Introduction to *3d integral equation code

Dmitry B. AVDEEV¹,2

${ }^{1}$ Halliburton, Exton Technology Center, USA
2 IZMI RAN, Russian Academy of Sciences

- *Sd theory
- Comparison with other approaches - example

- *3d theory

- Comparisons wititu nither approachers
- evesurple

Complex-valued conductivity

Fig. Example of a 3D model (side view) to be handled by $\times 3 \mathrm{~d}$.

$$
\begin{aligned}
& \int \nabla \times \mathbf{H}=\underline{\underline{\zeta}}(x, y, z, \omega) \mathbf{E}+\mathbf{j}^{e x t}, \quad \nabla \times \mathbf{E}=i \omega \underset{\underline{\omega}}{\underline{\mu}(z) \mathbf{H} .} \\
& \underline{\underline{\zeta}} \underline{\underline{L}}(x, y, z, \omega)=\underline{\underline{\sigma}}-i \omega \underline{\underline{\varepsilon}}=\left(\begin{array}{ccc}
\zeta_{X X} & 0 & 0 \\
0 & \zeta_{y y} & 0 \\
0 & 0 & \zeta_{z Z}
\end{array}\right) \quad \underline{\underline{\mu}(z, \omega)}=\left(\begin{array}{ccc}
\mu_{\tau} & 0 & 0 \\
0 & \mu_{\tau} & 0 \\
0 & 0 & \mu_{z}
\end{array}\right) \text {. } \\
& \begin{array}{ll}
\text { Maxwell's equations for reference } \mathrm{EM} \text { field } \\
\nabla \times \mathbf{H}^{o}=\zeta(Z \omega) \mathbf{E}^{0}+\mathbf{j e x t ~}^{\text {ext }} \quad \nabla \times \mathbf{F}^{0}=\mathbf{i} \omega \mu(\mathrm{Z}) \mathbf{H}^{0} & \left(\begin{array}{lll}
\zeta_{0 \tau} & 0 & 0
\end{array}\right)
\end{array} \\
& -\nabla \times \mathbf{H}^{0}=\underline{\underline{\zeta}}(z, \omega) \mathbf{E}^{0}+\mathbf{j}^{\text {ext }}, \quad \nabla \times \mathbf{E}^{0}=i \omega \mu(\mathrm{z}) \mathbf{H}^{0} . \\
& \text { Maxwell's equations for scattered EM field } \\
& \nabla \times \mathbf{H}^{\mathrm{s}}=\underset{\underline{\underline{\zeta}}}{0}(\mathrm{z}, \omega) \mathbf{E}^{\mathrm{s}}+\mathbf{j}^{\mathrm{j}}, \quad \nabla \times \mathbf{E}^{\mathrm{s}}=\mathrm{i} \mathrm{\omega} \underset{\underline{\mu}(\mathrm{z}) \mathbf{H}^{\mathrm{s}} .}{ }
\end{aligned}
$$

Conventional scattering equation (Dmitriev, 1969; Weidelt, 1975)

$$
\begin{align*}
& \mathbf{E}^{\mathrm{s}}(\mathbf{r})=\mathbf{E}_{o}+Q \mathbf{E}^{\mathrm{s}}=\mathbf{E}_{o}(\mathbf{r})+\int_{\underline{\underline{G^{e e}}}}^{o}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\left(\underline{\underline{\zeta}}\left(\mathbf{r}^{\prime}\right)-\underline{\underline{\zeta}}_{0}\left(z^{\prime}\right)\right) \mathbf{E}^{\mathrm{s}}\left(\mathbf{r}^{\prime}\right) d v^{\prime} . \tag{1}\\
& V^{s} \\
& 3 \times 3 \text { dyadic for the electric-to-electric Green's } \\
& \text { function of the 1D reference formation: } \\
& \underline{\underline{G}}_{o}^{e e}=\left(\begin{array}{ccc}
G_{x x} & G_{x y} & G_{x z} \\
G_{y x} & G_{y y} & G_{y z} \\
G_{z x} & G_{z y} & G_{z z}
\end{array}\right)
\end{align*}
$$

Mand 12, 2008 DIAS
Formal solution of eq. (1) can be expressed as an infinite Neumann series

$$
\mathbf{E}^{\mathrm{s}}(\mathbf{r})=(1-Q)^{-1} \mathbf{E}_{o}=\mathbf{E}_{o}+Q \mathbf{E}_{o}+Q^{2} \mathbf{E}_{o+\ldots}
$$

As a rule, the series doesn't converge at all.

$$
\mathbf{E}^{\mathrm{s}}(\mathbf{r})=\mathbf{E}_{o}+Q \mathbf{E}^{\mathrm{s}}=\mathbf{E}_{o}(\mathbf{r})+\int_{V^{s}} \underline{\underline{G}}_{o}^{e e}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\left(\underline{\underline{\zeta}}\left(\mathbf{r}^{\prime}\right)-\underline{\underline{\zeta}}_{0}\left(z^{\prime}\right)\right) \mathbf{E}^{\mathrm{s}}\left(\mathbf{r}^{\prime}\right) d v^{\prime}
$$

$$
\mathbf{E}^{s} \rightarrow \chi
$$

$$
\underline{\underline{\lambda}}(z, \omega)=\left(\begin{array}{ccc}
\sqrt{\operatorname{Re} \zeta_{O \tau}} & 0 & 0 \\
0 & \sqrt{\operatorname{Re} \zeta_{O \tau}} & 0 \\
0 & 0 & \sqrt{\operatorname{Re} \zeta_{O Z}}
\end{array}\right)
$$

$$
\begin{gathered}
\chi(\mathbf{r})=\chi_{0}+M \chi=\chi_{0}(\mathbf{r})+\int_{\underline{\underline{K}}}^{\underline{K}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \underline{\underline{R}}\left(\mathbf{r}^{\prime}\right) \chi\left(\mathbf{r}^{\prime}\right) d v^{\prime} \\
\underline{\underline{K}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \underline{\underline{\underline{V}}}+\underline{\underline{\underline{\lambda}}}(z) \underline{\underline{G_{0}^{e e}}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \underline{\underline{\lambda}}\left(z^{\prime}\right) \\
\underline{\underline{R}(\mathbf{r})}=\left(\underline{\left.\underline{\zeta}(\mathbf{r})-\underline{\underline{\zeta}}_{0}(z)\right)\left(\underline{\underline{\zeta}(\mathbf{r})}+\underline{\underline{\zeta}}_{0}^{(}(z)\right)^{-1}}\right. \\
\chi=(1-M)^{-1} \chi_{0}=\chi_{0}+M \chi_{0}+M^{2} \chi_{0}+\ldots
\end{gathered}
$$

The Neumann's series converges for any frequency and any electrical resistivity contract $\quad\|\underline{\underline{M}}\| \ll \chi \chi \mid, \forall \chi$

Simple iteration (MI DM; Avdeev et al., 2000)

$$
\chi^{(n+1)}=\chi_{0}+M \chi^{(n)}, n=1,2, \ldots
$$

Krylov iteration (Avdeev et al., 2002)

$$
\begin{aligned}
A \chi & =\chi_{0},
\end{aligned} A=1-M .
$$

EM field calculation

$$
\begin{aligned}
& \chi \rightarrow \mathbf{j}^{a} \quad \mathbf{j}^{q}(\mathbf{r})=2 \underline{\underline{\lambda}}\left(\underline{\underline{\zeta}}+\underline{\underline{\zeta}}_{0}\right)^{-1}(\underline{\underline{\zeta}}-\underline{\underline{\underline{\zeta}}})\left(\chi+\underline{\underline{\lambda}} \mathbf{E}^{0}\right), \quad \mathbf{r} \in V^{S} \\
& \dot{\mathbf{j}}^{\eta} \rightarrow \mathbf{E}^{s}, \mathbf{H}^{s} \quad \nabla \times \frac{1}{i \omega} \underline{\underline{\mu^{-1}}}(z) \nabla \times \mathbf{E}^{s}-\underline{\underline{\zeta}_{0}}(z, \omega) \mathbf{E}^{s}=\dot{\mathbf{j}}^{q} . \\
& \mathbf{E}^{\mathrm{S}}(\mathbf{r})=\int_{V^{S}} \underline{\underline{G}}_{o}^{e e}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \mathbf{j}^{\mathrm{j}}\left(\mathbf{r}^{\prime}\right) d v^{\prime}, \quad \mathbf{H}^{\mathrm{s}}(\mathbf{r})=\int_{V^{s}}^{\underline{G_{o}^{m e}}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \mathbf{j}^{\dagger}\left(\mathbf{r}^{\prime}\right) d v^{\prime}, \\
& \mathbf{E}=\mathbf{E}^{0}+\mathbf{E}^{\mathrm{s}}, \quad \mathbf{H}=\mathbf{H}^{0}+\mathbf{H}^{\mathrm{s}}(\mathbf{r}) .
\end{aligned}
$$

$4 \times 9=36$ Green's tensors entries (at least)

$$
\mathrm{Q}^{S R}\left[\sigma_{b}(z)\right]
$$

Fig. $\times 3 \mathrm{~d}$ Workflow

Based on the above IE approach, there have been developed 3D forward modeling solutions for various EM applications
$\checkmark \quad$ Induction logging in deviated boreholes
$\checkmark \quad$ Airborne electromagnetics
$\checkmark \quad$ General controlled-source EMs, MT, and CSMT
$\checkmark \quad$ Global induction studies

The solutions:

- give accurate results even for lateral contrast of electrical resistivity up to 100,000;
- simulate the frequency-domain responses in frequency range from DC up to 50 MHz ;
- account for the induced polarization and displacement currents;
- admit an anisotropy of the electrical conductivity;

March 12, 2011 DIAS

- allow to run large-scale models discretized to $1,000,000$ cells at 32 -bit machines;
- Comparison with other approaches
o eveasifle

Fig. A 3-D MT model discretized with rectangular prisms.

(1) Integral equation (IE) approach

$$
\chi(\mathbf{r})=\chi o(\mathbf{r})+\int_{V^{S}} \underline{\underline{K}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \underline{\underline{R}}\left(\mathbf{r}^{\prime}\right) \chi\left(\mathbf{r}^{\prime}\right) d v^{\prime}
$$

$A_{I E} \cdot x=b \quad$ - system of linear equations (\leftarrow on a rectangular 3-D grid);
$A_{I E} \quad$ - complex, dense with all entries filled, non-Hermitian matrix; but much more
(a) Main attraction: only the scattering volume V^{s} is subject to discretization; (this reduce dramatically the size of matrix $A_{I E}$)
(b) Drawback: most EM software developers refrain from implementation of the IE approach, since accurate computation of the matrix A_{EE} is indeed an extremely tedious and nontrivial problem itself.
(2) Finite-difference (FD) approach
$A_{F D} \cdot x=b$ - system of linear equations (\leftarrow on a rectangular 3D grid);

$$
\begin{array}{cl}
A_{F D} & \text { - large, sparse } 3 M \times 3 M \text { symmetric, non-Hermitian matrix; } \\
X & \text { represents the grid nodal values of electric field; } \\
b & \text { represents the source and boundary conditions } \\
M=n_{X} \cdot n_{y} \cdot n_{z} \text { - number of model parameters. }
\end{array}
$$

(a) The most commonly employed
(b) Main attraction: an apparent simplicity of its numerical implementation

> (3) Finite-element (FE) approach
the EM field (or its potentials) are decomposed to some basic (usually, edge and nodal) functions. The coefficients of the decomposition, a vector x, are sought using the Galerkin method

$$
A_{F E} \cdot x=b
$$

$A_{F E}$ - large, sparse, non-symmetric, non-Hermitian matrix;
(a) Main attraction: it is commonly believed to be better able than other approaches to accurately account for geometry (shapes of ore-bodies, topography, cylindrical wells, etc.)
(b) Main drawback: construction of the finite elements themselves is another nontrivial and usually timeconsuming procedure.

- Comparisonowisithodither ayproweher
- example
x3d statistics: $99 \times 99 \times 11$ prisms of $10 \times 10 \times\{10$ to 2000$\} \mathrm{m}^{3}$
23 min on a serial PC for 11 frequencies \& a single transmitter position;

March 12, 2011 DIAS
Fig. Marine CSEM model (after Anna Avdeeva)

Time (+) vs Frequency (o): $i \operatorname{Tr}=1$, iRcLine=1, $N F=5 e-025$

Fig. Comparison $\times 3 \mathrm{~d}$ code (circles) with another proprietary code (crosses). The amplitudes and phases of Ey component are color-coded for all 8 receiver's positions for profile $1 \& 1^{\text {st }}$ transmitter.

Time (+) vs Frequency (o): $\mathrm{i} \mathrm{Tr}=3$, iRcLine=3, NF=5e-025

Fig. Comparison $\times 3$ d code (circles) with another proprietary code (crosses). The amplitudes and phases of Ey component are color-coded for all 8 receiver's positions for $3^{\text {rd }}$ profile \& 3rd transmitter.

Receiver line \#1
$n T r=1$, nRcLine $=1$, Noise floor $=1 e-020$

Receiver position (m)
$n T r=3$. nRcLine $=1$. Noise floor $=1 \mathrm{e}-020$

Receiver line \#3

Fig. Sensitivity to the 10 -ohmm resistive anomaly (i.e. /w 3-D background removed).

Thanks to ifm-geomar team (Kiel, Germany) for marine sem simulations

Thank you for your attention

