
Numerical Modelling for Geophysical

Electromagnetic Methods

A short course given at the Dublin Institute of Advanced Studies
6th-14th July 2009

Colin G. Farquharson

Department of Earth Sciences,
Memorial University of Newfoundland,

St. John’s, NL, Canada.

The Plan

• Five “lectures”, each of approximately 1 hour duration.

• Informal, so questions and comments are welcomed at any
time.

• Timing is flexible, and can be adjusted as needed.

• Some exercises will be provided, with Fortran source code
available.

• We can have tutorials, or similar, if desired.

Outline

I. 1-D

II. EM rules & regulations

III. Finite difference

IV. Finite element

V. Integral equation

I. 1-D

1. An example: Set-up

Derive a partial differential equation (PDE) from Maxwell’s
equations, Ohm’s law, etc., in frequency domain, in quasi-static
régime:

Maxwell/Faraday → ∇× E = iωB

curl → ∇×∇× E = iω∇× B

B = µ0H → ∇×∇×E = iωµ0∇× H

Maxwell/Ampère → ∇×∇×E = iωµ0J

Ohm, σ(r) → ∇×∇× E = iωµ0σE

Hence:
∇×∇×E − iωµ0σE = 0

Assume . . .

1-D spatial variation of conductivity: σ = σ(z)

1-D spatial variation of electric field: E = E(z) and
∂
∂x

= ∂
∂y

= 0

electric field in x-direction only: E(z) = Ex(z) x̂

(That is, source of infinite extent in x- & y-directions to generate
electric field with only one component, and no spatial structure
to break this symmetry. Looking like 1-D MT.)

(And further assume that the “source” of the electric field can be
implemented via boundary conditions. This is 1-D MT.)

So:

∇×E =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

0 0 ∂
∂z

Ex 0 0

∣

∣

∣

∣

∣

∣

=
∂Ex

∂z
ŷ

and

∇×∇× E =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

0 0 ∂
∂z

0 ∂Ex

∂z
0

∣

∣

∣

∣

∣

∣

= −
∂2Ex

∂z2
x̂

Hence, the 1-D PDE is:

−
∂2Ex

∂z2
− iωµ0σ(z) Ex = 0

(with some boundary conditions).

2. Discretize the Earth

For numerical solution, need to get everything in terms of
numbers so that a computer can do the arithmetic.

Discretize the Earth, e.g., into layers of uniform conductivity:

z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

σ1 σ2 σ3 σi− 1 σi σN−1

z-coordinates of layer interfaces: z1, z2, . . . , zN

conductivities of layers: σ1, σ2, . . . , σN−1

3. Discretize the electric field

Continue to get everything in terms of lists of numbers.

Sliding towards the finite-difference method . . .

Let’s specify an approximate electric field in terms of its values
at nodes, and . . .

. . . let’s locate these nodes at the centres of the layers:

z
zi− 1 zi zi+ 1 zi+ 2

Ei− 1/2 Ei+ 1/2 Ei+ 3/2

(The subscript x in Ex has been dropped; the subscript now
represents to which node a value of the approximate electric field
corresponds.)

4. Discretize the PDE

Returning to the PDE:

∂2Ex

∂z2
+ iωµ0σ(z) Ex = 0

What do we do about the z-derivatives now that we’re in our
discretized realm?

Consider the (i + 1
2)th node and its neighbours:

z
zi− 1 zi zi+ 1 zi+ 2

zi− 1/2 zi+ 1/2 zi+ 3/2

Ei− 1/2 Ei+ 1/2 Ei+ 3/2

z
zi− 1 zi zi+ 1 zi+ 2

zi− 1/2 zi+ 1/2 zi+ 3/2

Ei− 1/2 Ei+ 1/2 Ei+ 3/2

Approximating derivatives by finite differences:

∂E

∂z

∣

∣

∣

zi

≈
Ei+ 1

2
− Ei− 1

2

zi+ 1
2
− zi− 1

2

and
∂E

∂z

∣

∣

∣

zi+1

≈
Ei+ 3

2
− Ei+ 1

2

zi+ 3
2
− zi+ 1

2

Let’s assume layers of equal thickness, ∆z, for ease of writing:

∂E

∂z

∣

∣

∣

zi

≈
Ei+ 1

2
− Ei− 1

2

∆z
and

∂E

∂z

∣

∣

∣

zi+1

≈
Ei+ 3

2
− Ei+ 1

2

∆z

z
zi− 1 zi zi+ 1 zi+ 2

zi− 1/2 zi+ 1/2 zi+ 3/2

Ei− 1/2 Ei+ 1/2 Ei+ 3/2

And similarly for the second-order derivative:

∂2E

∂z2

∣

∣

∣

z
i+ 1

2

=
∂

∂z

{

∂E

∂z

}

∣

∣

∣

z
i+ 1

2

≈
1

∆z

{

∂E

∂z

∣

∣

∣

zi+1

−
∂E

∂z

∣

∣

∣

zi

}

=
1

∆z

{

Ei+ 3
2
− Ei+ 1

2

∆z
−

Ei+ 1
2
− Ei− 1

2

∆z

}

=
1

∆z2

{

Ei+ 3
2
− 2Ei+ 1

2
+ Ei− 1

2

}

z
zi− 1 zi zi+ 1 zi+ 2

zi− 1/2 zi+ 1/2 zi+ 3/2

Ei− 1/2 Ei+ 1/2 Ei+ 3/2

So, an approximation of the PDE that is centred on the (i + 1
2)th

node is:

1

∆z2

{

Ei+ 3
2
− 2Ei+ 1

2
+ Ei− 1

2

}

+ iωµ0σi Ei+ 1
2

= 0

(where σi is the conductivity of the ith layer, i.e., between zi and
zi+1.)

Rearranging the above expression to gather together the various
electric field terms . . .

z
zi− 1 zi zi+ 1 zi+ 2

zi− 1/2 zi+ 1/2 zi+ 3/2

Ei− 1/2 Ei+ 1/2 Ei+ 3/2

1

∆z2
Ei− 1

2
+

(

iωµ0σi −
2

∆z2

)

Ei+ 1
2

+
1

∆z2
Ei+ 3

2
= 0

The PDE can be approximated in a similar manner in the
neighbourhood of each “interior” node, e.g.,

1

∆z2
Ei− 3

2
+

(

iωµ0σi−1 −
2

∆z2

)

Ei− 1
2

+
1

∆z2
Ei+ 1

2
= 0 for zi− 1

2

1

∆z2
Ei+ 1

2
+

(

iωµ0σi+1 −
2

∆z2

)

Ei+ 3
2

+
1

∆z2
Ei+ 5

2
= 0 for zi+ 3

2

Showing again these discrete approximations of the PDE, this
time in order:

1

∆z2
Ei− 3

2
+

(

iωµ0σi−1 −
2

∆z2

)

Ei− 1
2

+
1

∆z2
Ei+ 1

2
= 0 for zi− 1

2

1

∆z2
Ei− 1

2
+

(

iωµ0σi −
2

∆z2

)

Ei+ 1
2

+
1

∆z2
Ei+ 3

2
= 0 for zi+ 1

2

1

∆z2
Ei+ 1

2
+

(

iωµ0σi+1 −
2

∆z2

)

Ei+ 3
2

+
1

∆z2
Ei+ 5

2
= 0 for zi+ 3

2

If we can find E’s that mean all three of these equations are
satisfied, we will have a solution to our discretized, approximate
PDE . . .

. . . in the neighbourhood of zi− 1
2
, zi+ 1

2
and zi+ 3

2
.

Showing yet again these discrete approximations of the PDE,
this time lining things up:

Ei− 3
2

Ei− 1
2

Ei+ 1
2

0 0 = 0

0 Ei− 1
2

Ei+ 1
2

Ei+ 3
2

0 = 0

0 0 Ei+ 1
2

Ei+ 3
2

Ei+ 5
2

= 0

where the ’s correspond to the coefficients of the E’s.

In matrix notation:





0 0
0 0
0 0

















Ei− 3
2

Ei− 1
2

Ei+ 1
2

Ei+ 3
2

Ei+ 5
2













=





0
0
0





z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

Collecting the discrete, approximate PDE bits for nodes (2 + 1
2)

to (N − 2 + 1
2):









0 . . . 0
0 . . . 0
...

...
0 . . . 0





















E1+ 1
2

...

EN−1+ 1
2













=







...
0
...







This is a discretization of the 1-D electric field PDE.

This is a system of N−3 equations in N−1 unknowns.

5. Discretize the boundary conditions

Okay, so we need two more equations. Let’s now consider what’s
happening at the “boundary” nodes.

z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

Firstly, at zN−

1
2

and thereabouts.

Assume that our boundary condition here is that the electric
field has decayed to nothing, as an MT electric field would deep
in the Earth.

Let’s try to get this boundary condition into our approximate
realm. The best we can do (in this particular discretization) is to
set EN−

1
2

= 0.

z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

Putting this into our system of equations gives:













0 . . . 0
0 . . . 0
...

...
0 . . . 0
0 . . . 0 1

























E1+ 1
2

...

EN−1+ 1
2













=











...
0
...
0











This is now a system of N−2 equations in N−1 unknowns.

Consider the boundary condition at the other end, i.e., at z1 and
thereabouts.

z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

Assume that our boundary condition here represents a non-zero
magnetic field. This mimics the effect of the simple plane-wave
source of MT.

In our nice 1-D scenario, iωµ0Hy = ∂Ex/∂z.

Let’s choose Hy = 1 at z1, that is, ∂Ex/∂z = iωµ0.

In our discretized world, we can approximate this boundary
condition as:

1

∆z

(

E1+ 1
2
− E1− 1

2

)

= iωµ0.

This involves the approximate electric field at the “ghost” node
at z1− 1

2
.

z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

Including the preceding equation in our system, AND the
discrete approximation to the PDE that is centred on z1+ 1

2
gives:

















−1
∆z

1
∆z

0 . . . 0
0 . . . 0

0 . . . 0
...

...
0 . . . 0
0 . . . 0 1

































E1− 1
2

E1+ 1
2

...

EN−1+ 1
2

















=















iωµ0
...
0
...
0















This is now a system of N equations in N unknowns. Woo-hoo!

Form system, and solve . . .

−0.2

0.0

0.2
1D

 E
−f

ie
ld

 (
V

/m
)

−10 −5 0 5 10

z (km)

real

imaginary

It works!

(Homogeneous halfspace of 0.01 S/m; “air” of 10−8S/m; 3 Hz.)

1e−05

0.0001

0.001

0.01

0.1

1

1D
 E

−f
ie

ld
 (

V
/m

)

−10 −5 0 5 10

z (km)

real

imaginary

Same again (homogeneous halfspace of 0.01 S/m, 3 Hz), using
logarithmic vertical axis.

6. The system of equations

Backing up a bit.

The system of equations for the PDE, which was written out
before as:

















0 . . . 0
0 . . . 0

0 . . . 0
...

...
0 . . . 0
0 . . . 0 1

































E1− 1
2

E1+ 1
2

...

EN−1+ 1
2

















=















iωµ0
...
0
...
0















can be written more neatly as:

(L + iωµ0 S) Ẽ = r

(L + iωµ0 S) Ẽ = r

where

r is the right-hand side vector (dimension N);

Ẽ is the vector containing the values of the approximate electric
field at the nodes (including the ghost node) (dimension N);

S is the N × N diagonal matrix whose elements are the
conductivities of the layers, i.e., Sii = σi;

and L is . . .

L is the finite-difference approximation of the ∂2/∂z2 operator,
i.e.,

L =
1

∆z









1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

...
0 0 . . . 1 −2 1









(Assuming the boundary conditions are implemented somehow in
the system of equations, perhaps like the way described.)

The matrices L and S are real-valued.

However, the vectors Ẽ and r are complex-valued. So is the
coefficient iωµ0 of the conductivity matrix.

Splitting the matrix equation into real and imaginary parts gives:

(

L ωµ0S

−ωµ0S L

)(

ℜẼ

ℑẼ

)

=

(

ℜr

ℑr

)

This is a completely real system which can be solved with any
number of good-quality, free, library routines.

7. Sparse matrices

The matrix S is diagonal. It therefore only contains N non-zero
numbers. It would be amazingly inefficient to store the whole
matrix complete with all its zeros (N2 numbers). Much more
efficient to just store the non-zero values and their locations in
the matrix.

The matrix L is not diagonal (it is tri-diagonal), but it is also
amazingly sparse. Again, it is way more efficient in terms of
computer memory requirements to store only the non-zero values
and their locations.

There are good-quality, freely available libraries that have all
the necessary routines to work with sparse matrices, including
matrix-vector products, matrix-matrix products, iterative solvers,
preconditioners, format conversions. For example, Sparskit.

8. Matrix equation solvers

The classic “Gaussian elimination”, or “LU decomposition” (L
for lower and U for upper triangular).

Given the matrix equation Ax = b , decompose A into lower
and upper triangular matrices:

A = LU.

The solution procedure is then:

Ax = b → LUx = b → y = Ux = L−1b

x = U−1y = U−1L−1b

Ax = b → LUx = b → y = Ux = L−1b

x = U−1y = U−1L−1b

The decomposition takes time and memory (L and U will be full
and dense irrespective of whether or not A is sparse).

However, the lower- and upper-triangular solves are fast.

Disadvantages: doesn’t work well with sparse matrices;
decomposition expensive in memory (and time).

Advantages: once you have the decomposition, solving for many
different right-hand sides (for the same matrix) is very efficient.

Iterative solvers, e.g., conjugate gradients, . . .

They work by producing a sequence of approximate solutions,
i.e., {x(k)} , which hopefully converges to an x(K) that
adequately satisfies the matrix equation, specifically

‖Ax(K) − b‖ < τ

where τ is some small-ish number.

The only significant operations are products of the matrix (or
its transpose) with vectors. This means iterative solvers work
perfectly happily with sparse matrices.

Advantages: memory efficient because they preserve sparsity.

Disadvantages: require a whole new solution for every new right-
hand side.

9. An exercise

Write code, in your favourite programming language or
environment, to assemble the matrix equation shown earlier.
Solve to get the MT electric field in a 1-D Earth model.

10. “Take-home” points

⋆ Basic (intuitive) finite-difference approximation of
derivatives.

⋆ Use of such finite differences to approximate locally a
differential equation.

⋆ Simultaneous system of such equations to approximate the
differential equation over the whole domain.

