How to prove the 3D forward solver? 2D vs. 3D responses

Marion Miensopust, DIAS

The first approach

2D model: 1000Ω m dyke in

3D model: same dyke structure but with different length

Idea: with increasing length approach of 3D responses to the 2D model
encture but with diferent

Example sounding curves

The problem

This test ONLY addresses the off-diagonal elements!!!

The second approach

2D modeling of real data $->$ rotate perpendicular to strike (minimize the diagonal elements)
testing the diagonal elements of the 3D solver do it the other way round

2D model

2 dykes with N-S strike direction

profile orientation W-E

Rotation of the

coordinate system

$$
\begin{gathered}
\mathbf{Z}_{2 D r o t}=\mathbf{R} \mathbf{Z}_{2 D} \mathbf{R}^{\prime} \\
\mathbf{R}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
\end{gathered}
$$

3D model

2 dykes
 with NE-SW strike direction

profile

 orientation NW-SE
Site S01

Site S01

Site 520

Site S20

Site S14

Site S14

Site 508

Site 508

Conclusion

We are able to prove all 8 impedance elements and resistivity and phase curves respectively

Diagonal phase are not related to a specific quadrant

Should a threshold be introduced for the diagonal elements (based on the resistivity value)?

