3D Forward Model

Jelena Koldan

0

Barcelona Barcelona BSC Supercomputing Center Center

Centro Nacional de Supercomputación

Goals

- Numerical solution of
 - 3D CSEM induction problems
 - 3D MT problems
- Efficiency increase of numerical scheme by implementation on massively parallel computers

[°] PHYSICAL PROBLEM FORMULATION

Physical problem formulation

- Secondary Coulomb-gauged EM potentials
 - simplify form of Maxwell's equations
 - avoid singularities introduced by sources

Gauged EM potentials

- Magnetic vector potential, \vec{A}
- Electric scalar potential, Φ
- EM potentials are defined by:

$$\vec{B} \equiv \nabla \times \vec{A}$$

$$\vec{E} \equiv i\omega\vec{A} - \nabla\Phi$$

Coulomb gauged formulation

 Simultaneous solution of two equations that constitute incompletely gauged coupled vectorscalar potential formulation of Maxwell's equations:

$$\nabla^{2}\vec{A} + i\omega\mu_{0}\sigma(\vec{A} + \nabla\Psi) = -\mu_{0}\vec{J}_{s}$$
$$\nabla \cdot \left[i\omega\mu_{0}\sigma(\vec{A} + \nabla\Psi)\right] = 0$$

• For unique \vec{A} , Coulomb gauge condition must be applied:

$$\nabla \cdot \vec{A} = 0$$

Secondary potential formulation

• Source of arbitrary shape, complexity, and orientation can be introduced by defining set of known primary potentials $(\vec{A}p, \Psi p)$

• Normally, primary potentials are analytic expressions for induction in homogeneous formation of constant electrical conductivity, σ_p

Primary potentials for MT

- EM field of electric dipole at infinity is plane wave
- Natural source is modeled as big electric dipole very far away
- Primary potentials are potentials from dipole source located in homogeneous formation of uniform electrical conductivity, σ_p :

$$\vec{A}p(\vec{r}) = \frac{Ids}{4\pi r}e^{-kr}\vec{x}$$

Secondary potentials

• $(\vec{A}s, \Psi s)$ are defined by: $\vec{A} \equiv \vec{A}p + \vec{A}s, \ \Psi \equiv \Psi p + \Psi s$ • Finally, governing equations become: $\nabla^2 \vec{A}s + i\omega\mu_0\sigma(\vec{A}s + \nabla\Psi s)$ $= -i\omega\mu_0\Delta\sigma(\vec{A}p + \nabla\Psi p)$ $\nabla \cdot \left[i \omega \mu_0 \sigma (\vec{A}s + \nabla \Psi s) \right]$ $= -\nabla \cdot [i\omega\mu_0\sigma(\vec{A}p + \nabla\Psi p)]$

Boundary conditions

 Homogeneous Dirichlet boundary condition on outer boundary of domain:

$$\left(\vec{A}s,\Psi s\right)\equiv\left(\vec{0},0\right)$$

NUMERICAL SCHEME

Physical problem discretization

 Frequency-domain finite-element (FD-FE) scheme based on unstructured tetrahedral meshes

Solver for resulting system of equations

 Preconditioned complex biconjugate gradient stabilized (BCGStab) algorithm

Parallel implementation

Domain decomposition technique using

master-slave strategy

• MPI

• POSTPROCESS

Postprocess

- Fields $(\vec{E}s, \vec{H}s)$ are obtained from potentials $(\vec{A}s, \Psi s)$ by numerical differentiation:
 - moving least-squares interpolation (MLSI) scheme

MLSI

- Each Cartesian component of \vec{As} and Ψs are approximated by linear functions: ax + by + cz + d
- Spatial derivatives of potentials are first three coefficients (a, b, c)
- MLSI determination of (a, b, c) at arbitrary test point is made in weighted least-squares sense

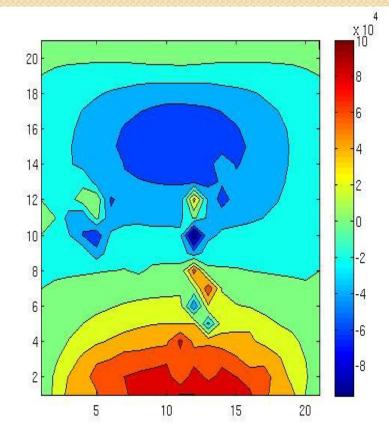
WLS

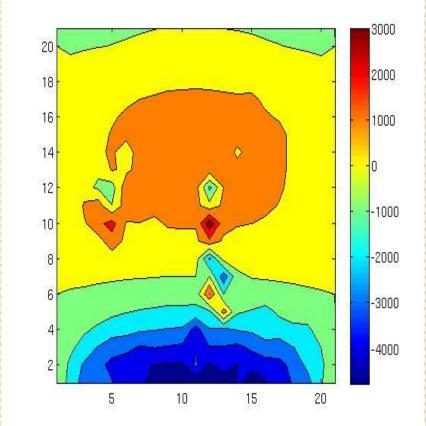
- Minimize sum of weighted squared residuals between linear function and FEcomputed values of potentials at N ~ 30 nearest nodes to test point
- Weighting function has positive exponential form which is maximum at test point and decreases monotonically with increasing distance away from it

Simple homogeneous half space

Real part of Ex

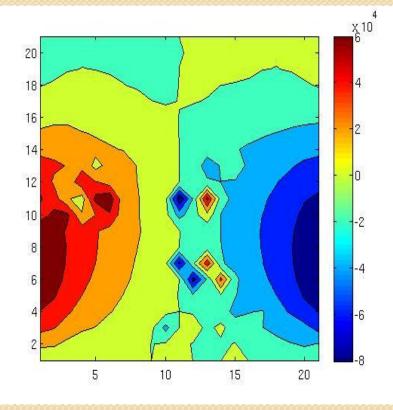
Imaginary part of Ex

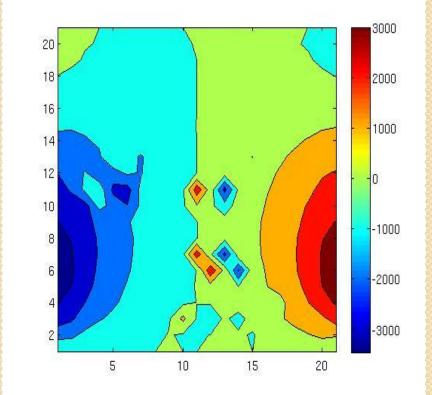




Real part of Ey

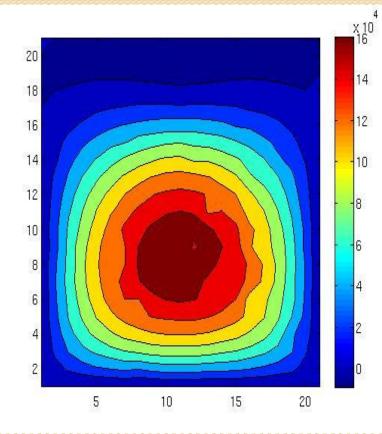
Imaginary part of Ey

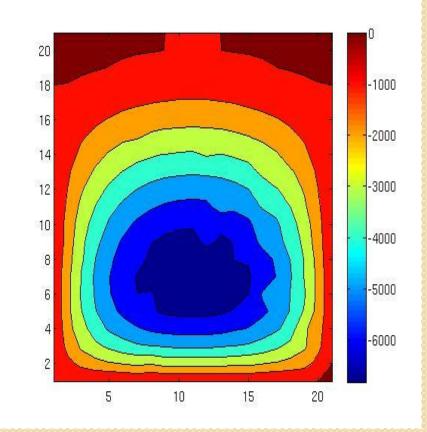




Real part of Ez

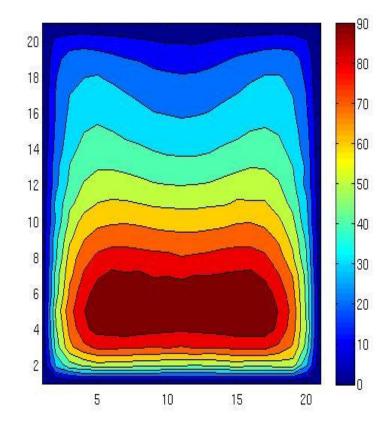
Imaginary part of Ez

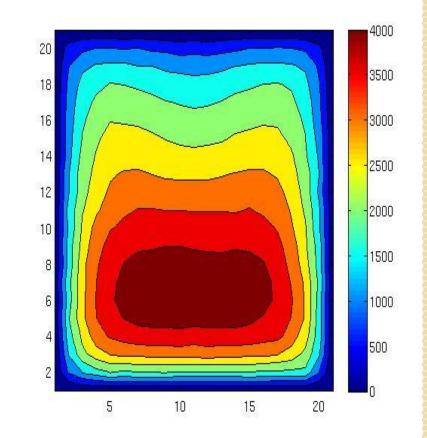




Real part of Hx

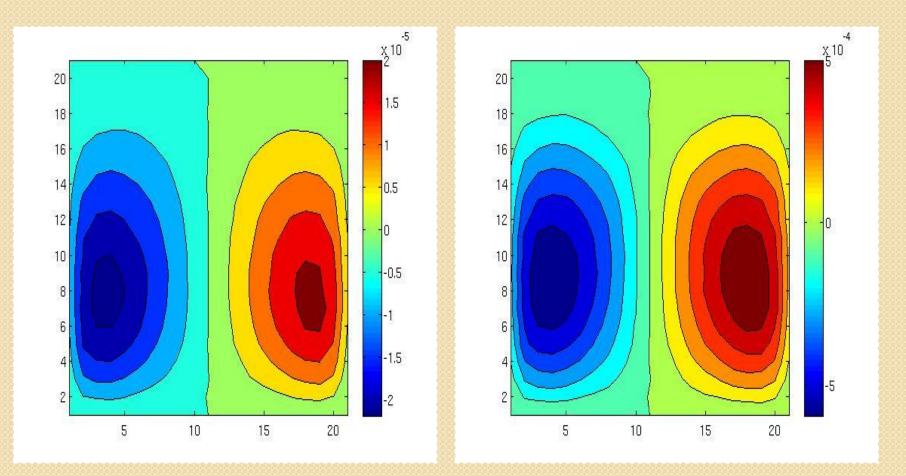
Imaginary part of Hx





Real part of Hy

Imaginary part of Hy



Real part of Hz

Imaginary part of Hz

