On-chip spectroscopy using KIDs and mm-wave circuits

Erik Shirokoff, U. Chicago 07 Sept 2017

615

Outline

- Dusty, star forming galaxies at high redshift
- SuperSpec technology: On-chip spectroscopy
- SuperSpec instrument: a redshift finder for the LMT.
- Porting Superspec design features to a broad-band, dual-pol camera

Negative K correction is great for uniform surveys, terrible for finding photo-zs.

Continuum-substracted spectrum of a starburst galaxy shows atomic and molecular lines at wavelengths of a few hundred microns.

Continuum-subtracted far-IR to mm-wave spectrum of M82 - Figure by J. Vieira

Spectral lines in the 195-310 GHz atmospheric window.

Figure from J. Glenn

Epoch of Reionization: the period when the first stars and quasars ionized most of the hydrogen in the Universe.

S > 20 mJy : 1,200/deg² S < 20 mJy : 480,000/deg²

CII auto-correlation spectrum shows total star formation, clustering, in fine redshift slices. Cross-correlations with future high-z 21cm surveys will probe EoR bubble size.

- [CII] autocorrelation spectra over the full TP band.
- [CII] EoR signal strength not known, consider various models. Constant SFR Gas physics calculation Millennium sim x 3e-3
- Error bars correspond to 240 hours on sky w/ JCMT.
- CO from z ~ 0.5 to 3 (multiple lines) is dominant signal in raw map (shown referred to CII survey geometry), but can be masked using galaxy catalogs.
- Cross correlations at CO frequencies with galaxy surveys can provide a CO census
- Smaller beam on the LMT greatly reduces concern about foreground CO emitters

Figure: Bradford /TIME

We're not the only ones working on these technologies.

Concept: Superconducting on-chip filterbank spectrometer

Figure: A. Endo; collaboration: TU Delft, SRON, Leiden, U. Tokyo, NAOJ

The SuperSpec Team

University of Colorado Boulder

Caltech/JPL

- C. M. Bradford
- S. Hailey-Dunsheath
- A. Kovacs
- H. G. Leduc
- T. Reck
- C. Shiu
- J. Zmuidzinas

<u>Dalhousie</u>

S. Chapman

Arizona State University

- P. Mauskopf
- G. Che
- S. Gordon

University of Chicago

- P. Barry
- R. McGeehan
- S. Padin
- E. Shirokoff

Cardiff University

S. Doyle C. E. Tucker

University of Colorado Boulder

- J. Glenn
- J. Wheeler
- S. Walker

INAOE Puebla

A general filter bank (or cochlear) spectrometer:

Incoming radiation is sorted by narrow band filters

1 0-

 $C_c \dashv$

 $\lambda/2$

--- 2

Implementation using thin-film circuits

New 50 channel uniform filter bank with lithographically adjustable mm-wave features

Detector properties: what's unusual about these KIDs?

- Sputtered substoichiometric TiN, Tc 1.2K
- $50 \,\mathrm{MHz} \lesssim f_0 \lesssim 250 \,\mathrm{MHz}$
- PECVD SiNx dielectric
- Inverted microstrip w. buried inductor.
- Current return through capacitance to GP.
- Thick Nb-on-TiN capacitor features
- Tiny inductors: $V = 2.5 \,\mu \text{m}^3$, $W = 0.25 \,\mu \text{m}$ o

 C_c

Test structures allow for unambiguous fitting to mm-wave channel properties.

Broad-band detectors absorb ~0.1% of mm-wave power on feedline before and after filter bank.

These are long, staggered, to avoid standing wave confusion.

Pairwise differencing of fore/aft/channel KIDs (over) constrain Qc, Qr of channels.

50 Channel filter bank prototype shows excellent uniformity, yield

RMS scatter in mm-wave frequencies is 0.04%

This is ~6X FWHM for an R=400 channel.

RMS scatter in readout frequencies is 0.2% (in previous generation 0.5um inductors)

0.2% scatter \rightarrow 1 collision in 280 $Q_r = 10^5$ resonators per octave

Spectral profiles show out of band coupling at -30dB, some excess response in the wings

Photon-noise measurements allow for total system efficiency calibration.

Photon noise allows us to measure efficiency and absolute sensitivity in physical units.

(Data from previous generation 0.5um inductor devices.)

New 0.25um devices show improved response, still no evidence of QP lifetime change with loading.

Single tone and multi-tone readout are background limited under realistic conditions

Measured white noise vs. temperature for dark devices, scaled to NEP using measured response from same die.

Measured low frequency noise vs. temperature (very preliminary)

Early 2018: collaboration with INAOE to deploy a 3 pixel demonstration instrument at the 50 meter Large Millimeter Telescope (LMT/GTM) in central Mexico

Optics are nearly final: we just need two small mirrors, a flat chopper, and a cold lens.

Pathfinder instrument

Baseline plan:

3 spatial pixels in each of 2 polarizations on-sky

R=300, covering 195-210 GHz

Readout: Roach2 + MUSIC boards; ASU/Blast firmware

Sensitivity Landscape per superspec pixel at 30m class telsecope for a 3e12 Lsun galaxy

Existing KIDs already meet requirement for a broad-band CMB pixel.

Longer term CMB-KIDs plan: multi-band, polarization sensitive large arrays similar to SPT-3G tiles.

Note: figure is not (even remotely) to scale.

Broad-band mm-wave feed line to detector coupling is a new challenge.

With very little optimization, this approach achieves >90% over any single CMB band. Further optimization seems likely to yield well-tuned, multi-band coupling designs.

ALD TiN deposition at U. Chicago: toward antennacoupled tiny TiN KIDs for the CMB.

Resonators work! Qi ~ 500'000 for 4K material 0.5 < Tc < 4.0 Thickness approaching 3nm Wafer-scale uniformity, composition, and optical tests under way

Conclusions

On-chip spectroscopy is (almost) field ready.

SuperSpec will field a background-limited instrument in 2018.

Our small volume TiN devices show: High responsivity Expected noise properties Decent low frequency noise behavior

Some of these techniques may be useful for broader science goals.