

This material is based upon works supported by the Science Foundation Ireland under **Grant No. grant 15/IA/2880**

The University of Dublin

CRANN

'Off-the-Shelf' FPGA/RF SoC Boards and Open-Source Tool-flows Compact, Low-Power Electronic Readout Systems

Colm Bracken, Eoin Baldwin, Gerhard Ulbricht, Mario de Lucia, Ivan Colantoni, Tom Ray

Presentation Contents

- Brief overview of what we are trying to do with our new instrument
- Requirements for the readout electronics for the DIAS MKIDs Camera
- FPGA board we originally planned to use for our next-gen. readout
- Some of the alternative systems we considered
- COTS (Commercial, Off-The-Shelf) Boards
- Open-Source Firmware Toolflows
- Some affordable boards which may be of interest to the community

Some Direct Imaging to Date

Video credit: **Credit:**J. Wang et al., 2018 https://www.eso.org/public/videos/eso1905b/

What we want from our new instrument

- Want a focal plane array, with pixel number pushing toward the 100 kilo pixel region (Moderate FoV)
- Want time resolution of ~ 1 microsecond (Photon counting), (Real-time wavefront analysis (for correction with XAO -> Speckle-nulling)
- Each pixel to give spatial and spectral information (IFU without sacrificing 1 dimension (row/column))
- Sensitive to full optical and near-IR wavebands, with high-contrast imaging
 - Such an instrument would be well-suited for direct-imaging of exoplanets using large-class ground-based observatories
 - (As discussed during talks earlier)

- Frequency division multiplexing allows MKIDs to scale up to kilo-pixel arrays
- Frequency division multiplexing also allows for a <u>much faster readout</u> (frequency mux intervals rather than time mux intervals)
- Due to the tiny superconducting bandgap (~<u>10⁻⁴ eV</u>), a single incident photon will generate many quasiparticles -> photon counting & energy-sensitive
- A silicon-based CCD, for example, has a semiconductor bandgap of 1.14 eV

- Reading out MKIDs using Frequency division multiplexing:
 - Simply monitor the phase of a complex I/Q probe signal, sampling every microsecond

- Reading out MKIDs using Frequency division multiplexing :
 - Simply monitor the phase of a complex I/Q probe signal, sampling every microsecond

- Reading out MKIDs using Frequency division multiplexing :
 - The higher the energy of the photon, the more Cooper-pairs are broken in the inductor

- Reading out MKIDs using Frequency division multiplexing :
 - The higher the energy of the photon, the more Cooper-pairs are broken in the inductor

- Reading out MKIDs using Frequency division multiplexing :
 - The more Cooper-pairs that are broken, the larger shift from resonance

- Reading out MKIDs using Frequency division multiplexing :
 - The larger shift from resonance of the detector, the larger the phase shift of the probe tone

- Reading out MKIDs using Frequency division multiplexing :
 - The larger shift from resonance of the detector, the larger the phase shift of the probe tone

• Fabricating each resonator/pixel with a unique capacitance allows FDM

 Driving a large number of resonators is a fairly trivial task – program a DAC to output a 'frequency comb' (and up-mix with an LO if necessary)

C. Bracken, STFC/DIAS Meeting, Dublin, September 2nd 2019

• But separating out each of the many probe tones (channelisation) is not a trivial matter at all...

- Computationally demanding task to channelise the tones, and monitor each tone/channel independently for indication of any photon events
- Highly parallel, so either GPUs or FPGAs are best suited

Our Current Readout: ROACH 1 ROACH (Reconfigurable Open-Architecture Computing Hardware) from CASPER

- ROACH 1 FPGA board
- ADC: 550 MSPS, 12 bit
- DAC: 1000 MSPS, 16 bit

IF/RF Board (&Clock Distribution)

 With these ADCs (550 MSPS) we would need 8 full systems to take full advantage of the 2,000 probe tones per feedline

- Each ROACH 1 can read ~ 250 pixels
- Cost per pixel ~ € 22.00 pp

 Rubidium Frequency Standard (Stable 10 MHz) & 1PPS

• VNA

CASPER (Collaboration for Astronomy Signal Processing and Electronics research)

State of the Art MKID Readout (for UV/O/IR)

- UCSB/Mazin Labs, & FermiLab
- CASPER Board
- ROACH 2 FPGA board
- ADC: 2 GSPS, 12 bit
- DAC: 2 GSPS, 16 bit

 Each ROACH 2 can read ~ <u>1,000 pixels</u>

A single ROACH 2 based MKID readout, M. Strader, 2016

State of the Art MKID Readout (for UV/O/IR)

- UCSB/Mazin Labs, & FermiLab
- DARKNESS MKID Instrument: 10 x ROACH 2 (10,000 pixels)
- DARKNESS is commissioned, and doing Science at Palomar Observatory
- UCSB Group already commissioning their next MKID camera: MEC (MKID Exoplanet Camera)
- MEC has 20 x ROACH 2 boards, for <u>20,000</u> <u>pixels</u>

DARKNESS Readout Stack, M. Strader, 2016

Original Plan for Gen 3 Readout

- Originally had planned to use the ROACH 3 (or SKARAB) board, developed for SKA
- The channelisation routines we employ are similar to SKA digital spectrometers
- So made some sense to continue using SKA/CASPER boards and software
- However, having looked into the SKARAB boards, they were very expensive, and not ideal for our use for a GEN 3 MKID readout

SKARAB Board, for SKA-SA Digital Spectrometer. Image Credit: Peralex, South Africa.

SKARAB/ROACH 3 (Peralex – SKA-SA)

Component	No. Pixels	Unit Price [Euro]	Total Price (with ADCs etc.) [Euro]	Sub-Total [Euro]
SKARAB	FPGA Baseboard	10,693	1	10,693
Peralex 3 GSPS ADC	A/D Converter	4,830	2	9,660
FMC230 5.7 GSPS DAC	D/A Converter	2,600	1	2,600
VP780 FPGA Carrier	FPGA Baseboard	11,250	1	11,250
IF Board	LO and Mixer	~ 5,000	1	~ 5,000
Total				~ 39,203

Number of Channels: 1,500

Cost per Pixel: € 26.14

USB TODE FANS MEZZANIRE STEE FANS HEALTHA HOHITORS FOR COM-6 STE C

http://www.tauceti.caltech.edu/casper-workshop-2017/slides/2_new.pdf

MKID Readout Wish-List (and Bottlenecks)

- Currently, need tones ~ 2 MHz apart (based on resonator Q-factors)
- Simple math: 500 resonators/tones per GHz of RF bandwidth (per coax)
- Constrained to <u>1 octave of RF bandwidth</u>: Current best option is <u>4 8 GHz</u> (available low-T amps)
- So, for each feedline, we want 2,000 probe tones/comb over 4 8 GHz
- Sensible to work at lower base frequencies: use I/Q-mixing: (-2 to +2 GHz, BB)
- Of course, Nyquist criteria: For 2 GHz RF, we need 4 GSPS sampling rates for our ADCs (maybe more for our DACs)
- Ultimately, we want to independently monitor phase of each tone over time, with time resolution of ~ 1 microsecond (Thus, <u>huge FPGA resources</u> required!!!)
- Minimal Mass/Footprint, Power, and of course Cost-per-Pixel!!!

Summary of Trade-Off Analysis

FPGA Carrier	Description	Unit	Total Price	No. of	Total Cost-per-Pixel
Board		Price	(with ADCs	Pixels/Channels	[Euro]
		[Euro]	etc.) [Euro]	per Board	
SKARAB	FPGA Baseboard	10,693	39,203	1,500	26.14
(SKA)					
UniBoard II	FPGA Baseboard	~ 20,000	~ 39,500	▶ 2,000	19.75
(SKA)					
AASL Custom	FPGA Baseboard	~ 15,000	> 34,500	▶ 2,000	▶ 17.25
Board (SKA)					
Abaco VP880	FPGA Baseboard	14,800	~ 45,550	▶ 2,000	22.78
(SRON System)					
Xilinx VCU118	FPGA Baseboard	5,800	25,300	▶ 2,000	12.65
Eval Kit COTS					
Xilinx ZCU111	FPGA Baseboard	8,995	18,000 -	4,000 - 8,000	3.62 - 4.75
COTS	+ RF SoC		28,000		
Abaco VP43 <u>0</u>	FPGA Baseboard	25,000	67,000	4,000 - 8,000	8.38 - 16.75
COTS	+ RF SoC				
Vadatech	FPGA Baseboard	~ 20,000	~ 27,800	▶ 3,000	9.27
AMC599 (EW)	+ RF SoC				

Xilinx ZCU111 COTS Board (RF SoC)

Component	Description	Unit Price [Euro]	Quantity	Sub-Total [Euro]
Xilinx RF-SoC Dev Board	FPGA ADCs/DACs	8,995	1	8,995
IF Boards	LO and Mixer	~ 5,000	2/4	~ 10,000/ 20,000
Total				18,995/ 28,995

Number of Channels: > 8,000 (Potentially)

Cost per Pixel: € 3.62 – € 4.75 (XUP Donation Program?)

Xilinx: Zynq RF SoC: https://www.xilinx.com/pr oducts/silicondevices/soc/rfsoc.html

Xilinx Zynq RF SoC: Potentially 8,000 pixels!

Xilinx: Zynq RF SoC: https://www.xilinx.com/products/silicondevices/soc/rfsoc.html

- With the on-board 8 x 6.4 GSPS DACs and 8 x 4 GSPS ADCs, we could potentially read 8,000 MKIDs
- However, FPGA resources on chip will not allow this
- Should be ok for F-Engine DSP of 8,000 channels
- But, if the 8,000 DDC's are needed then much more DSP capacity is needed. Also, memory requirements?
- We will likely need the FMC+ port for HMC
- Cost per/pixel: ~ <u>€ 3.62 € 4.75</u>
 - Could be significantly less if/when Xilinx include these boards on their XUP University Donation Program...

What Makes This Board So Good?

C. Bracken, STFC/DIAS Meeting, Dublin, September 2nd 2019

Xilinx Zynq RF SoC: Potentially 8,000 pixels!!!

- The 8 x 6.4 GSPS DACs and 8 x 4 GSPS ADCs, are housed on the actual chip
- Not only does this make the system compact – its significantly reduces power
- The extremely high sample rates of the data converters is achieved through high interleaving
- However, tests have shown that there is very low spurious noise – ADCs look great!

So, we've gone and bought one of these boards... *now what*?

- Like many of these (quite complex) FPGA evaluation boards, it is difficult to know where to start with programming it
- The nice thing about using a ROACH 1 or ROACH 2 – They are CASPER boards (Support!)
- CASPER (Collaboration for Astronomy Signal Processing and Electronics research)
- CASPER started in Berkley (~ 15 years ago)
- Other institutes/nations joined, with South Africa now a big contributor to their activities
- Now in fact, the 'C' in CASPER is really more for Community rather than Collaboration

Decided to ask for Help

- We went to the CASPER group, and asked if they would be interested in 'CASPERising' this exciting new FPGA/RF SoC board
- It turned out that we weren't the only ones hoping to program this board with the CASPER approach
- So, in June of this year, we went to South Africa (with our board), in the hopes of developing a fully functional readout firmware within a 1 week workshop
- Unfortunately we were being a little overlyoptimistic
- It turns out the new RF SoC chip is a little tricky to work with (even for the CASPER expert firmware developers)

Other open-source toolflows/approaches

- There are likely alternative open-source programming approaches
- One we are now using (for the short-term), while we try to CASPERise the board (longer-term), is PYNQ
- PYNQ (or, Python for Zynq) is an open-source programming environment for developing bitstream firmware files for the new Zynq-class Xilinx chips
- It is quite user-friendly, and all control software is done through Python's Jupyter Lab (Very similar to Jupyter Notebook)
- University of Strathclyde, Glasgow, and Xilinx themselves have developed a few nice firmware templates, including a QPSK model

Other boards worth mentioning

The Red Pitaya. Image Credit: STEMlab https://www.redpitaya.com

- If you have a readout electronics project, which is a little more demanding than what's possible with a Raspberry Pi, or Arduino, the Red Pitaya is worth exploring
- For example: SDR Transceiver, Data Acquisition, Digital Spectrometer, Oscilloscope, VNA, etc.
- It has a Zynq chip on-board, so it should be supported by PYNQ
- On-chip data converters (few hundred MSPS)
- The CASPER group has taken a keen interest in the Red Pitaya (mostly for student projects and tutorials), and it is now fully CASPERised

Many Thanks! Questions Welcome.

• Queries to: cbracken@cp.dias.ie