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The MKID team at DIAS

MKID development at DIAS:

Tom Ray Gerhard UlbrichtColm BrackenIvan Colantoni

Eoin BaldwinMario De Lucia We are still looking for a 3. student
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MKIDs for Optical to IR Astronomy

We DO compete with CCDs, but we have:

• Single pixel energy resolution

� Integral field spectroscopy

• µS time resolution

� Pulsars, reverberation mapping

• Single photon counting without

dark counts

� High contrast imaging

• Better IR sensitivity then CCDs

� Direct Exoplanet observations

• Radiation hardness, material choice, …

� ….
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MKID design: lumped element

10k pixel UCSB DARKNESS array

2k pixel UCSB ARKONS array

Array sizes
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Superconductor

What does a good superconductor for optical-to-IR MKIDs need:

• High kinetic inductance fraction to be able to keep pixels small enough and 

to allow thicker films

• The correct Tc = about 8 · base temperature � 800 mK

• High quality = low losses = high Qi � > 100.000

• Good absorption in the optical band we want to detect = NOT shiny silvery

• QP lifetime clearly above readout sampling speed � > 20 µS

BUT the QP life time can’t be too high as it limits the max. count rate.

• Possibility to deposit homogenously over at least 5x5 cm2

• As the superconducting film has to be thin to be sensitive: Stable against 

oxidization even as a thin film.

• Easy to deposit
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Superconductor

What does a good superconductor for optical-to-IR MKIDs need:

• High kinetic inductance fraction to be able to keep pixels small enough and 

to allow thicker films

• The correct Tc = about 8 · base temperature � 800 mK

• High quality = low losses = high Qi � > 100.000

• Good absorption in the optical band we want to detect = NOT shiny silvery

• QP lifetime clearly above readout sampling speed � > 20 µS

BUT the QP life time can’t be too high as it limits the max. count rate.

• Possibility to deposit homogenously over at least 5x5 cm2

• As the superconducting film has to be thin to be sensitive: Stable against 

oxidization even as a thin film.

• Easy to deposit

Aluminum: Tc= 1.18 K

Al
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Superconductor

What does a good superconductor for optical-to-IR MKIDs need:

• High kinetic inductance fraction to be able to keep pixels small enough and 

to allow thicker films

• The correct Tc = about 8 · base temperature � 800 mK

• High quality = low losses = high Qi � > 100.000

• Good absorption in the optical band we want to detect = NOT shiny silvery

• QP lifetime clearly above readout sampling speed � > 20 µS

BUT the QP life time can’t be too high as it limits the max. count rate.

• Possibility to deposit homogenously over at least 5x5 cm2

• As the superconducting film has to be thin to be sensitive: Stable against 

oxidization even as a thin film.

• Easy to deposit

sub-stoichiometric TiNx: Tc= 0.8 – 1.2 K

TiNx
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Superconductor

What does a good superconductor for optical-to-IR MKIDs need:

• High kinetic inductance fraction to be able to keep pixels small enough and 

to allow thicker films

• The correct Tc = about 8 · base temperature � 800 mK

• High quality = low losses = high Qi � > 100.000

• Good absorption in the optical band we want to detect = NOT shiny silvery

• QP lifetime clearly above readout sampling speed � > 20 µS

BUT the QP life time can’t be too high as it limits the max. count rate.

• Possibility to deposit homogenously over at least 5x5 cm2

• As the superconducting film has to be thin to be sensitive: Stable against 

oxidization even as a thin film.

• Easy to deposit

TiN / TiNx multilayers: Tc= 0.5 – 4.0 K

TiN multilayers
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Superconductor

What does a good superconductor for optical-to-IR MKIDs need:

• High kinetic inductance fraction to be able to keep pixels small enough and 

to allow thicker films

• The correct Tc = about 8 · base temperature � 800 mK

• High quality = low losses = high Qi � > 100.000

• Good absorption in the optical band we want to detect = NOT shiny silvery

• QP lifetime clearly above readout sampling speed � > 20 µS

BUT the QP life time can’t be too high as it limits the max. count rate.

• Possibility to deposit homogenously over at least 5x5 cm2

• As the superconducting film has to be thin to be sensitive: Stable against 

oxidization even as a thin film.

• Easy to deposit

PtSix: Tc= 0.8 – 1.0 K

PtSix
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Superconductor

What does a good superconductor for optical-to-IR MKIDs need:

• High kinetic inductance fraction to be able to keep pixels small enough and 

to allow thicker films

• The correct Tc = about 8 · base temperature � 800 mK

• High quality = low losses = high Qi � > 100.000

• Good absorption in the optical band we want to detect = NOT shiny silvery

• QP lifetime clearly above readout sampling speed � > 20 µS

BUT the QP life time can’t be too high as it limits the max. count rate.

• Possibility to deposit homogenously over at least 5x5 cm2

• As the superconducting film has to be thin to be sensitive: Stable against 

oxidization even as a thin film.

• Easy to deposit

WSix: Tc= 0.8 – 1.0 K

WSix
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Superconductor

What does a good superconductor for optical-to-IR MKIDs need:

• High kinetic inductance fraction to be able to keep pixels small enough and 

to allow thicker films

• The correct Tc = about 8 · base temperature � 800 mK

• High quality = low losses = high Qi � > 100.000

• Good absorption in the optical band we want to detect = NOT shiny silvery

• QP lifetime clearly above readout sampling speed � > 20 µS

BUT the QP life time can’t be too high as it limits the max. count rate.

• Possibility to deposit homogenously over at least 5x5 cm2

• As the superconducting film has to be thin to be sensitive: Stable against 

oxidization even as a thin film.

• Easy to deposit

TiN / TiNx multilayers: Tc= 0.5 – 4.0 K

TiN multilayers
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� We will start with both sub-stoichiometric and 

multilayer TiNx:

• PtSix too expensive

• TiNx and PtSix are already well studied by the 

Mazin group at UCSB

• Still a good opportunity to compare results on sub-

stoichiometric TiNx

• Not much work yet on Ti / TiNx multilayers for 

optical MKIDs.
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Possible MKID improvements

R = 8 – 12

Energy resolution
Pixel yield

Pixel number

Quantum efficiency

Readout
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Possible MKID improvements

Readout

Readout

State of the art:

• Roach-2 boards

• 1000 pixels per board

� We hope to adapt the 

SKA electronics for MKID 

readout to profit from:

� Big development team behind 

the SKA electronics

� Possibly cheaper then Roach 

boards as SKA requires big 

numbers

� Further synergy effects

� Good funding argument
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Possible MKID improvements

R = 8 – 12

Energy resolution

Energy resolution

State of the art:

• Best pixels: R = 12

• Averaged over many pixels: R = 8 – 10

� Noise promises R of about 25

� TiNx inhomogeneity?

� Varying Tc could improve R

� Optimize data analysis / pulse filtering to 

reduce effects of non-stationary noise

� More drive power and / or better low 

HEMTs

� Membrane suspended TKIDs?



G. UlbrichtMKID plans at DIAS

Possible MKID improvements

Pixel yield

Pixel yield

• The main reason for lost pixels are frequency overlaps, caused by Tc variations 

(or insufficient simulations.)

• TiNx especially problematic.

� Further optimized fabrication.

� Better homogeneity with TiN multilayers

� Improved frequency simulations

� Better suitable 

superconductors: …

� Search for better pixel 

geometries
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Possible MKID improvements

Quantum efficiency

Quantum efficiency

State of the art:

• For sub-stoichiometric TiNx QE is wavelength dependent:

between 60% and 25%

• The main problem is the superconductor’s reflectivity.

� Deposit anti-reflective layers on the inductor

without increasing the phase noise.

� Alternatively, apply very black films

(e.g. carbon nanotubes, …) on top of the inductor

to increase absorption.

� Micro-calorimetric, membrane suspended designs

would allow much more flexibility with optimized

absorbers but would significantly increase 

fabrication complexity.
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Possible MKID improvements

Pixel number

Pixel number

State of the art (UCSB):

• ARCONs: 2.000 pixels

• DARKNESS: 10.000 pixels

• MEC: 20.000 pixels

� At the moment we are only aiming for a camera to 

demonstrate scientific capabilities � about 10.000 pixels

� But the SKA readout could allow a more compact and / or 

cheaper readout for high pixel numbers.
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MKIDs for Optical to IR Astronomy

Topics in astronomy where MKIDs can beat competing detector technologies:

MKID strengths:

• Single pixel energy resolution

• µS time resolution

• ….

• Good IR sensitivity

Single photon counting

No dark counts

high z galaxies

pulsars reverberation mapping

direct Exoplanet imaging
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Direct exoplanet imaging:

Exoplanets:

• Life outside Earth?

Habitable planets?

…

• Radial velocity, transits, 

gravitational micro-

lensing, … 

don’t allow to study 

atmospheres

NASA artist‘s impressions

• Transit spectroscopy is very

challenging, especially on rocky 

planets.

• Direct imaging is best candidate 

to learn about habitability. 

Trappist-1

MKIDs for Optical to IR Astronomy
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Adapted From Oppenheimer & Hinkley (2009) and Sivaramakrishnan et al. (2001)

Entrance pupil is  

uniformly illuminated

Image is made and 

occulted

Pupil is reimaged and 

blocked with Lyot stop
Final image has >99% of 

starlight removed

Coronagraph working principle:
adaptive optics with high Stehl ratio (50-90%) necessary

NASA artist‘s impressions

MKIDs for Optical to IR Astronomy

Coronagraphy:
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Direct exoplanet imaging: Coronagraphy and speckles

HR8799, Marois et al (2010)

Atmospheric speckle elimination 

with DMs is the main challenge 

with high contrast imaging and 

MKIDs are especially well suited 

for this task:

MKIDs for Optical to IR Astronomy
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Direct exoplanet imaging: Coronagraphy and speckles

HR8799, Marois et al (2010)

Atmospheric speckle elimination 

with DMs is the main challenge 

with high contrast imaging and 

MKIDs are especially well suited 

for this task:

• Atmospheric speckles can move 

with a time scale of ~ 1 S, too fast 

for a DM feedback loop for 

CCDs but not for MKIDs.

MKIDs for Optical to IR Astronomy
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Direct exoplanet imaging: Coronagraphy and speckles

HR8799, Marois et al (2010)

Atmospheric speckle elimination 

with DMs is the main challenge 

with high contrast imaging and 

MKIDs are especially well suited 

for this task:

• Atmospheric speckles can move 

with a time scale of ~ 1 S, too fast 

for a DM feedback loop for 

CCDs but not for MKIDs.

• Speckles are chromatic � MKID 

energy resolution allows to 

distinguish between speckles and 

exoplanets.

• Photon counting capability and 

vanishing dark counts allow to 

analyze the photon arrival 

statistic to identify exoplanets. 

MKIDs for Optical to IR Astronomy
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MKID for IR-optical astronomy

Direct exoplanet imaging: Coronagraphy and speckles

HR8799, Marois et al (2010)

Atmospheric speckle elimination 

with DMs is the main challenge 

with high contrast imaging and 

MKIDs are especially well suited 

for this task:

• Atmospheric speckles can move 

with a time scale of ~ 1 S, too fast 

for a DM feedback loop for 

CCDs but not for MKIDs.

• Speckles are chromatic � MKID 

energy resolution allows to 

distinguish between speckles and 

exoplanets.

• Photon counting capability and 

vanishing dark counts allow to 

analyze the photon arrival 

statistic to identify exoplanets. 

MKIDs could increase attainable contrast 

ratios for exoplanet imaging by up to 2 

orders of magnitude compared with 

competing detector systems:

• Image exoplanet in reflected light

• Much better chance to study habitable 

zone planets with 30m class telescopes


