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Inverse Problem Formulation 

Minimize the cost functional:

{(Zj
obs - Zj

p)Dj}
2 + m WT W m.

Zobs and Zp are N observed and predicted 

impedances 

D= data weights 

m = M conductivity model parameters. 

W = 2 operator; constructs a smooth model 

= tradeoff parameter

2N

j=1



Non-Linear Conjugate Gradients

We need the gradient of the cost functional

m d m

Ability to determine a scalar such that 

m p) 

is minimized along the conjugate search 

direction p



Computational Efficiencies

Gradient requires 4 applications of the 

forward code at each frequency 

Line search usually requires 2 forward 

modeling applications at each frequency 

Typically four forward modeling applications 

per frequency needed per inversion iteration

Ideal method for problems with extremely 

large data sets and model parameterizations 

Algorithm implemented on the Franklin-Cray XT4        

machine at NERSC: 9660 nodes/19320 cores



An Iterative Solution

Make initial model guess

Select tradeoff parameter 

During the iteration process is reduced

(this can help accelerate convergence)



Dublin Model Example

Inversion launched with 100 Ω.m half-
space

9912 data points (Zxx,Zxy,Zyx,Zyy)
used all 21 frequencies; 59 detector locations

Data weighting:  
Zxx weights => 5% || Zxy ||    Zxy weights => 5% || Zxy ||

Zyx  weights => 5% || Zyx ||    Zyy weights => 5% || Zyy ||

~ 107 resistivity parameters imaged

Problem solved on 64 cores

Solution time ~ 7.5 hours/iteration
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Coordinate Systems
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Inversion Metrics



Zyx Apparent Resistivity Fits



Zxy Apparent Resistivity Fits



Zyx Impedance Phase Fits



Zxy Impedance Phase Fits



Zxy Impedance Phase Fits



y=0 km

y=-15 km

y=15 km

Ω.m

Resistivity Image in Cross Section    



Outstanding Issues

Static Shifts

Survey Aperture & Station Density

Meshing

Model Stabilization
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Resistivity Image in Cross Section    



z=7.5 km z=15 km

Resistivity Image in Depth Section    



Zyx Apparent Resistivity Fits



Zxy Apparent Resistivity Fits



Zyx Impedance Phase Fits



Zxy Impedance Phase Fits



Survey Layout
in my coordinate system
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2 = 1 Ω.m

3 =10,000 Ω.m





The Forward Problem

The electric field vector equation for MT:

x x e + i e= 0.

equation approximated on staggered FD grid 



The Krylov Solver

assemble complex-symmetric sparse linear system 

Ke = s

s depends on  MT source  polarization

(two for each frequency)

solve system with iterative Krylov methods
(also employ static divergence correction to improve convergence)

magnetic field then determined from Faraday’s law 



Computation of the Gradients

Evaluation of  m leads to

m = 2 Wt W m.



Computation of the Gradients …. 
As  for d , let  Zj= {(Zj

obs - Zj
p)/ j} be complex, 

N

d / mk = - 2 Re Zj )* Zp
j / mk ,

j=1

or N

d / mk =  2 Re ( Zj )* 1gj
t K-1( K/ mk E1) + 

j=1

N

2 Re ( Zj )* 2gj
t K-1( K/ mk E2). 

j=1

*  stands for complex conjugation.



The Non Linear CG Algorithm 

(1) Choose m(1) and select p(1) = -M(1)
-1 m(1)

(2) find (i) that minimizes m(i)+ (i) p(i))

(3) set m(i+1)=m(i)+ (i) p(i)  and  r(i+1)= - m(i+1)

(4) (i+1)={(r(i+1)
t M(i+1)

-1 r(i+1) - r(i+1) M(i+1)
-1 t r(i))/r(i)

t M(i+1)
-1 r(i) }

(5) p(i+1) = M(i+1)
-1 r(i+1) (i+1) p(i) 

(6) stop when | r(i+1) |  < ,    otherwise go to (2).


