade of overlap possible with satellites

The Gamma-ray Horizon

The Gamma-ray Horizon

The Gamma-ray Horizon

Ground-based Techniques

- Many different approaches have been tried
 - Major projects planned using three of them (not all worked well)
- All use *air-showers*

Air Showers

1 TeV γ-ray

• 1st Interaction: $X_0 \sim 40 \text{ g/cm}^2$ $\lambda_{pair} = 9/7 X_0 \sim 50 \text{ g/cm}^2$ $X = X_A e^{-h/h0} \text{ and } X_A \sim 10^3 \text{ g/cm}^2$ $h_{pair} = h_0 \ln(X_A/\lambda_{pair}) \rightarrow 20 \text{ km}$

Air Showers

• 1st Interaction: $X_0 \sim 40 \text{ g/cm}^2$ $\lambda_{pair} = 9/7 X_0 \sim 50 \text{ g/cm}^2$ $X = X_A e^{-h/h0} \text{ and } X_A \sim 10^3 \text{ g/cm}^2$ $h_{pair} = h_0 \ln(X_A/\lambda_{pair}) \rightarrow 20 \text{ km}$

• Cascade: For E=1 TeV ($E_C \sim 80$ MeV) $X_{max} \sim X_0$ In (E/E_C) / In 2 $h_{max} = h_0 \ln(X_A/X_{max}) \rightarrow 5$ km

MILAGRO

- Water pool (+outriggers) at Los Alamos, USA (2600 m a.s.l)
 - Water Cherenkov detector
 - ~0.5° direction reconstruction from arrival times
 - Modest sensitivity, BUT
 - ▶ 90% Duty Cycle, ~2 sr FoV
 - 3 >10 TeV sources discovered

Galactic Longitude (deg)

HAWC

Redeploy MILAGRO components at 4100m a.s.l in Mexico
Individual water tanks larger area coverage
Factor 10 sensitivity improvement expected
First test tanks deployed

Super-brief History

Galbraith & Jelley, 1953 \bigcirc

- Weekes et al. 1989

1990s

Discovery of Cherenkov Light from air-showers

1st TeV gamma-ray source (The Crab Nebula)

1st Telescope Arrays Camera improvements (Whipple, CAT, HEGRA, ...)

Background

- Charged
 Cosmic Ray
 initiated
 showers
 - ~1000 events per second in current detectors
 - >> γ-ray rates

1985 ICRC

OG 9.5-3

CERENKOV LIGHT IMAGES OF EAS PRODUCED BY PRIMARY GAMMA RAYS AND BY NUCLEI

A. M. Hillas Physics Department University of Leeds, Leeds LS2 9JT, UK.

ABSTRACT

It is shown that it should be possible to distinguish very effectively between background hadronic showers and TeV gamma-ray showers from a point source on the basis of the width, length and orientation of the Cerenkov light images of the shower, seen in the focal plane of a focusing mirror, even with a relatively coarse pixel size such as employed in the Mt. Hopkins detector.

Background Suppression

- Main difference: Gamma-showers are narrower, e.g. Mean Reduced Scaled Width
- Many other differences
 - Image
 - Length
 - > X_{max}
 - Sub-structure
 - Distribution of light on the ground
 - Time structure

29

(Width - Expected Width) / (Expected Spread)

Functions of image size and impact distance

Major VHE Instruments

Major VHE Instruments

The Major IACTs

2 - 4 Telescopes 500-1000 pixel cameras 3.5 - 5.0° FoV ~0.1° angular res. ~15% energy res.

VERITAS

- 1270 m altitude site in Arizona, USA
- 4× 12 m telescopes, 3.5° Field of View
- Completed 2007
 - > 2009 Upgrade (moved telescope)

MAGIC

- 2×17m telescope system on La Palma (2200 m altitude)
- First telescope completed 2004
- Second telescope operational 2009
- 3.5° Field of View

H.E.S.S.

Four 12m diameter telescopes in Namibia
1800 m altitude
5° FoV
Completed 2004

H.E.S.S. phase-II

A single giant (30 m) telescope under construction in the array centre → ~20 GeV threshold

MAGIC
Upgrade of 1st camera to match new camera
VERITAS upgrade
Higher QE PMs (35% more light) + Improved trigger
Funded – complete mid-2012

NAX HA

Performance

Crab Nebula detection in ~1 min. (90 hours in 1989!)
Performance

Crab Nebula detection in ~1 min. (90 hours in 1989!)

Performance

Crab Nebula detection in ~1 min. (90 hours in 1989!)

What are IACTs Good For?

- Imaging (better at higher E)
- **Spectroscopy** (better at higher E)
- Short-timescale variability (better at lower E)

39

• <u>NOT</u>

- Long-timescale variability/monitoring
 - Sparsely sampled light-curves (moon, sun, weather)
- Very extended emission (>> 1°, limited FoV)
- Precision measurements at <<100 GeV (shower fluc.)</p>
- Fermi can do these things better <100 GeV</p>
- HAWC will (hopefully) do them > a few TeV

The Milky Way in very high energy gamma rays

The Milky Way in very high energy gamma rays

Each object is a cosmic multi-TeV particle accelerator

128.210

1113.301

Questions?

+ a few minute break

The Milky Way in very high energy gamma rays

Each object is a cosmic multi-TeV particle accelerator

128.210

1113.301

What are these Objects?

- Sites of particle acceleration
 - TeV emission requires >TeV particles (cosmic rays)

45

- ► Associated with shocks? (DSA? →Tony Bell)
- Tightly clustered along the galactic plane

 They are rather distant (several kpc) no absorption
 They are associated with molecular gas / ongoing massive star formation → Yasuo Fukui

VHE γ-ray

Infrared

TeV Astronomy: Highlights

• Microquasars: Science 309, 746 (2005), Science 312, 1771 (2006)

50

- Pulsars: Science 322, 1221 (2008)
- Supernova remnants: Nature 432, 75 (2004)
- The Galactic Centre: Nature 439, 695 (2006)
- Galactic Survey: Science 307, 1839 (2005)
- Starbursts: Nature 462, 770 (2009), Science 326,1080 (2009)
- AGN: Science 314,1424 (2006), Science 325, 444 (2009)
- EBL: Nature 440, 1018 (2006), Science 320, 752 (2008)
- Dark Matter: Phys Rev Letters 96, 221102 (2006)
- Lorentz Invariance: Phys Rev Letters 101, 170402 (2008)
- Cosmic Ray Electrons: Phys Rev Letters (2009)

Results from HESS, MAGIC and VERITAS

Supernova Remnants

- But what about SNR?
- Are they the sources of the Galactic cosmic rays?
- Many SNRs now seen at TeV – including five resolved shells →
- Correlations with nonthermal (synchrotron) X-ray emission
- BUT electrons or protons as the parents?

Protons and Nuclei?

Plausible that the brightest TeV sources are dominated by IC emission, e.g. RX J1713
 Iow density environments (no thermal emission)
 high radiative efficiency for electrons

SNR and Clouds

- $F_{pp} \sim 4 \times 10^{-11} (E_{CR} / 10^{50} \text{ erg}) (n / 1 \text{ cm}^{-3}) (d / 1 \text{ kpc})^{-2} \text{ erg/cm/s}^2$
 - ADV 1994, Dense targets?
- Molecular clouds near SNR
 - SNR will overtake cloud, and
 - Highest energy CRs may escape ahead of the shock (early)
- Many TeV candidates now
 - e.g. W 28, IC 443, W49B,
 W 51C ... and Tycho's SNR

Bremsstrahlung? (need $n > 240 \text{ cm}^{-3}$ for dominance of Bremss. over IC (on the CMB) and $n_e / n_p > 1/3$)

The Galactic Centre Ridge

Strong candidate for p-p interactions - the Galactic Centre (Central Molecular Zone):
 But which accelerator? Sgr A*, Sgr A East?

CS Line Emission (dense clouds) smoothed to match HESS PSF

Emission along the Galactic Plane

Aharonian et al Nature 2006

Unidentified Source HESS J1745-303 -

• Wish list

- Much wider energy coverage
- Better angular resolution
- Much deeper galactic survey

→Olaf Reimer →Roland Crocker

Something Completely Different? 58

• Globular Clusters

- very old stellar population
- no massive stars (all SN long ago)
- TeV emission?
 - perhaps millisecond pulsars
- Terzan 5
 - HESS detection 2011
 - Extended and offset emission
 - One theory short GRB remnant
 - merger of two neutron stars
 - > high-energy asymmetric explosion

H.E.S.S.

Chance coincidence? (estimated as ≈10⁻⁴ from Gal. p<mark>op.)</mark>

The High Energy Sky

>1 GeV (Fermi)

• >5 GeV (Fermi) cf >200 GeV (HESS)

Starburst Galaxies

M 82 z=0.0008 VERITAS Discovery 2009

» NGC 253 z=0.0008 HESS Discovery 2009

01'

Enhanced star formation / supernova rate in a high density starburst region TeV implies CR density ~ SFR, but TeV emission from π_0 inside starburst or IC in superwind, ...

Active Galactic Nuclei

Blazars: e.g. Mrk 421

- One of the closest blazars extremely bright
 - The first TeV emitting AGN "a TeV blazar"
 - Classified as a HBL = High Frequency Peaked BL-Lac Object
- Very short timescale TeV variability
 - Origin? internal shocks in jet? driven by accretion variability?

Blazars: e.g PKS 2155-304

- Variability timescale is ~1% R_s c Lag? <20 seconds/billion years/TeV
 - Causality requires R < $ct_{var} \delta$, emission region is very small, and
 - Implies bulk motion with Γ > 50 (Begelman, Fabian, Rees 2008)

Other Active Galaxies

Cluster-centre AGN M 87 and NGC 1275
Radio Galaxies Cen A and IC 310
e.g. MAGIC Perseus Cluster AGN → Frank Rieger

How Can We Do Better?

- A future > a few TeV observatory needs bigger collection areas than current instruments
 - Large arrays of telescopes
 - Wider field of view

- A future < a few TeV observatory needs better background rejection than current instruments
 - Large arrays of telescopes (multiple shower images)
 - Wider field of view (multiple shower images)

Sensitivity

Sensitivity

The Cherenkov Telescope Array

- A factor 10 more sensitive than current instruments
 - Plus much wider energy coverage, substantially better angular and energy resolution & wider field of view
- A ~ €190M International Project
 - > >800 scientists and engineers in >100 institutes in 25 countries
 - Design 2008-2011, Prototyping 2011-13, Construction 2013-18
 - Baseline: 50-100 Cherenkov telescopes

Sites

Selection of sites by 2012 10 km² (S) flat area 1.5-4.0 km altitude, minimum cloud cover, easiest access, ...

Low-energy section energy threshold of 20-30 GeV 23m telescopes

Medium Energies: mCrab sensitivity 100 GeV–10 TeV 12m telescopes (+9m SC option)

High-energy section 10 km² area at multi-TeV energies ~5m telescopes

CTA Sensitivity

Increase in the number of Cherenkov images measured in individual telescopes leads to improved angular and energy resolution

 Resolution also improves with energy

Increase in the

Precision

Average Telescope Multiplicity

Science Potential

- Current instruments reveal a rich panorama, but this is clearly only the tip of the iceberg
- Broad and diverse program for CTA, combining guaranteed astrophysics with significant discovery potential

Surveys

- CTA will conduct a census of particle acceleration in the universe
 - Can survey ~500 times faster than HESS
 - Improved resolution avoids source confusion and helps MWL identification (3/4 of HESS)
 - A deep view of stellar birth/death and cosmic ray feedback in our own galaxy and up to the largest scales...

Clusters of Galaxies

- The largest gravitationally-bound structures in the universe
- Relativistic protons do not escape clusters (nor lose their energy) over a Hubble time
- No escape implies:
 - Cosmic ray density integrated over lifetime of system
 - Spectrum is identical to injection spectrum (hard)
- And where do protons come from?
 - Acceleration at structure formation shocks?
 - Accretion shocks, cluster mergers
 - 'Normal' galactic processes, SNRs etc
 - Outbursts of Active Galactic Nuclei
- Fluxes close to detectability?

→Gianfranco Brunetti

Ryu et al. 03

Cluster-scale AGN Outbursts

78

X-ray IC limits and lifetime arguments against just electrons+B-fields in bubbles

Cluster-scale AGN Outbursts

 If cavities in Hydra A are supported by cosmic ray pressure – they are very likely detectable with CTA Hinton, Domainko & Pope MNRAS 2007

The Variable Universe

Source Numbers

Conclusion

 A bright future ahead for ground-based γ-ray astronomy
and the new generation of γ-ray

astronomers!

Questions?