Quantum Limited Detectors for Astronomical Receivers

Ghassan Yassin Astrophysics, University of Oxford, UK

Dublin, 2019

Quantum (Heterodyne) Detectors

- SIS Mixers at Millimere Wave lengths
 - On Chip Arrays
 - Harmonics Multipliers
- THz Mixers
 - ALMA Band 10, band 11 SIS mixers
 - Understanding the physics of SIS mixers above the gap
- Superconducting Parametric Amplifiers
 - Investigation of operating temperature and losses
 - IF amplifiers for SIS mixers
 - Wide band millimeter amplifiers.

Oxford Quantum Detectors

- Group
 - Ghassan, Boon Kok Tan, John Garret, Rik Elliott, Alessandro Traini, Kitti Ratter.
 - Two PhD students.
- Funding
 - STFC Consortium grant (with Cambridge and RAL)
 - Horizon 2020 (RadioNet)
 - ERC Grant+ MERAC fund (SPA)
- Collaboration
 - RAL (LO sources, Mechanical Engineering, Measurements,...)
 - Cambridge (superconducting devices)
 - Paris Observatory (SIS devices Faouzi Boussaha)
 - Harvard-Smithsonian CfA (dual polarization receiver for SMA).

ALMA

Credit: Dr. Faouzi Boussaha, Paris Observatory

ALMA Receiver Cabin

C

Band	Frequency range (GHz)	Target Receiver Noise Temperature (K)		Detector technology
		80% RF band	At any RF frequency	
1	31–45	17	26	HEMT ^a
2	67–90	30	47	HEMT
3*	84–116	37	60	SIS
4	125–163	51	82	SIS
5	162–211	65	105	SIS
6*	211-275	83	136	SIS
7*	275–373	147	219	SIS
8	385-500	196	292	SIS
9*	602–720	175	261	SIS
10	787–950	230	344	SIS

Lab Photo

Lab Photo

The SIS Tunnel Junction

The SIS (superconductor-insulator-superconductor) is ~ $1\mu m^2$ sandwich of two superconductors separated by a thin (20 A⁰)insulator

quasiparticles are normal electrons with energy and density of states:

$$E_{k} = (\varepsilon_{k}^{2} + \Delta^{2})^{\frac{1}{2}}$$

$$\rho(E) = \begin{cases} N(0) \frac{|E|}{(E^{2} - \Delta^{2})^{\frac{1}{2}}} & \text{for } |E| > \Delta \\ 0 & \text{Otherwise} \end{cases}$$

SIS Tunnel Junctions

-EF

$$E_{k} = (\varepsilon_{k}^{2} + \Delta^{2})^{\frac{1}{2}}$$

$$\rho(E) = \begin{cases} N(0) \frac{|E|}{(E^{2} - \Delta^{2})^{\frac{1}{2}}} & \text{for } |E| > \Delta \\ 0 & \text{Otherwise} \end{cases}$$

Full RF Mixer Chip

Slotline-microstrip Transition Tuner circuits & RF choke Matching notch Tunnel junction Impedance matching transformer **Unilateral finline** 5 140 Mixer designs based on: 15 ohm, 120 fF, 1.5 um² junction 120 Mixer Conversion Gain (dB) 350 nm Nb / 490 nm SiO / 200 nm Voise Temperature (K) 100 -5 Nb 100 um Quartz substrate -10: 80 Smallest feature 2.5 um -15 60 Optimised using HFSS to include 3D 40 -20: electromagnetic effects and ALMA B5 ALMA B6 superconductivity -25 20 163-211 GHz 211-27 -30 ∟ 100 0 150 200 250 300 350 RF Frequency (GHz)

Waveguide to Planar Circuit Transitions

1. Radial Probe

2. Twin-slot Antenna

3. Unilateral Finline Taper

<u>Unilateral Finline Taper</u>

- Oriented along waveguide axis
- No backshort, minimal alignment issue
- Natural bandpass filter, prevent IF signal leakage
- Simple mixer block
- Wide bandwidth, smooth tapering of waveguide impedance to slotline
- Large substrate area for circuit integration
- Fully on-chip fabrication, high frequency

Band 5/6 & Band 9 Mixers

Credit: Dr. John Garrett (Oxford University) & Cologne University

Measured Characteristics

Credit: Dr. John Garrett (Oxford University)

Planar beam splitter

On Chip dual polarization mixer

The Distributed SIS Junction

$$Z = W^{-1} (j\omega L_s + Z_{sw} + Z_{sg})$$
$$Y = W (j\omega C_s + Y_j)$$

$$Y_J = \frac{I_{\omega}}{V_{\omega} \cdot A}$$

 $\operatorname{Re} \{I_{\omega}\} = \sum_{-\infty}^{\infty} J_{n}(\alpha) [J_{n-1}(\alpha) + J_{n+1}(\alpha)] \cdot I_{dc}(V_{b} + nV_{ph})$ $\operatorname{Im} \{I_{\omega}\} = \sum_{-\infty}^{\infty} J_{n}(\alpha) [J_{n-1}(\alpha) - J_{n+1}(\alpha)] \cdot I_{KK}(V_{b} + nV_{ph})$

 $\gamma = \sqrt{Z \cdot Y}$ $Z_0 = \sqrt{Z/Y}$

 $Z_{in} = Z_0 \operatorname{coth} \gamma L$

The nonlinear Model

$$\begin{bmatrix} V_n \\ I_n \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} \begin{bmatrix} V_{n-1} \\ I_{n-1} \end{bmatrix} - \begin{bmatrix} 0 \\ I_{\omega}/N \end{bmatrix}$$

$$\Delta = INZemb - V_{\rm N} - V_{\rm emb}$$

 $\Delta' = I_N' \cdot Z_L' - V_N'$

$$\mathbf{V}^{k+1} = \mathbf{V}^k + [\mathbf{J}(\mathbf{V}^k)]^{-1} \cdot \Delta(\mathbf{V}^k)$$

Newton Raphson method

$$P_{L}' = \frac{|VN'|^2}{2\text{Re}\{Z_{L}'\}}$$
$$\eta = \frac{P_{L}'}{P_{emb}}$$

Results from the nonlinear model

Efficiency of 80% at (V_b, V_{emb}) = (1.62, 0.7) mV Output power -38 dbm at (1.24, 5.0) mV

THz Tunnel Junction

THz Tunnel Junction

NDN	3	ND HIN
AIO _x	I	AIO _x
NbN	S	NbTiN

High gap superconductors

THz Test System

Supra-THz Mixer

ALL THE OFFICE

Supra-THz Mixer

Superconducting Quantum Amplifiers

Berkeley, CA 94720, Andrew N. Cleland Science 2015;350:280

> Superconducting devices = quantum limited Large interaction time between waves

Travelling Wave Paramp – JJ & KI

Bockstiegel et. al. J Low Temp Phys (2014) 176:476-482

Kinetic Inductance TWPA

B. Eom Nature Physics 8, 623-627 (2012)

<u> Josephson Junctions TWPA</u>

C. Macklin, Science, 350 (6258), p. 307, 2015

- High gain, broadband profile
- Low heat dissipation
- Quantum limited noise
- Compact
- Compatible with detector circuits

Phase Matching – Exp. Gain

UNIVERSITY OF

Kevin O'Brien, Chris Macklin, Irfan Siddiqi, and Xiang Zhang. Resonant phase matching of josephson junction traveling wave parametric amplifiers. Physical review letters, 113(15):157001, 2014. C. Macklin, Science, 350 (6258), p. 307, 2015

