Microwave Kinetic Inductance Detectors for visible to near infrared astronomy

Grégoire Coiffard
On behalf of Mazin Lab
Ben Mazin, Seth Meeker, Paul Szypryt, Alex Walter, Clint Bocksteigel, Giulia Collura, Neelay Fruitwala, Isabel Liparito, Nicholas Zobris, Miguel Daal, James Massie, Sarah Steiger, Noah Swimmer

Subaru: Olivier Guyon, Julian Lozi
Caltech: Dimitri Mawet, Nem J.
JPL/IPAC: Bruce Bumble, Gautam Vashisht, Mike Bottom
Oxford: Kieran O’Brien, Rupert Dodkins
Fermilab: Juan Estrada, Gustavo Cancelo, Chris Stoughton

KIDs: The Next Generation - workshop DIAS Sept. 2017
Outline

• MKIDs for single photon detection

• Fabrication of kilopixels MKIDs arrays

• New MKIDs development
Single photon detector

MKID equivalent circuit

We monitor the phase shift

- Single photon counting with ~ 100 microsec timing
- Energy resolving R~10
Microwave Kinetic Inductance Detectors

We use a microlens array to improve effective fill factor to ~92%
Multiplexing

10 to 20k pixels arrays
Which material for the MKIDs?

TiN : *Strongly non uniform* in nitrogen content over a wafer – poor control of f_0 position

→ Looking for an alternative material
Which material for the MKIDs?

TiN : *Strongly non uniform* in nitrogen content over a wafer
→ Looking for an alternative material

Platinum Silicide: PtSi

- Resistivity: 50 μΩ.cm
- $T_c \approx 940$ mK
- We aim for 60 nm films with ~10 pH/sq inductance

Deposition of Pt and Si on sapphire substrate + anneal in-situ
Which material for the MKIDs?

TiN: Strongly non uniform in nitrogen content over a wafer
→ Looking for an alternative material

Platinum Silicide: PtSi

- Resistivity: $50 \, \mu\Omega\cdot\text{cm}$
- $T_c \approx 940 \, \text{mK}$
- We aim for 60 nm films with $\sim 10 \, \text{pH/sq}$ inductance

Deposition of Pt and Si on sapphire substrate + anneal in-situ
→ Qi of 1 millions!! (on single layer test device)
TiN vs. PtSi

Grégoire Coiffard – MKIDs workshop DIAS

Szypryt et al. 2016
1) PtSi Resonator Outline

- PtSi deposition and annealing + W done in-situ using AJA ATC sputter system.
- ICP etching of the W (SF6) + PtSi (Cl2 + CF4 + Ar)
1) PtSi Resonator Outline
 • PtSi deposition and annealing done in-situ using AJA ATC sputter system.
 • ICP etching of the W (SF6) + PtSi (Cl2 + CF4 + Ar)

2) Nb Feedline and Ground Plane (lift-off)
3) SiO$_2$ insulating pads

- Insulating pads over the feedline used to connect ground plane segments
- Reactive sputtering of SiO$_2$ (alternative recently tried: aSi:H – similar performances but much easiest to deposit! 3 min vs. 3 hours!)
3) SiO2 insulating pads
- Insulating pads over the feedline used to connect ground plane segments
- Reactive sputtering of SiO2 (alternative recently tried: aSi:H – similar performances but much easiest to deposit! 3 min vs. 3 hours!)

4) Nb Crossovers and Coupling Bars
- Crossovers to connect ground plane segments and connections of the feedline to couplers
5) Gold Bond Pads

- Gold bond pads used for gold wire bonding (reduce heat excess)
5) Gold Bond Pads
 - Gold bond pads used for gold wire bonding (reduce heat excess)

6) PtSi Resonator Etch
 - W and PtSi Etched with ICP etcher
 - Protect layer removed in heated H2O2
• Qi Lower than expected (~80,000), R~8 at 1 micron
• Great sensitivity to photons in instrument’s wavelength band
• Low yield due to roll off of Qi toward higher frequency
• On par or better than the best 10,000 pixel TiN arrays
DARKNESS

DARKNESS is commissioned and science runs are ongoing... (Palomar)

DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for high-contrast Astronomy
- Seth R. Meeker, submitted to PASP (last week)
MKID Exoplanet Camera (MEC)

- 20,440 (140x146) pixels split between 10 feedlines (14x146)
- 150 um pixel pitch
- 22x22 mm imaging area
- 20 ROACH2 readout boards

Improvements from DARKNESS array:
- 500 nm inductor gaps as opposed to 300 nm gaps used in DARKNESS
- 1 crossover every 10 pixels (∼λ/8)
- Optimized Sonnet simulations for better control of designed resonator placing and 2 MHz spacing (capacitor shrinking)

Large-Format Platinum Silicide Microwave Kinetic Inductance Detectors for Optical to Near-IR Astronomy
Paul Szypryt, submitted to Optic Express (last week)
MEC results

- Our best array has Qi values of ~ 100,000
- Less variation of Qi with frequency, no significant dips
- Energy resolution of 8 at 1 micron
- Pixel yield approaching 90% (fitted resonators). *Still need more work to determine how many of those are actually photosensitive*
- Generally very good sensitivity to photons in the 700-1400 nm band
MEC results

Laminated NbTi on Kapton Microstrip Cables for Flexible Sub-Kelvin RF Electronics – A. B. Walter in preparation
New UVOIR MKID development

- Parallel plate capacitor MKIDs
- Low Tc material
Parallel Plate Capacitor MKIDs

Classical LEKID design

High meandered inductance

Small interdigitated capacitance

\[f_0 \propto \frac{1}{\sqrt{LC}} \]

\(f_0 \) dominated by \(L \)
Parallel Plate Capacitor MKIDs

Classical LEKID design

High meandered inductance

Small interdigitated capacitance

\[f_0 \propto \frac{1}{\sqrt{LC}} \]

\(f_0 \) dominated by \(L \)

Parallel plate design

Major change = two large parallel plate capacitors and small square inductance

\(f_0 \) dominated by \(C \)
Parallel Plate Capacitor MKIDs

- Maximize the readout power before nonlinear effects thanks to the low current density in the wide inductor (30umx30um)

- Improvement in signal-to-noise ratio due to the saturation of TLS (drive at high power)

- Inductor geometrically more uniform than a classical meandered inductor → increase energy resolution

(color added for clarity – Insulator not shown)
Parallel Plate Capacitor MKIDs

\[
S_{TLS}(V) = \kappa(v, \omega, T) \times \frac{\int |\vec{E}(\vec{r})|^3 d^3 \vec{r}}{V_{TLS}} \times \frac{1}{4 \int |\epsilon(\vec{r}) \vec{E}(\vec{r})|^2 d^3 \vec{r}}^2
\]

For a parallel plate capacitor: \(V_{TLS} = V \)

\[
S_{TLS} \propto \frac{E^3 V}{4 \epsilon^2 E^4 V^2} \propto \frac{1}{\epsilon^2 EV}
\]

Lower TLS noise by:

- Using a high \(\epsilon \) material

- Maximizing the electric field in the capacitor (driving the MKID at high power)

- Making the volume of the capacitor as large as possible
Micro-fabrication process

Sputtering of Pt and Si + annealing at 300C = 55nm thick PtSi film → Patterning of the inductor, the coupling tie and the first side of the parallel plate capacitor
Micro-fabrication process

Sputtering of Pt and Si + annealing at 300°C = 55 nm thick PtSi film → Patterning of the inductor, the coupling tie and the first side of the parallel plate capacitor

Atomic layer deposition of 10 nm of Al₂O₃ over the entire wafer (thickness uniformity of 98% over a 4 inch wafer)
Micro-fabrication process

Sputtering of Pt and Si + annealing at 300°C = 55nm thick PtSi film → Patterning of the inductor, the coupling tie and the first side of the parallel plate capacitor

Atomic layer deposition of 10 nm of Al₂O₃ over the entire wafer (thickness uniformity of 98% over a 4inch wafer)

Sputtering of 80 nm of Nb → CPW feedline and second side of the capacitor
Characterization

Test device:
• 2 feedlines (different inductor dimensions)
• 18 resonators, 3x6 centered on 4 GHz, 6 GHz and 8 GHz

Parallel plate MKIDs resonate

• Resonances located around their design frequencies
• 13 resonances out of 18 were identified
• Few dB deep, best resonances $Q_i \approx 35\,000 – 40\,000$
Characterization

Qi increases as the power is increased → We tend to saturate TLS loss

Parallel plate MKIDs become nonlinear at high power: A factor of 4 compared to lumped element design

→ Qi are a bit low and we are missing photons data

Try next: crystalline Al2O3 annealing / ebeam deposition (pinholes?), new tri-layer insitu design Hf/HfO2/Hf
Low Tc material

Why lower T_C?

- Sensitivity $\propto \frac{1}{T_C^2}$

- Energy resolution $R \propto \sqrt{\frac{1}{T_C}}$
Why lower T_C?

- Sensitivity $\propto \frac{1}{T_C^2}$

- Energy resolution $R \propto \sqrt{\frac{1}{T_C}}$

Why Hafnium?

- Elemental material (easy to deposit)
- $T_C \sim 400\text{mK ($\Delta$~eV})$
- High normal state resistivity
- Good uniformity over a 3inch substrate

~ 5% variation (pretty much the same than our PtSi films)
Resonator characterization

We fabricated several Hf test devices:

- Different substrate orientation (a-place, c-place, r-plane sapphire)
- Various sputtering parameter (try to further reduce T_C)
- Annealing of the Hf in-situ

125 nm of Hf sputtered on a-plane sapphire gave good preliminary results!
- Q_i up to 500 000
- $R \sim 9$ @ 808nm
- First τ_{qp} on Hf ever measured ~ 30 µsec
Any correlation between crystal structures and performances?

→ It seems that the performances of our test device are substrate dependent

We saw:
• Nothing on C-plane
• Low Qi resonators (~10k) on R-plane
• High Qi (~100k) on A-plane

Hard to find a correlation from XRD data?

Need to identify these peaks
Perspective on low Tc materials

Hafnium:

- Try to further reduce Tc with reducing the stress in the films
- Improving uniformity?
- Improve heat sinking (very low temperature measurement! Tc/8 ~ 56mK)

Other materials?
Conclusions

• We make large arrays of single photon detectors

• We achieved high performances ($Q_i \approx 100,000$, $R \approx 8$)

DARKNESS
10 000 pixels

MEC
20 000 pixels
Conclusions

- We make large arrays of single photon detectors
- We achieved high performances (Qi~100 000, R~8)

- Development of parallel plates MKIDs: We demonstrate high readout power by a factor of 4 compared to classical MKIDs
Conclusions

• We make large arrays of single photon detectors
• We achieved high performances (Qi~100 000, R~8)

• Development of parallel plates MKIDs: We demonstrate high readout power by a factor of 4 compared to classical MKIDs

• Hafnium resonators are promising! We already have good Qi (>100 000) and energy resolution (R~9 @ 808nm) after only a few tests
Thanks!
Uniformity

• Measured sheet resistance across full 4” wafers. Early estimates show PtSi to be roughly an order of magnitude more uniform than TiN.

• For 1K T_C films, PtSi is annealed to its thermally stable stoichiometry, whereas TiN requires precise control of the N_2 flow rate during Ti sputtering in a region where the TC is very sensitive to this Ti/N ratio.

Szypryt et al. 2016
PtSi Pulses

- Measured quasiparticle lifetimes of 30-40 us.
- Fairly flat energy resolution of R=8 across observable wavelength band.

Szypryt et al. 2016
Quantum

Shaded region represents wavelength band of DARKNESS instrument.

Szypryt et al. 2016

- Shaded region represents wavelength band of DARKNESS instrument.