How to prove the 3D forward solver? 2D vs. 3D responses

Marion Miensopust, DIAS

The first approach

2D model: 1000 Ω m dyke in 100 Ω m surrounding; 5 km wide and 20 km thick

3D model: same dyke structure but with different length

Idea: with increasing length approach of 3D responses to the 2D model

Example sounding curves

The problem

This test ONLY addresses the off-diagonal elements!!!

The second approach

2D modeling of real data -> rotate perpendicular to strike (minimize the diagonal elements)

testing the diagonal elements of the 3D solver do it the other way round

2D model

2 dykes
with N-S
strike
direction

profile orientation W-E

Rotation of the coordinate system

$$\mathbf{Z}_{2Drot} = \mathbf{R}\mathbf{Z}_{2D}\mathbf{R}'$$

$$\mathbf{R} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

dyke: N-S

profile: W-E

-45 degrees

rotated 2D

dyke: NE-SW

profile: NW-SE

3D model

2 dykes
with NE-SW
strike
direction

profile orientation NW-SE

Conclusion

We are able to prove all 8 impedance elements and resistivity and phase curves respectively

Diagonal phase are not related to a specific quadrant

Should a threshold be introduced for the diagonal elements (based on the resistivity value)?