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IV. Finite element



1. A 1-D example

Remembering the 1-D example . . .

The electric-field differential equation was:

∂2Ex

∂z2
+ iωµ0σ(z) Ex = 0

Our discretized Earth model was:

z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

σ1 σ2 σ3 σi− 1 σi σN−1



2. Discretize the electric field

In the finite-element method there is an explicit specification of
what the approximate electric field is, e.g.:

Ẽx(z) =
N

∑

i=1

Ei φi(z)

where
→ φi(z) are basis functions

→ Ei are the coefficients in this expansion

→ with appropriate choice for φi, Ei can be the values of
the approximate electric field at the nodes.



2. Discretize the electric field (contd.)

Let’s choose a piecewise linear approximation for the electric
field. Specifically:

z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

1 −
φ1

φ1(z) =

{

(z2 − z)/(z2 − z1), z1 ≤ z < z2;
0, otherwise.

With this choice:

φ1(z1) = 1 and φ1(z2) = 0



And:

z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

1 −
φ2

φ2(z) =







(z − z1)/(z2 − z1), z1 ≤ z < z2;
(z3 − z)/(z3 − z2), z2 ≤ z < z3;
0, otherwise.

With this choice:

φ2(z1) = 0 and φ2(z2) = 1 and φ2(z3) = 0

and φ2(z) is continuous at z1, z2, and z3.



Similarly:

z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

1 −
φi

φi(z) =







(z − zi−1)/(zi − zi−1), zi−1 ≤ z < zi;
(zi+1 − z)/(zi+1 − zi), zi ≤ z < zi+1;
0, otherwise.

With this choice:

φi(zi−1) = 0 and φi(zi) = 1 and φi(zi−1) = 0

and φi(z) is continuous at zi−1, zi, and zi+1.



2. Discretize the electric field (contd.)

The preceding description of the approximate electric field is

→ linear between each pair of nodes

→ continuous at each node.

(Continuous at a node, eh? That automatically satisfies the
continuity of the tangential electric field at a material boundary.
Good.)

(Our finite-difference solutions also had a continuous electric field
across the layer interfaces, explicitly when we chose the nodes
to be at the layer interfaces, and implicitly when we chose the
nodes at the layer centres (because of the implicit reliance on
Taylor’s series).)



4. Discretize the PDE, sort of

Returning to the PDE:

∂2Ex

∂z2
+ iωµ0σ(z) Ex = 0

Substituting our explicit representation of the approximate
electric field for the true electric field gives, simply:

N
∑

i=1

Ei

{

∂2φi

∂z2
+ iωµ0σ(z) φi

}

+R = 0

R is the residual or remainder that we have because we
introduced an approximate electric field.



4. Discretize the PDE, sort of (contd.)

Reiterating:

N
∑

i=1

Ei

{

∂2φi

∂z2
+ iωµ0σ(z) φi

}

+R = 0

This is one equation in the N unknown coefficients Ei.

There are a number of (related) ways to create a system of
equations from which the coefficients Ei can be determined.

I like the method of weighted residuals. (I find it simpler to
understand. (Although not as “rigorous”?))



5. The Method of Weighted Residuals

Reiterating:

N
∑

i=1

Ei

{

∂2φi

∂z2
+ iωµ0σ(z) φi

}

+R = 0

The method of weighted residuals:

→ choose some weight functions ψj(z), j = 1, . . . ,M

→ multiply the PDE by ψj(z):

N
∑

i=1

Ei

{

ψj

∂2φi

∂z2
+ iωµ0σ(z) ψj φi

}

+ ψj R = 0

→ integrate over the whole domain . . .



5. The Method of Weighted Residuals (contd.)

N
∑

i=1

Ei

{

∫ zN

z1

ψj

∂2φi

∂z2
dz + iωµ0

∫ zN

z1

σ ψj φi dz

}

+

∫ zN

z1

ψj R dz = 0

→ and require, argue, hope that the residual R is orthogonal to
the weight functions, that is:

∫ zN

z1

ψj R dz = 0 j = 1, . . . ,M

Hence . . .



5. The Method of Weighted Residuals (contd.)

. . . the system of equations to be solved for the finite-element
solution to the electric field PDE is:

N
∑

i=1

Ei

{

∫ zN

z1

ψj

∂2φi

∂z2
dz + iωµ0

∫ zN

z1

σ ψj φi dz

}

= 0

This system contains M equations in N unknowns.

In the particular approach called the Galerkin method, the basis
functions are used as the weight functions.

This makes a square system with N equations in N unknowns.



5. The Method of Weighted Residuals (contd.)

Reiterating . . .

N
∑

i=1

{

∫ zN

z1

φj

∂2φi

∂z2
dz + iωµ0

∫ zN

z1

σ φj φi dz

}

Ei = 0

j = 1, . . . , N

Okay, so the integrals above become the elements in the matrix
equation. Piece of cake . . .

But wait, our basis functions are linear functions. So the second
derivative in the integrand of the first integral above is zero.

That isn’t good because we’d loose half of our equation.

Also, if it were the true electric field in there instead of φi, the
second derivative wouldn’t be zero.



5. The Method of Weighted Residuals (contd.)

Well, have to do something about that. Let’s integrate the
awkward integral by parts (considering just layer i):

∫ zi+1

zi

φj

∂2φi

∂z2
dz = −

∫ zi+1

zi

∂φj

∂z

∂φi

∂z
dz +

[

φj

∂φi

∂z

]zi+1

zi

The first integral on the right-hand side involves only first-order
derivatives of the basis functions. That’s okay.

Regarding the other term on the right-hand side above, i.e., the
“surface” term . . .



5. The Method of Weighted Residuals (contd.)

∫ zi+1

zi

φj

∂2φi

∂z2
dz = −

∫ zi+1

zi

∂φj

∂z

∂φi

∂z
dz +

[

φj

∂φi

∂z

]zi+1

zi

→ φj is continuous at zi and zi+1

z
z1 z2 z3 z4 zi− 1 zi zi+ 1 zN

1 −
φi

→ ∂φi/∂z is probably not continuous at zi and zi+1

z
z1 z2 z3 z4 zi− 1

zi

zi+ 1

zN

dφi /dz



5. The Method of Weighted Residuals (contd.)

∫ zi+1

zi

φj

∂2φi

∂z2
dz = −

∫ zi+1

zi

∂φj

∂z

∂φi

∂z
dz +

[

φj

∂φi

∂z

]zi+1

zi

→ However, if it were ∂E/∂z in the surface term, this would
be Hy, and this would be continuous at zi and zi+1.

→ So, one can argue that the contributions from this surface
term to the awkward integral for layer i should get cancelled
by the corresponding contributions for the awkward
integrals for the neighbouring layers.

→ Let’s therefore throw away this surface term and go with:

∫ zi+1

zi

φj

∂2φi

∂z2
dz = −

∫ zi+1

zi

∂φj

∂z

∂φi

∂z
dz



6. The finite-element system of equations

Hence, the system of equations for this finite-element solution for
the 1-D electric field PDE is:

N
∑

i=1

{

∫ zN

z1

∂φj

∂z

∂φi

∂z
dz + iωµ0

∫ zN

z1

σ φj φi dz

}

Ei = 0

j = 1, . . . , N

Succinctly:
(

L + iωµ0 S
)

Ẽ = r

where

r is the right-hand side vector (dimension N);

Ẽ is . . .



6. The finite-element system of equations (contd.)

Ẽ is the vector containing the coefficients in the finite-element
expansion for the approximate electric field, which, in this case,
are the values of the approximate field at the nodes (dimension
N);

And the N ×N matrices L and S are:

Lji =

∫ zN

z1

∂φj

∂z

∂φi

∂z
dz and Sji =

∫ zN

z1

σ φj φi dz

L and S are straight-forward to evaluate given the specific form
of φj .

Boundary conditions can be implemented in the same way as
was done for the finite-difference example in Lecture I.
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(Homogeneous halfspace of 0.01 S/m; “air” of 10−8S/m; 3 Hz.)
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(Looks suspiciously similar to the finite-difference results!)



7. A quick look at 3-D

At first, people used nodal elements for the electric field in 3-D,
mimicking the situation in 1-D:

xzy

But this gives continuous normal electric field, by construction,
even if there’s a discontinuity in conductivity.



7. A quick look at 3-D (contd.)

Then “edge-element” vector basis functions were introduced:

xzy

These basis functions can give a discontinuous normal electric
field.



8. Exercise

Code up a finite-element solution for the 1-D MT electric-field
PDE. (Well, at least do the integrals for Lji and Sji to see that
they result in the same elements as for the finite-difference case.)



9. “Take-home” points

⋆ The finite-element method uses an explicit representation
of the approximate electric field. (Not just linear basis
functions.)

⋆ The system of equations is constructed by inner products
with weighting functions . . .

⋆ . . . and the sleight-of-hand of integration-by-parts.

⋆ The finite-element method is more complicated than the
finite-difference method for simple problems, but is more
readily extended to non-rectilinear meshes.


