Dublin Institute for Advanced Studies contact@dias.ie 00353 (0) 16140100

Recent Research Activities

EuroVolc

The European Network of Observatories and Research Infrastructures for Volcanology (EUROVOLC) is a H2020 Research and Innovation Project of the European Commission. It will construct an integrated and harmonized European volcanological community able to fully support, exploit and build-upon existing and emerging national and pan-European research infrastructures, including e-Infrastructures of the European Supersite volcanoes. The harmonization includes linking scientists and stakeholders and connecting still isolated volcanological infrastructures located at in situ volcano observatories (VO) and volcanological research institutions (VRIs). For more information please click here.

DIAS is a full partner of the EUROVOLC project.

SEA-SEIS

During Autumn 2018, the SEA-SEIS (Structure, Evolution And Seismicity of the Irish offshore) project recently deployed 18 Ocean Bottom Seismometers in the North Atlantic. Led by Prof. Sergei Lebedev, his research group intend to build cutting edge tomographic images of the geology beneath the North Atlantic to gain a better understanding of the geological structure and its evolution. For more info www.sea-seis.ie

Location of the deployed Ocean bottom Seismometers across the North Atlantic.
Deployment of an Ocean Bottom Seismometer.

iMARL

iMARL the “Insitu Marine Laboratory for Geosystems Research” is a network of various types of ocean floor located sensors, hosted by DIAS Geophysics. It comprises broadband Ocean Bottom Seismographs (OBS), broadband acoustic sensors, and sensors for measuring absolute water pressure & temperature at the ocean floor. A system capable of detecting tsunamis also forms part of the infrastructure. The sensor pool is largely mobile and can, in principle, be deployed around the world. However the current focus is on the NE Atlantic, offshore Ireland. One instrument will be fixed and will ultimately become a real-time sensing offshore element of the Irish National Seismic Network (www.insn.ie). Through an award to the Dublin Institute for Advanced Studies (DIAS) the iMARL infrastructure is funded by Science Foundation Ireland (SFI) with support from the Geological Survey, Ireland. For more info www.imarl.ie

iMARL launch, April 2018, launched new National Infrastructure that will provide direct long term observations of the interaction between the ocean and solid Earth

Magnetotelluric (MT) fieldwork on Sao Miguel, Azores (Portugal)

During September 2018, the electromagnetic group of DIAS Geophysics completed a large scale field campaign on Fogo Volcano and Furnas Volcano on Sao Miguel to investigate the geo-electrical structure beneath both volcanic systems as a way of understanding their formation and current processes and also assessing the geothermal potential of the island.
This international project led by DIAS Geophysics collaborated with the University of Azores, University of Frankfurt and University of Lisbon.

Contact: chogg-at-cp.dias.ie and duygu-at-cp.dias.ie

Location map of the MT stations (red circles) on the island of Sao Miguel, Azores.
Aerial photo of Fogo volcano, Sao Miguel, Azores (Portugal)

HERSK (HEkla Real-time Seismic monitoring networK)

An innovative, real-time monitoring system for Hekla Volcano in Iceland was installed by DIAS Geophysics in 2018 with the Iceland Met Office (IMO) as the local key partner. Hekla is one of the most active and dangerous volcanoes in Iceland and currently erupts about every 10 years. The next Hekla eruption is considered overdue and could be hazardous to air travel.

Hekla is seismically surprisingly quiet, resulting so far in a dangerously short pre-eruption warning time of only around one hour. The extreme weather environment has been a barrier to year-round real-time measurements, here we have developed a new cabled system concept to year-round real-time monitoring. This will lower the detection threshold of seismic events significantly. The result will be a better scientific understanding of the processes driving the evolution of pre-eruptive seismicity at Hekla and a substantial improvement in early warning capability.

The HERSK project is lead by Martin Möllhoff in collaboration with Chris Bean and has been awarded internationally peer reviewed Geological Survey Ireland (GSI) funding.

A poster about the HERSK project can be accessed at http://dx.doi.org/10.13140/RG.2.2.27536.25600

Contact: martin-at-dias.ie

Map of main volcanic centres on Iceland.
Site installation on Hekla

Integrated geophysical and geological study of the Porcupine Basin

Researchers at DIAS Geophysics Section currently focuses on the evolution of the Porcupine Seabight and Rockall Plateau in the Irish Atlantic offshore The researchers use geophysical (wide angle and multichannel seismic data, magnetics, gravity) and geological (borehole) data to image rocks below the seafloor (second image below) and understand how these areas formed through geological time. This includes looking at the petrological nature of the crust and uppermost mantle, the sedimentation patterns of offshore basins and the distribution of volcanism in the Irish offshore. This research helps evaluate hydrocarbon potential in the region and hence contributes to the future energy security and economic well-being of Ireland.


The topography of the seafloor and illustrates how far the territory of Ireland extends into the North Atlantic Ocean (marked by red polygon). The names correspond to geological features, such as extinct volcanoes and basins. Source: Marine Institute.



NW–SE seismic line through wells 26/28-1 and 26/28-1 penetrating the Connemara hydrocarbon discovery in a tilted fault block and showing the sedimentary structure (image of rocks below the seafloor) of the Porcupine Seabight interpreted on the 3D seismic data.
Source: D.W. Jones & J.R. Underhill (2011). Structural and stratigraphic evolution of the Connemara discovery, Northern Porcupine Basin: significance for basin development and petroleum prospectivity along the Irish Atlantic Margin. Petroleum Geoscience, vol. 17, pp. 365-384.

IGUANA: Investigating Geophysical Unrest At Sierra Negra

Sierra Negra volcano is one of the most active volcanoes on the Galapagos Islands, approximately 1,000 km west of continental Ecuador. The Galapagos Islands are the manifestation of a mantle hot spot under the eastward-moving Nazca plate. Active volcanism is concentrated on the island of Isabela, where Sierra Negra volcano is located. Since March 2017, an increase of seismicity was recorded at one of the permanent seismic stations in the network of IGEPN in Ecuador. The increase ended on the 26th June 2018 when the volcano erupted. This sequence of events was recorded by the local network of 14 broadband seismic stations that we installed as part of the IGUANA project. Three stations are located inside the caldera to record near-field effects of the seismic waves, the other stations are located around the caldera.
The main aims of the project are:

  • to investigate the triggering response to dynamic stress perturbations
  • to provide a high-resolution spatio-temporal distribution of volcano-tectonic events
  • to determine what mechanisms caused the tremor observed preceding the eruption

The project is funded by the UK Natural Environment Research Council (NERC) and is a collaboration between the School of GeoSciences, University of Edinburgh, the Dublin Institute for Advanced Studies (DIAS), the Instituto Geofisico at the Escuela Politecnica Nacional (IGEPN) in Quito, Ecuador, and the Galapagos National Park.

Contact: martin-at-dias.ie

Transporting a seismic station across the caldera of Sierra Negra.

Ocean and Tidal Modelling

Oceans play an important role in the Earth system. At DIAS Geophysics, ongoing research focuses on wind and buoyancy driven circulations as well as tidally driven circulations within our oceans. Collaboration with the European Space Agency (ESA) Swarm satellite mission is investigating the magnetic signatures of the ocean circulation systems. The motivation is that the ocean-induced magnetic field may provide a greater understanding of ocean circulations. 

A snapshot of the ocean surface elevations (in metres) generated by the tidal force

G.O.THERM.3D: a 3D atlas of temperature in Ireland’s subsurface

With the backdrop of climate change and Ireland’s reliance on fossil fuels, the need to exploit Ireland’s potential for secure, reliable and diverse indigenous renewable energy supply is immediate. The contribution of geothermal energy to the required energy transformation of Ireland has fallen behind targets and is far from realising its full potential. The G.O.THERM.3D project at the Dublin Institute for Advanced Studies proposes a novel approach to quantify and map temperature in Ireland’s crust in an integrated approach that simultaneously accounts for multiple geophysical and petrological datasets, where key rock properties are thermodynamically computed based on the temperature and bulk rock composition. Based on this integrative approach a new 3D temperature atlas for Ireland’s crust will be built with the aim of making it publicly available on an interactive online platform. It is envisaged that an interactive 3D temperature model would increase public awareness of geothermal energy, focus and encourage geothermal resource exploration and assist in the development of public policy on geothermal energy exploration, mapping, planning and exploitation.

Ireland uncovered: the hidden thermal anomalies beneath the surface we tread. Models of subsurface temperature can identify regions that contain high potential for geothermal energy. Granites buried beneath the surface produce large quantities of heat, which could be harnessed to reduce Ireland’s reliance on fossil fuels.