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1. Introduction

The integral-equation method was the mostly widely used
approach for early 3-D geophysical EM numerical modelling. It’s
a classic!

This was because it gave rise to small systems of equations,
relative to finite-difference and finite-element methods. The
integral-equation method was therefore tractable on computer
technology a couple of decades ago.

It has it’s issues. (Don’t all EM modelling techniques?)

It is still relevant, especially to mineral exploration (delineation)
using down-hole EM through and around ore-bodies of
interesting shapes.



1. Introduction

As for the finite-difference and finite-element methods, I want to
look in reasonable detail at a 1-D example. This will introduce
the concepts that are used in 3-D.



2. A 1-D example

Remembering the 1-D example . . .

The electric-field differential equation was:

∂2Ex

∂z2
+ iωµ

0
σ(z) Ex = 0

Now, suppose the Earth can be represented by the following
model . . .



2. A 1-D example (contd.)
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That is, the subsurface comprises an “anomalous” layer within a
nice and simple “background” conductivity.

This is the kind of model to which the integral-equation
approach is suited.



3. Background model and field

Returning to the PDE, now thinking about this particular style
of model:

∂2Ex

∂z2
+ iωµ

0
(σb + ∆σ) Ex = 0

The background model needs to be a model in which we can
easily compute the electric fields. Typically it is a homogeneous
halfspace, sometimes a layered halfspace.

In other words, we need the “background” or “primary” field Eb

such that:
∂2Eb

∂z2
+ iωµ

0
σb Eb = 0



4. The scattered field

The difference between the actual or “total” electric field E and
the background field Eb is the “scattered” or “secondary” field:

E = Eb + Es

Substituting the above into the electric-field PDE gives:

∂2(Eb + Es)

∂z2
+ iωµ

0
(σb + ∆σ) (Eb + Es) = 0

Separating out almost all the terms:

∂2Eb

∂z2
+
∂2Es

∂z2
+ iωµ

0
σbEb + iωµ

0
σbEs + iωµ

0
∆σ(Eb +Es) = 0



4. The scattered field (contd.)

Using the information about which PDE the background field
satisfies gives:

∂2Es

∂z2
+ iωµ

0
σbEs = −iωµ

0
∆σ(Eb + Es)

This is an inhomogeneous PDE for the scattered electric field.

→ The differential “operator” is the same as for the
background electric field.

→ The “source” term on the right-hand side is kind of like an
anomalous current density that exists because of the total
electric field in the anomalous layer.



5. The Green’s function

Okay, we’re now in a position of having to solve an
inhomogeneous differential equation.

Introduce the Green’s function G(z; z′) such that:

∂2G

∂z2
+ iωµ

0
σbG = δ(z − z′)

The differential operator above is the same as that for the
background electric field.

The Dirac delta function is such that:

δ(z − z′) =0 for z 6= z′ and
∫ zb

z=za

f(z) δ(z − z′) dz = f(z′) if za < z′ < zb



6. The integral equation

Consider G times the scattered-field equation and Es times the
Green’s function equation:

G
∂2Es

∂z2
+ iωµ

0
σbGEs = −iωµ

0
∆σG E

Es

∂2G

∂z2
+ iωµ

0
σbEs G = Es δ(z − z′)

Subtracting one from the other:

G
∂2Es

∂z2
− Es

∂2G

∂z2
= −iωµ

0
∆σG E − Es δ(z − z′)



6. The integral equation

Now integrate this equation over the whole domain:

∫

∞

z=−∞

{

G
∂2Es

∂z2
− Es

∂2G

∂z2

}

dz =

− iωµ
0

∫

∞

z=−∞

∆σG E dz −

∫

∞

z=−∞

Es δ(z − z′) dz

The left-hand side vanishes. Try integration-by-parts on the first
half of the integrand:

∫

∞

z=−∞

G
∂2Es

∂z2
dz =

[

G
∂Es

∂z

]

∞

z=−∞

−

∫

∞

z=−∞

∂G

∂z

∂Es

∂z
dz

The [ ] term vanishes since everything vanishes as z → ±∞.



6. The integral equation (contd.)

So:
∫

∞

z=−∞

G
∂2Es

∂z2
dz = −

∫

∞

z=−∞

∂G

∂z

∂Es

∂z
dz

Continuing in this direction leads to:

∫

∞

z=−∞

G
∂2Es

∂z2
dz =

∫

∞

z=−∞

∂2G

∂z2
Es dz

Hence:

−iωµ
0

∫

∞

z=−∞

∆σG E dz −

∫

∞

z=−∞

Es δ(z − z′) dz = 0



6. The integral equation (contd.)

Finally, doing the delta function magic gives:

−iωµ
0

∫

∞

z=−∞

∆σG E dz − Es(z
′) = 0

That is:

Es(z
′) = −iωµ

0

∫

∞

z=−∞

∆σ(z)G(z; z′) E(z) dz

This is the integral equation for the scattered electric field.
(The scattered electric field also appears in the integrand of the
integral.)



6. The integral equation (contd.)

It is common to add the background field at z′ to both sides
of the equation. This gives an integral equation for the total
electric field E:

E(z′) = Eb(z
′) − iωµ

0

∫

∞

z=−∞

∆σ(z)G(z; z′)E(z) dz

This equation is valid for z′ inside or outside the anomalous
layer.

This is now the starting point for the numerical stuff. (Just
as the electric-field PDE was the starting point for the finite-
difference and finite-element approaches.)



7. Discretizing the electric field

Introduce an approximate electric field:

Ẽx =

N
∑

i=1

Ei φi(z)

Substituting this into the integral equation gives:

N
∑

i=1

Ei φi(z
′) =

Eb(z
′) − iωµ

0

∫

∞

z=−∞

∆σ(z)G(z; z′)
{

N
∑

i=1

Ei φi(z)
}

dz



8. Discretizing the integral equation

Rearranging slightly:

N
∑

i=1

Ei φi(z
′) =

Eb(z
′) −

N
∑

i=1

{

iωµ
0

∫

∞

z=−∞

∆σ(z)G(z; z′)φi(z) dz

}

Ei

In succinct, cryptic, deceptive notation:

N
∑

i=1

Ei φi(z
′) = Eb(z

′) −
N

∑

i=1

Γi(z
′)Ei

where Γi(z
′) is the stuff in braces in the preceding equation.



8. Discretizing the integral equation (contd.)

This is the approximation to the electric-field integral equation.
Reiterating:

N
∑

i=1

Ei φi(z
′) = Eb(z

′) −
N

∑

i=1

Γi(z
′)Ei + R(z′)

where the residual R should really be included since this is an
approximate equation.

This is one equation in N unknowns.

A numerical solution to this equation can be achieved via the
method of weighted residuals, just as for the finite-element
approach. (And the finite-difference approach, actually.)



Multiplying the approximate integral equation by weight
functions ψj , and integrating over the whole domain gives:

N
∑

i=1

Ei 〈ψj , φi〉 = 〈ψj , Eb〉 −

N
∑

i=1

〈ψj ,Γi〉Ei + 〈ψj , R〉

where 〈ψ, φ〉 =
∫

∞

−∞
ψ(z)φ(z) dz.

As before, let’s think of the residual as being orthogonal to the
weight functions, so its term can be dropped.

Rearranging:

N
∑

i=1

(

〈ψj , φi〉 + 〈ψj ,Γi〉
)

Ei = 〈ψj , Eb〉



9. The system of equations

The preceding system of M equations, where M is the number of
weight functions, can be written as the matrix equation:

(

K + G
)

Ẽ = r

Ẽ is the vector containing the coefficients in the expansion for
the approximate electric field (dimension N).

rj =
∫

∞

−∞
ψj(z)Eb(z) dz

Kji =
∫

∞

−∞
ψj(z)φi(z) dz

Gji =
∫

∞

−∞
ψj(z) Γi(z) dz

Γi(z) = iωµ
0

∫

∞

z′=−∞
∆σ(z′)G(z′; z)φi(z

′) dz′



9. The system of equations (contd.)

That last term, Gji = 〈φj ,Γi〉, is rather complicated.

The typical choices for basis and weight functions, especially
when integral-equation methods were popular, were:

→ “pulse” basis functions, i.e., the electric field is uniform in
each cell (or layer);

→ delta function weight functions – “collocation” – meaning
the approximate integral equation is considered to be exact
at a specified points.

Also, the anomalous conductivity was assumed to be uniform
within each cell (or layer).

For these choices . . .



9. The system of equations (contd.)

rj =
∫

∞

−∞
ψj(z)Eb(z) dz =

∫

∞

−∞
δ(z − zj)Eb(z) dz = Eb(zj)

Kji =
∫

∞

−∞
ψj(z)φi(z) dz =

∫

∆zi

δ(z − zj) dz = δji

Gji =
∫

∞

−∞
ψj(z) Γi(z) dz =

∫

∞

−∞
δ(z − zj) Γi(z) dz = Γi(zj)

Γi(zj) = iωµ
0
∆σi

∫

∆zi

G(z′; zj) dz
′

Ẽ is the vector containing the values of the approximate electric
field in the N cells (or layers).



10. The 1-D example

Suppose the background model is a homogeneous halfspace.

y

z

σb

∞

−Z



The differential equation for the background electric field is:

∂2Eb

∂z2
+ iωµ

0
σb Eb = 0

with σb = 10−8 S/m, for example, in the air.

The background electric field is therefore of the form:

Eb = Aekz + B e−kz, k2 = −iωµ
0
σb

The boundary and interface conditions on Eb are:

∂Eb

∂z
= iωµ

0
at z = −Z

Eb,
∂Eb

∂z
continuous at z = 0

Eb → 0 as z → ∞



It is pretty straight-forward to determine A & B in the air and
ground that satisfy these boundary conditions.

For the Green’s function, consider a wholespace:

y

z

σb

∞

−∞

z = z′

This is usually an adequate approximation if the anomalous layer
is not too close to the Earth’s surface.



The differential equation for the Green’s function is:

∂2G(z; z′)

∂z2
+ iωµ

0
σbG(z; z′) = δ(z − z′)

The boundary conditions on the Green’s function are that it
vanishes as z → ±∞.

The form of the Green’s function is therefore:

G(z; z′) =

{

Aekz, z < z′;
B e−kz, z′ < z.

The conditions at z = z′ are that G is continuous, and ∂G/∂z is
discontinuous by an amount equal to 1.

Again, it is straight-forward to determine A & B from the above
information.



11. Exercise

Write a program that uses the integral-equation method to
calculate the MT electric field in an Earth model comprising an
anomalous layer in an otherwise homogeneous halfspace.



12. A comment on the 3-D situation

The traditional formulation in 3-D involving pulse basis
functions (and collocation) failed for conductivity contrasts
greater than about 300:1.

This is because of the difficulty in trying to keep both the
inductive and galvanic physics in the approximate equations.

SanFilipo, Newman & Hohmann (in two separate papers)
incorporated hard-wired current loops extending over the whole
anomalous region.

I used edge-element basis functions, and (importantly) continuity
of normal current density between cells within the anomalous
region.



13. “Take-home” points

⋆ The integral-equation method is best suited to Earth models
comprising a localized anomalous region in a background for
which we can readily compute electric fields. (Limiting, but
still relevant.)

⋆ The systems of equations are small (but full) as only
the anomalous region and the field within it require
discretization.

⋆ Quite involved analysis (Green’s functions – eek!) to figure
out what the elements of the matrix equation are, certainly
compared to the finite-difference method.


