

Centre for Electronic Imaging

Jesper Skottfelt

Future Astronomical Instrument Development, Dublin, Sep 2019

CENTRE FOR ELECTRONIC IMAGING

Research group at the Open University involved in CCD & CMOS R&D for Space Science

- Basic research & innovation into CCD and CMOS sensors
- Involvement in key space science projects using the technology
- Increasing the fundamental understanding of the technologies
- Key research strengths in Device modelling & Radiation damage effects for space use
- CMOS design and development
- CCD & CMOS operation and optimisation

Employing about 30 people

Many industrial collaborators

- Teledyne e2v
 - Sponsorship
 - In-kind CCD and CMOS for testing
- XCAM
 - Electronics, test systems, design, etc.
- PSI, PTB/Bessy
 - Radiation testing

Research management

FUNDAMENTAL UNDERSTANDING

Radiation Damage

- Developing a physical understanding of the damage mechanisms in silicon
- Evaluation & qualification (γ, p, e, SEE)
- Radiation environment modelling (GEANT4, SPENVIS)

Device Modelling and Development

- Use of advanced 3D simulation tools and Monte Carlo code to understand device operation
- Several patents on CMOS design
 - hi-rho technology for improved NIR QE

Detector Characterisation

 Development of test methodologies to both provide feedback on new detectors and test techniques

Electro-optic Testing

 Using a combination of X-ray, UV, and optical techniques to enable an understanding of device operation

Characterisation

Dithered -Bulk

Not Dithered

University

RADIATION DAMAGE TESTING

Irradiation of devices with highly energetic particles (protons, neutrons, etc)

- Cryogenic irradiations to mimic conditions in Space
- 'Keep cold' systems to be monitored over extended periods (years)

Development of analysis methods

- Many methods employed to tests the performance
- 'Trap pumping' technique can identify and characterise single defects
- · Can help optimise instrument operating parameters

CEIS MAJOR SPACE PROJECT ACTIVITY - 1

Gaia – Launched 2013

- 120 large area optical CCDs
- Contributed to the radiation damage knowledge through device modelling and data analysis

Euclid – Launch 2022

- 36 large area optical CCDs
- Detector modelling and optimisation
- Leading the CCD radiation damage evaluation & evaluating p-channel CCD technology
- Doing cryogenic irradiations and monitoring for 2+ years

JUICE – Launch 2022

- Optical CMOS sensor (CIS115)
- Providing detectors for the camera in the extreme electron environment (~1 Mrad)
- Radiation damage qualification using protons, electrons, gammas and heavy ions

CEIS MAJOR SPACE PROJECT ACTIVITY - 2

SMILE – Launch 2023

- Large X-ray CCDs
- Developing and supplying the X-ray CCDs into the SXI instrument
- Radiation characterisation, optimisation and in-flight calibration

WFIRST – Launch 2023

- Optical EMCCD
- Device modelling, optimisation and radiation damage testing

ATHENA – Launch 2031

- X-ray DEPFET active pixel sensor
- Simulating radiation background and developing shielding

University

GRAVITYCAM

Proposed high-resolution wide-field instrument for NTT 3.6m Telescope in Chile

- Main collaborators: Edinburgh, Sct Andrews, Cambridge, UK ATC
- Large array of high-speed detectors
- High cadence surveys over large part of the sky
- Long list of science drivers, incl.
 - Detection of low-mass exoplanets using the microlensing method
 - Improve weak shear studies of dark matter distribution
 - Unique database of stellar variability
 - Mapping of Kuiper belt objects

High resolution obtained by doing high frame-rate imaging (~25Hz)

- Tip-tilt correction (shift-and-add) can give 2-3 times improvement
- Can be used over much larger area than conventional Adaptive optics approach

In single pointing (0.5°x0.5°):	cadence	40 ms	1 s	1 min	1 h
	# stars	~ 10 ³	$\sim 2 \times 10^4$	~ 10 ⁶	~ 10 ⁷

From: Skottfelt et al. 2013

GRAVITYCAM

Instrument Design

- Field of View of 0.5°
- Simple optics no re-imaging optics needed
 - NTT plate scale matches pixel size (20um pixel gives 0.1"/pix – close to diff limit of 3.6m telescope)
- Large focal plane (50-200 detectors) inside vacuum dewar

Detectors

٠

- CMOS imaging sensors preferred option
 - Similar performance to CCDs in terms of QE
 - Sub-electron noise at high speeds, good QE, digital readout, buttable packages
- Working on direct comparison of EMCCD and CMOS sensor

Data Management and Analysis

- Large amounts of data many 100's TB/night
- Real time analysis of data and diverse output to different science cases

THANK YOU

INSTRUMENT DESIGN

GravityCam will sit on the Nasmyth port of the NTT

- · Good optical quality and plenty of room
- Needs an atmospheric dispersion corrector to allow wide band-pass
 - Important for microlensing survey
- · A filter wheel will be important for other areas

The NTT has a Field of View of 0.5°

- Important with good optical qualify over whole FoV
- · Field flattening optics in front plate of cryo dewar

Nasmyth focus has plate scale of ~5"/mm

- Using a pixel size of 10 20 µm gives a pixel scale of 0.05" – 0.1" just around the diffraction limit of a 3.6m telescope
- Total number of pixels will thus be 100m 1bn, depending on pixel size and fill factor
- Probably 50 200 devices

FOCAL PLANE CMOS Imaging Sensors (CIS)

Initial idea was to use EMCCDs, but large package and charge transfer area means that fill-factor will only be $\sim 1/6$

Recent developments in CIS devices have made the image quality good enough for astronomy

- · Back-thinning means Quantum Efficiency comparable to CCDs
- Hi-rho technology for CIS could give big improvement in NIR QE
- Charge-to-voltage conversion circuit in each pixel
 - Faster readout speeds as pixels can be read out in parallel
 - Lower noise as more time can be spent on charge conversion
- Low power consumption and on-chip ADCs
 - · Simplifies readout electronics, vacuum and cooling systems
- Can easily be made in buttable packages
 - Higher fill factor of focal plane
- Currently testing CIS devices for this purpose

QE versus thickness at -100°C with Multi 2 AR coating

TESTING CIS120

Building test camera to test and characterise Te2v CIS120

- New all-purpose CIS detector
 - 2k x 2k pixels, 10 µm pixels, 20 Hz frame rate
 - 3-side buttable package in development
- Compare with EMCCD systems already available at OU
 - Gain, noise, inter-pixel responsivity, image lag, etc.
- Plan to install (a copy of) the test camera on the Danish 1.54m telescope at La Silla, Chile
 - EMCCD instrument installed since 2013
 - 2x Andor iXon cameras 10-30 fps (Te2v CCD97)
 - Direct on-sky comparison between EMCCD and CIS
 - Same site as the NTT
 - Current plan is to test this summer (2019)
- Main purpose is to test which detector is best for GravityCam
 - Will also establish the readiness of CIS for highspeed astronomical imaging

Danish 1.54m Telescope

DATA MANAGEMENT AND ANALYSIS

Large focal plane and high speed imaging will produce vast quantities of data ~ many 100's TB/night

- Software needs to analyse data in real-time and produce a diverse output to fulfil the need of all the science cases
- Each detector can be run on its own high-performance PC or on a powerful server
 - · Analysis tasks well-suited for GPU processing
- · Fixed reference frames created for each pointing
- Detector-related corrections (flat fielding, vignetting or extinction corrections etc.) will be handled on full output images.
- Processing then done in ~1024 x 1024 blocks. Each sub image is co-added into the appropriate resolution bin
- Light-curve of each star is created
 - For microlensing surveys alerts will be generated if a change in brightness occurs
 - For occultation events a high time-resolution lightcurve needs to be saved

SUMMARY

- Initial work on GravityCam has started
 - Paper published in PASA: Mackay et al. (2018) doi: 10.1017/pasa.2018.43
 - Test camera for on-sky comparison of detector technologies being developed
- Next step will be proper Phase A study
 - Better idea of instrument design and number of detectors
 - · Currently identifying funding sources for this
 - · Relatively simple instrument design, but large number of detectors
 - Biggest effort will be software development for real-time data analysis
- Projected timescales and costs
 - Estimate 3 years to build and produce software for GravityCam
 - Plus 1 year for commissioning
 - Estimate £15m for 3 years development and 1 year commissioning
 - Detectors will be driving the costs
 - £500k/year in running costs
 - Mainly team to manage data analysis outputs