Quasiparticle dynamics in superconducting microwave resonators

Pieter de Visser

p.j.de.visser@sron.nl

SRON: Jochem Baselmans, Stephen Yates, Pascale Diener, Andrey Baryshev Delft: Teun Klapwijk, Akira Endo, Nuria Llombart, Andrea Neto, Reinier Janssen Cambridge: Tejas Guruswamy, David Goldie, Stafford Withington Moscow: Sasha Semenov, Igor Devyatov

Outline

- MKID basic principle
- Aluminium MKID well understood
 - Quasiparticle recombination dynamics and noise
 - Electrodynamic response
 - Pair-breaking radiation => redistribution of quasiparticles
 - Microwave absorption => redistribution of quasiparticles
- Comparison AI vs disordered superconductor (TiN)
- Visible/NIR KIDs at SRON

Outline

- MKID basic principle
- Aluminium MKID well understood
 - Quasiparticle recombination dynamics and noise
 - Electrodynamic response
 - Pair-breaking radiation => redistribution of quasiparticles
 - Microwave absorption => redistribution of quasiparticles
- Comparison AI vs disordered superconductor (TiN)
- Visible/NIR KIDs at SRON

From light to signal

Simple picture: number of quasiparticles

$$\frac{dA}{dN_{qp}} = -\frac{\alpha_k \beta Q}{|\sigma| V} \frac{d\sigma_1}{dn_{qp}},$$
$$\frac{d\theta}{dN_{qp}} = -\frac{\alpha_k \beta Q}{|\sigma| V} \frac{d\sigma_2}{dn_{qp}},$$

 $N_{qp}\Delta$ $\eta_{opt}\eta_{pb}P_{rad} =$ τ_{qp}

P. Day, et al., Nature 425, 817 (2003)

From light to signal

Distribution function and density of states can change both, not always just Nqp

$$\begin{array}{lll} \displaystyle \frac{\sigma_1}{\sigma_N} &=& \displaystyle \frac{2}{\hbar\omega} \int_{\Delta}^{\infty} [f(E) - f(E + \hbar\omega)] g_1(E) dE & \text{Microwave: } \mathbf{Q}_{\mathsf{i}}, \mathsf{A} \\ &+& \displaystyle \frac{1}{\hbar\omega} \int_{\min(\Delta - \hbar\omega, -\Delta)}^{-\Delta} [1 - 2f(E + \hbar\omega)] g_1(E) dE & \text{Pair breaking} \\ \displaystyle \frac{\sigma_2}{\sigma_N} &=& \displaystyle \frac{1}{\hbar\omega} \int_{\max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)] g_2(E) dE & \text{Microwave: } \mathbf{f}_{\mathsf{res'}}, \theta \end{array}$$

Temperature

Generation-recombination noise

Higher temperature:

- More quasipartices
- Shorter recombination lifetime

riequency

$$S_{N} = \frac{4 < N^{2} > \tau}{1 + \omega^{2} \tau^{2}} = \frac{4N\tau}{1 + \omega^{2} \tau^{2}}$$

$$N_{qp} = 2N_{0}\sqrt{2\pi kT\Delta} \exp(-\Delta/kT)$$

$$\tau = \frac{\tau_{0}}{\sqrt{\pi}} \left(\frac{kT_{c}}{2\Delta}\right)^{5/2} \sqrt{\frac{T_{c}}{T}} \exp(\Delta/kT)$$
Frequency

Measurement of quasiparticle fluctuations, all AI resonator

Phys. Rev. Lett. 106, 167004 (2011)

Measurement of quasiparticle fluctuations

Consistent recombination lifetime from noise and pulse measurement

Measurement of quasiparticle fluctuations

 $4N\tau$

S

Measurement of the number of quasiparticles Saturation of quasiparticle number at low temperature

Phys. Rev. Lett. 106, 167004 (2011)

Pair breaking photons, 1.5 THz

Low temperature, dark environment

Well controlled excitation

Variation in power: $I zW - I pW = I0^{-21} - I0^{-12}W$

Signal vs pair-breaking power

Photon noise

Fluctuations in the photon arrival rate QP-lifetime from noise scales with sqrt(P) as expected

Noise levels

Optical responsivity

Responsivity = change in response upon a change in power

Scales with I/sqrt(P), because Nqp changes, but also the lifetime with I/Nqp

Thus, this is also a test of the relation $\tau \alpha 1/n_{qp}$

1.5 THz KID limited by fundamental (ie quasiparticle) noise processes

Not limited by stray-light

Corresponds very well with dark NEP measured in similar resonator

Nature Communications 5, 3130 (2014)

Influence of microwave dissipation on pair-breaking response (1.5 THz)

Detector sensitivity limited by excess QPs due to microwave readout

Nature Communications 5, 3130 (2014)

We can do the same now for 1000 pixel chips (Jochem Baselmans' talk)

Pair-breaking photons vs energy

From light to signal

$$\frac{dA}{dN_{qp}} = -\frac{\alpha_k \beta Q}{|\sigma| V} \frac{d\sigma_1}{dn_{qp}}$$
$$\frac{d\theta}{d\theta} = -\frac{\alpha_k \beta Q}{|\sigma| V} \frac{d\sigma_2}{dn_{qp}}$$

$$\eta_{opt}\eta_{pb}P_{rad} = \frac{N_{qp}\Delta}{\tau_{qp}}$$

P. Day, et al., Nature 425, 817 (2003)

From light to signal

$$\frac{\sigma_{1}}{\sigma_{N}} = \frac{2}{\hbar\omega} \int_{\Delta}^{\infty} [f(E) - f(E + \hbar\omega)]g_{1}(E)dE \qquad \text{Microwave: } Q_{i}, A + \frac{1}{\hbar\omega} \int_{min(\Delta - \hbar\omega, -\Delta)}^{-\Delta} [1 - 2f(E + \hbar\omega)]g_{1}(E)dE \qquad \text{Pair breaking} \\ \frac{\sigma_{2}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{\text{res'}} \in C \\ \frac{\sigma_{N}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{\text{res'}} \in C \\ \frac{\sigma_{N}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{\text{res'}} \in C \\ \frac{\sigma_{N}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{\text{res'}} \in C \\ \frac{\sigma_{N}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{\text{res'}} \in C \\ \frac{\sigma_{N}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{\text{res'}} \in C \\ \frac{\sigma_{N}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{\text{res'}} \in C \\ \frac{\sigma_{N}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{\text{res'}} \in C \\ \frac{\sigma_{N}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{\text{res'}} \in C \\ \frac{\sigma_{N}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{\text{res'}} \in C \\ \frac{\sigma_{N}}{\sigma_{N}} = \frac{1}{\hbar\omega} \int_{max(\Delta - \hbar\omega, -\Delta}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{N} = \frac{1}{2} \int_{max(\Delta - \hbar\omega, -\Delta}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{N} = \frac{1}{2} \int_{max(\Delta - \hbar\omega, -\Delta}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{N} = \frac{1}{2} \int_{max(\Delta - \hbar\omega, -\Delta}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{N} = \frac{1}{2} \int_{max(\Delta - \hbar\omega, -\Delta}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{N} = \frac{1}{2} \int_{max(\Delta - \mu, -\Delta}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{N} = \frac{1}{2} \int_{max(\Delta - \mu, -\Delta}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{N} = \frac{1}{2} \int_{max(\Delta - \mu, -\Delta}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad \text{Microwave: } f_{N} = \frac{1}{2} \int_{max(\Delta - \mu, -\Delta}^{\Delta} [1 - 2f(E + \hbar\omega)]g_{2}(E)dE \qquad$$

'Efficiency' in converting photon energy to QPs close to the gap

Kinetic equations, steady state, constant injected power but different energy Guruswamy, Goldie, Withington, SuST 27, 055012 (2014) Arises because observable is mainly sensitive to quasiparticles close to gap

Broadband antenna + lens

Tantalum KID, energy gap at 324 GHz

Absorber detector will not work, due to $Z_s(\omega)$, ~constant absorbed power needed!

Neto, IEEE Trans. Antennas and Prop. 58, 2238 (2010) Neto et al. IEEE Trans. THz Sci. Tech. 4, 26 (2013)

FTS response of Tantalum KID

Absorption measurement, KID is detector in FTS

- FTS dependence (calibrated)
- Antenna efficiency
- Absorption superconductor
- Response superconductor

We measured 'pair-breaking efficiency' due to f(E,F)

Appl. Phys. Lett. 106, 252602 (2015)

'Efficiency' in converting photon energy to QPs close to the gap

Why should we care?

- <u>Responsivity</u>, ie it is NOT an efficiency

- Recombination-noise vs photon noise ratio

- Dark vs Optical NEP

- It is the heart of the detector

Convention has long been to use eta = 0.6, but only valid for strong phonon trapping and E>> Δ (Kozorezov et al. PRB 77, 014501, 2008)

Both conditions are not fulfilled in many recent experiments.

Dark, thermal vs optical response

In well defined system with AI sensitive part, thermal and optical response agree, IF you take the correct 'pair-breaking efficiency' Ie we know where the energy goes, recombination dynamics and electrodynamic response

Janssen et al. APL105, 193504 (2014)

Microwave photons

Excess quasiparticles

Microwave power dependent

Phys. Rev. Lett. 106, 167004 (2011)

Appl. Phys. Lett. 100, 162601 (2012)

Non-linear resonator response curves

Low T quasiparticle creation, but at higher T Q_i enhancement

Non-equilibrium f(E)

Ivlev, Lisitsyn, Eliashberg, JLPT 10, 449 (1973) - Microwave absorption, gap enhancement close to Tc Chang and Scalapino, PRB 15, 2651 (1977) - kinetic equations Goldie and Withington, SuST 26, 015004 (2013) – Iow temperature, resonators

Non-equilibrium f(E) – steady state

Goldie and Withington, SuST 26, 015004 (2013) PdV et al. Phys. Rev. Lett. 112, 047004 (2014)

Example $f(E) \rightarrow \sigma_{1}, Q_{i}$

Phys. Rev. Lett. 112, 047004 (2014)

Other observables

Consistent explanation of all MKID observables
Is this insight useful?

Under strong pair-breaking power Qi decreases rapidly, but microwave enhancement leads to >3x higher Qi

If no Qi enhancement due to redistribution, AI MKIDs would not work at all at the telescope!

AND: you can use AI at much higher loading than thermal approximation suggests

Under high loading, 850 GHz

Absorption does not explain everything

Microwave: 'Coherent excited states'

Semenov et al. PRL 117, 047002 (2016)

Effect on complex conductivity

Resonant

Semenov et al. PRL 117, 047002 (2016)

Nonlinear frequency-shift for Al resonator that is not due to f(E) effect, is quantitatively explained, no fitting parameters!

Effect on complex conductivity

Thus dependent in which regime you are (field, temperature, relaxation), either f(E) or DOS change dominates in AC field

Semenov et al. PRL 117, 047002 (2016)

'Lessons' for paramps

Semenov et al. PRL 117, 047002 (2016)

 $\alpha \ll \hbar \omega_0 \ll 2\Delta$,

 $\alpha = e^2 D E_0^2 / \hbar \omega_0^2$

Exponential tail due to nonlinearity can cause dissipation, and qp's.

DC is not RF:

- DC nonlinearity comes without subgap tail
- If KID non-dissipative with high DC current, can still dissipate with high RF
 3-wave should be easier than 4-wave

More work needed for higher Tc and high resistance materials.

Summary Aluminium MKIDs

Experiments under all relevant conditions very well understood

Temperature

- Complex conductivity Mattis-Bardeen
- Generation-recombination noise, quasiparticle recombination dynamics + phonon dynamics
- Pair-breaking photons
 - Photon noise
 - Quasiparticle dynamics: recombination and responsivity
 - Pair-breaking efficiency: different f(E,hf) for different photon energies

Microwave field

 Absorption, excess quasiparticles, Qi enhancement: no Teff or Nqp approximations possible – redistribution f(E,hf)

Field strength effect – nonlinearity qualitatively different from DC

Still many combinations of these unexplored, but framework clear

Aluminium MKIDs – done?

Main challenge: NEP ~ 10^{-20} - 10^{-21} W/Hz^{1/2} for sub-mm / THz

- Very small volumes design radiation coupling
- Single/few quasiparticle dynamics photon counting
- Readout power effects in few qp / few photon regime

- Understand limits in qp recombination time if you 'screw up' the fab => what is the physics of 'screw up' ?
- Variations of phonon trapping (membrane)
- Readout power effects vs microwave energy
- Responsivity dsigma/dNqp at high loading

Aluminium MKIDs – done?

Main challenge: NEP ~ 10^{-20} - 10^{-21} W/Hz^{1/2} for sub-mm / THz

- Very small volumes design radiation coupling
- Single/few quasiparticle dynamics photon counting
- Readout power effects in few qp / few photon regime

- Understand limits in qp recombination time if you 'screw up' the fab => what is the physics of 'screw up' ?
- Variations of phonon trapping (membrane)
- Readout power effects vs microwave energy
- Responsivity dsigma/dNqp at high loading

High resistivity superconductors

- Aluminium works wonderful but has limits/drawbacks:
 - Low resisitivity
 - Slow electron-phonon
- Solution: high resistivity superconductors (TiN, PtSi, InOx)
 - High kinetic inductance = higher MKID response
 - Lower volume = higher MKID response
 - Simply unavoidable for KIDs above few THz
- There is no high resistivity without disorder
 - Poorly understood response and poor sensitivity
 - Most data available for TiN => compare AI vs TiN

Recombination time vs temperature

(s) 10^{-2} 10^{-3} 10^{-4} 10^{-4} 10^{-4} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 0.10 0.15 0.20 0.25 0.30Temperature (K)

A

Aluminium lifetime follows Kaplan (1976) predictions for BCS. Saturation understood due to microwave power.

Power law? Saturation? Trapping? Data for different disorder (and Tc) falls on top of each other

Coumou et al. IEEE Trans. Superc. 23, 7500404 (2013)

Recombination time vs temperature

Trapping + diffusion

Recombination time vs temperature

We need more statistics, more systematic data !!!

For each material and its variations document lifetime and responsivity vs temperature, power/energy

Benefit of trapping limited recombination

A high-response photon counting AI MKID will have 2 nonlinearities
I. Initial Nqp² (i.e. I/t) recombination before exponential tail
S21 nonlinearity

If trapping dominates the lifetime, the whole pulse is exponential => much easier to optimally filter (S21 remains).

Radiation: where does the power go?

Exactly as predicted

TiN

Exactly opposite to predicted Bueno et al. APL 105, 192601 (2014)

Responsivity, photon noise limit

TiN

From Hubmayr et al. APL 105, 073505 (2015)

Panel (b) and (c): there is photon noise seen, with expected NEP vs P dependence

However the responsivity in (a) is linear in P, for Aluminium it is sqrt(P). Direct relation of σ_2 with nqp doesn't hold for TiN. Note that the qp-lifetime DOES scale with P (panel b roll-off).

Responsivity similar to what Erik Shirokoff showed yesterday

Optical/NIR MKIDs at SRON

Photon counting MKIDs, with energy resolution

- Spectrum per pixel: exoplanet spectroscopy (HABEX)
- Photon counting with no read/dark noise + reasonable speed: wavefront sensing / fringe tracking, few photon imaging

Goal 1: Energy resolution, take it to R~100

- Signal/noise problem => go non-linear and/or slower
- Understand disordered superconductors
 - MKID very sensitive to superconductor: where the qp's go and how they generate response
 - Can apply radiation from below gap up to optical photons
- Phonons

Goal 2: Quantum efficiency

• Make absorption efficiency compatible with microwave design

Optical/NIR MKIDs at SRON

Photon counting MKIDs, with energy resolution

- Spectrum per pixel: exoplanet spectroscopy (HABEX)
- Photon counting with no read/dark noise + reasonable speed: wavefront sensing / fringe tracking, few photon imaging

Goal 1: Energy resolution, take it to R~100

- Signal/noise problem => go non-linear and/or slower
- Understand disordered superconductors
 - MKID very sensitive to superconductor: where the qp's go and how they generate response
 - Can apply radiation from below
- Phonons

Goal 2: Quantum efficiency

Make absorption efficiency compati

Optical/NIR MKIDs at SRON

400 , 670, 980, 1550 nm lasers, LEDs do not work for R=100 ambition

Summary

- Quasiparticle- and electrodynamics for Aluminium is well understood both in equilibrium and non-equilibrium
 - ► Main challenge: NEP 10⁻²¹ W/Hz^{1/2}
 - MKID is powerful 'probe' of (non)equilibrium superconductivity
- For disordered superconductors (TiN), MKID measurements are difficult to interpret
 - More consistent experimental exploration of parameter space
 - Get theorists interested with more data
 - Even equilibrium physics not understood
 - 'Non-equilibrium' in 'disordered superconductors' = (difficult)²
 - We need disordered superconductors!
 - But we have AI as a reference

Visible/NIR MKIDs at SRON: focus on energy resolution, QE

Extra material / backup

Non-equilibrium FTS response

Not planar absorption but waveguide absorption, full absorption above 2 Δ

Phonon losses, Cooper pairs have energy $2\Delta =>$ nonequilibrium f(E)

Corrections to raw FTS response

Absorption vs frequency

Pair-breaking in Superconducting CPW, travelling wave absorption Crucial to remove f-dependence of R_{sheet}!

Measured beam patterns (350 GHz)

Co - pol

Cross - pol

Source vs beampattern contours

Noise levels

Connecting to observables

Pread dependence high loading

2 quadratures, correlated noise

Phase (inductance) and Amplitude (losses) are orthogonal quadratures In microwave response => in correlation more sensitive to qp-fluctuations

Appl. Phys. Lett. 100, 162601 (2011)

Saturation due to microwave readout signal

Best dark NEP: 2×10⁻¹⁹ W/Hz^{1/2}

Phonon fluctuations

Phonon fluctuations

PdV, PhD thesis, TU Delft 2014, appendix B

Optical responsivity fit

Absorbed microwave power, Qfactors

Maximum dissipation at critical coupling

Pulse, initial 1/t decay

- Nqp2 term dominates start of large pulse
- Equilibration with exponential

PdV, PhD thesis, TU Delft 2014, Ch2