
MT3D_INV:

A 3D MT Inversion Algorithm

MT3D INVERSION WORKSHOP

Dublin Institute of Advanced Studies

12-14 March 2008

Gregory A. Newman & Michael Commer

Earth Sciences Division

Lawrence Berkeley National Laboratory

Berkeley California

Inverse Problem Formulation

Minimize the cost functional:

{(Zj
obs - Zj

p)Dj}
2 + m WT W m.

Zobs and Zp are N observed and predicted

impedances

D= data weights

m = M conductivity model parameters.

W = 2 operator; constructs a smooth model

= tradeoff parameter

2N

j=1

Non-Linear Conjugate Gradients

We need the gradient of the cost functional

m d m

Ability to determine a scalar such that

m p)

is minimized along the conjugate search

direction p

Computational Efficiencies

Gradient requires 4 applications of the

forward code at each frequency

Line search usually requires 2 forward

modeling applications at each frequency

Typically four forward modeling applications

per frequency needed per inversion iteration

Ideal method for problems with extremely

large data sets and model parameterizations

Algorithm implemented on the Franklin-Cray XT4

machine at NERSC: 9660 nodes/19320 cores

An Iterative Solution

Make initial model guess

Select tradeoff parameter

During the iteration process is reduced

(this can help accelerate convergence)

Dublin Model Example

Inversion launched with 100 Ω.m half-
space

9912 data points (Zxx,Zxy,Zyx,Zyy)
used all 21 frequencies; 59 detector locations

Data weighting:
Zxx weights => 5% || Zxy || Zxy weights => 5% || Zxy ||

Zyx weights => 5% || Zyx || Zyy weights => 5% || Zyy ||

~ 107 resistivity parameters imaged

Problem solved on 64 cores

Solution time ~ 7.5 hours/iteration

2=1 Ω.m

Dublin Test Model

surface

25 km

3
0
 k

m

1
5
 k

m

5 km 5 km

positive to negative x negative to positive x

25 km

1
5
 k

m

5 km 5 km

plan view

5 km

4
0
 k

m

1
5
 k

m

x

looking from

z

y

y

x

z

y

3

1

3

1

2

1

2

1=10 Ω.m

2=1 Ω.m

3=10,000 Ω.m

Coordinate Systems

Mine

Yours

y

x x

y

z positive downward for both

2mineyours
cossin

sincos

cossin

sincos

yyyx

xyxx

xxxy

yxyy

ZZ

ZZ

ZZ

ZZ

Coordinate systems related to each other by a -90 degree rotation

10

1

0.1
0 4010 20 30 0 4010 20 30

100

10

1

Iteration

φ
o

b
jectiv

e fu
n

ctio
n

w
eig

h
ted

 p
ercen

tag
e erro

r

Iteration

%100
)(

))((

2

2

j

obs

jj

pred

jj

obs

jj

ZD

ZZD

Inversion Metrics

Zyx Apparent Resistivity Fits

Zxy Apparent Resistivity Fits

Zyx Impedance Phase Fits

Zxy Impedance Phase Fits

Zxy Impedance Phase Fits

y=0 km

y=-15 km

y=15 km

Ω.m

Resistivity Image in Cross Section

Outstanding Issues

Static Shifts

Survey Aperture & Station Density

Meshing

Model Stabilization

y=0 km

y=-15 km

y=15 km

Ω.m

Resistivity Image in Cross Section

z=7.5 km z=15 km

Resistivity Image in Depth Section

Zyx Apparent Resistivity Fits

Zxy Apparent Resistivity Fits

Zyx Impedance Phase Fits

Zxy Impedance Phase Fits

Survey Layout
in my coordinate system

1=10 Ω.m
2 = 1 Ω.m

3 =10,000 Ω.m

The Forward Problem

The electric field vector equation for MT:

x x e + i e= 0.

equation approximated on staggered FD grid

The Krylov Solver

assemble complex-symmetric sparse linear system

Ke = s

s depends on MT source polarization

(two for each frequency)

solve system with iterative Krylov methods
(also employ static divergence correction to improve convergence)

magnetic field then determined from Faraday’s law

Computation of the Gradients

Evaluation of m leads to

m = 2 Wt W m.

Computation of the Gradients ….
As for d , let Zj= {(Zj

obs - Zj
p)/ j} be complex,

N

d / mk = - 2 Re Zj)* Zp
j / mk ,

j=1

or N

d / mk = 2 Re (Zj)* 1gj
t K-1(K/ mk E1) +

j=1

N

2 Re (Zj)* 2gj
t K-1(K/ mk E2).

j=1

* stands for complex conjugation.

The Non Linear CG Algorithm

(1) Choose m(1) and select p(1) = -M(1)
-1 m(1)

(2) find (i) that minimizes m(i)+ (i) p(i))

(3) set m(i+1)=m(i)+ (i) p(i) and r(i+1)= - m(i+1)

(4) (i+1)={(r(i+1)
t M(i+1)

-1 r(i+1) - r(i+1) M(i+1)
-1 t r(i))/r(i)

t M(i+1)
-1 r(i) }

(5) p(i+1) = M(i+1)
-1 r(i+1) (i+1) p(i)

(6) stop when | r(i+1) | < , otherwise go to (2).

