Performance of a 961 pixel Kinetic Inductance Detector system for future space borne observatories

J.J.A. Baselmans, J. Bueno, S.J.C. Yates, O. Yurduseven, N. Llombart, K. Karatsu, A.M. Baryshev, L. Ferrari, A. Endo, D.J. Thoen, P.J. de Visser, R.M.J. Janssen, V. Murugesan, E.F.C. Driessen, G. Coiffard, J. Martin-Pintado, P. Hargrave, M. Griffin.

Future instrumentation for FIR astronomy

Туре	F/ΔF	Frequency Range	Power per pixel	NEP _{ph} (W/√Hz)	# pixels
single dish camera, ground	3	50-950 GHz	10-50 pW	> 3·10 ⁻¹⁶	10 ⁵
single dish spectrometer, ground	1000	100-950 GHz	10-100 fW	>1.10 ⁻¹⁷	>10 ⁵
CMB observatory, space	3	50-500 GHz	~100 fW	4·10 ⁻¹⁸	10 ³
single dish camera, space	3	1-10 THz	30-300 aW	> 2·10 ⁻¹⁹	104
single dish spectrometer, space	1000	0.8-10 THz	0.05-0.5 aW	>0.5·10 ⁻²⁰	10 ⁴

MKID principle of operation

Day et al., Nature **425** 817 (2002)

Superconducting microwave resonance circuit

Capable of coupling to radiation

- Q ~ $|0^4 |0^6$
- F ~0.1-8 GHz

MKID principle of operation

Frequency Domain Multiplexing

Noise signatures: Fundamental

P.J. de Visser et al., Nature Communications, **3130**, (2014) DOI: 10.1038/ ncomms4130

- I: Quasiparticle fluctuations
 - White noise spectrum
 - T dependent roll-off (qp recombination)

Noise signatures: Fundamental

P.J. de Visser et al., Nature Communications, **3130**, (2014) DOI: 10.1038/ ncomms4130

2: Photon fluctuations

- White noise spectrum
- T dependent roll-off (qp recombination)

aluminium MKID Sensitivity limit NEP ~ $3.8 \cdot 10^{-19}$ W/ \sqrt{Hz} We can see the fundamental limits Good enough for most applications

·3 zW ·139 zW

22 aW 657 aW

6 fW 24 fW 69 fW

148 fW 270 fW 436 fW

646 fW

-5

-10

-15

-20

 $|S_{21}|^2$ (dB)

Excess noise sources

- excess phase noise
 - TLS fluctuations
- Amplitude noise
 - due to readout

- Phase readout
 - Larger response
 - Monotonic in P

Future Space instrumentation with MKIDs

SpaceKID project (2012-2016)

Lab demonstrator system

- •961 pixels
- I readout chain
- For a future imaging system in space (Safari, OST)
 - 5 m class, cryogenically cooled telescope (4K)

The following generic requirements:

	MUX (factor)	λ	$\lambda/\Delta\lambda$	NEP _{det}	Absorption efficiency	dynamic range	Cosmic ray dead time	Crosstalk	1/f knee	Yield
Baseline	500	350 µm	5	$5 \times 10^{-19} \text{ W}/\sqrt{\text{Hz}}$	>0.5	>1000	<30%	<-20 dB	<0.5 Hz	>60%
Goal	1000	$200 \mu \mathrm{m}$	1.5	$1 \times 10^{-19} \text{ W} / \sqrt{\text{Hz}}$	>0.7	>10 ⁴	<10%	<-30 dB	<0.1 Hz	>70%

961 pixel, 850 GHz demonstrator array

Lens- antenna Radiation coupling

antenna

250 µm

Transmission line

2

1 lens per antenna

Lens

1 mm

SpaceKIDs Readout System: 2 GHz bandwidth, ≤4000 MKIDs

J. Van Rantwijk, et al. IEEE Trans. Microw. Theory Tech., 2016.

~20 mW/pixel @ 300K DAC board RF board I line 961 pixels 2 GS/s memory ▶≈ IQ-mixer DAC I-waveform 2 GS/s memory Variable \rightarrow Q-waveform DAC RF amplifier attenuator Attenuators Virtex7 FPGA Filters 20 dB (4 K) GbE 10 dB (0.5 K) 10 MHz ref Clock distribution 5-7 GHz LO PC 1000 pixel Local osc. MKID array (100 mK) ADC board QDR2 memory intermediate FFT data LNA (4 K) I samples Cryostat 2 GS/s integration ADC buffer Data FFT select engine Q samples 2 GS/s integration +ADC IQ-mixer Variable gain Optional I LNA Virtex7 FPGA buffer amplifier LNA Filters Var. ampl. 5 mW @ 4K

SpaceKIDs Readout System: 2 GHz bandwidth, ≤4000 MKIDs

J. Van Rantwijk, et al. IEEE Trans. Microw. Theory Tech., 2016.

Phase readout superior

Array Analysis

Frequency range 3.67 – 5.3 GHz
resonators: 896 (93%)

Sensitivity measurements

Array in box-in-box stray light shield

Lens-antenna beams couple partially to black body

- Calculations from antenna-lens model:
- $\eta_{\text{opt}} = \eta_{\text{rad}} \eta_{\text{SO}} = 0.61$ (setup)
- $\eta_{Ap} = \eta_{rad} \eta_{Tap} = 0.58$ (generic, limit = 0.8)

Lens - antenna coupling

Twin slot antenna + Si lens (850 GHz)

- Sapphire C plane substrate
- Si lens
- Thick superconductors

Excellent agreement model - measurements

- Validates η_{SO} = 0.82 (setup)
- Validates $\eta_{Tap} = 0.78$ (generic)

Now we need to measure η_{Rad}

50 µm

Sensitivity vs. FIR illumination (I pixel)

Background limited performance @ relevant sky load

Determining $\eta_{opt} = \eta_{rad} \cdot \eta_{so}$

For a photon noise limited detector:

$$\begin{array}{ll} \mbox{Poisson} & \mbox{Bunching} & \mbox{Recombination} \\ NEP_{blip}^2 = 2 \eta_{opt} P_s h \nu (1 + \eta_{opt} F_{\nu} B_{\nu}) + 4 \Delta \eta_{opt} P_s / \eta_{pb} \end{array}$$

So we can obtain the optical efficiency using the calculated source power Ps

 \bullet if η_{SO} is known from the beam pattern

$$\begin{split} \eta_{opt} &= \frac{Poisson}{2P_sh\nu + 4\Delta\eta_{opt}P_s/\eta_{pb}} \\ \eta_{opt} &= \frac{2P_sh\nu + 4\Delta\eta_{opt}P_s/\eta_{pb}}{S_x\left(dx/dP_s\right)^{-1} - 2P_sh\nu F_\nu B_\nu} \\ & \\ \text{measured} \\ & \text{NEP} \end{split} \end{split}$$

Optical efficiency: $P_s = 50 \text{ fW}$

Optical coupling to radiator = calculation: $\eta_{opt} = 0.61$ So we confirm our model calculation:

• $\eta_{ap} = \eta_{rad} \eta_{tap} = 0.58 (72\%)$

Limiting optical NEP

NEP = 3 \cdot 10⁻¹⁹ W/ \sqrt{Hz} @ detector

• referred to $P_{abs} = \eta_{opt} P_{s}$

spectra white for

- P > |0 fW
- F>0.5 Hz

£ 0

500

Ъ

머머

<mark>-</mark>

520

Electrical NEP

Dark measurement where we use dT in stead of dP

Cosmic Rays (K. Karatsu)

55x55x0.35 mm chip of Si

Ground: CRY (<u>http://nuclear.llnl.gov/simulation/</u>)

L2: http://www.sciencedirect.com/science/article/pii/S0168900212005554

Energy deposition simulation (incl. cryostats/shields etc): GEANT4

https://geant4.web.cern.ch/geant4/

Ground 247 counts/m²/sec

Energy deposit in substrate (22265.93 s)

Energy deposit in substrate (7148.52 s)

Cosmic Rays - lab tests

Single glitches with time constant ~ 1 msec

1.3 events/sec. on the chip (425 sec⁻¹m⁻²)

- fractional dead time (all data > 5σ): $3.2 \cdot 10^{-4}$
- array without Ta backside: 14 10⁻⁴
- L2 estimation $(5 \cdot 10^4 \text{ sec}^{-1}\text{m}^{-2})$: 4%

No effects on integration: Catalano, A., et al. 2016, A&A, 592, A26

See Karatsu et al., Poster PA-7

System yield

Yield = 83% using:

- NEP < 5 10^{-19} W/ \sqrt{Hz}
- cross talk < -30 dB
 - overlapping resonators
- Cosmic ray dataloss <10%

Concluding Remarks

We have made a 'space' ready demonstrator

- 850 Hz, 961 pixel array
- MUX readout
- reach the sensitivity for STO/Safari like imaging system
- Low cosmic ray dead time, high yield, high dynamic range, good coupling efficiency

	MUX (factor)	λ	$\lambda/\Delta\lambda$	NEP _{det}	Absorption efficiency	dynamic range	Cosmic ray dead time	Crosstalk	1/f knee	Yield
Baseline Goal	500 1000	350 μm 200 μm	5 1.5	$5 \times 10^{-19} \text{ W}/\sqrt{\text{Hz}}$ $1 \times 10^{-19} \text{ W}/\sqrt{\text{Hz}}$	>0.5 >0.7	>1000 >10 ⁴	<30% <10%	<-20 dB <-30 dB	<0.5 Hz <0.1 Hz	>60% >70%
	961	350	1.35	3·10 ^{−19}	0.58 =73%	10 ⁵	4%	-34 dB	0.5 - 1	83%

http://arxiv.org/abs/1609.01952 Baselmans, J. J. A. et al., A&A 601, A89 (2017)