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Goals  

 Numerical solution of  

 

◦ 3D CSEM induction problems 

◦ 3D MT problems 

 

 Efficiency increase of numerical scheme 

by implementation on massively parallel 

computers 



PHYSICAL PROBLEM 
FORMULATION 



Physical problem formulation 

 Secondary Coulomb-gauged EM potentials 

 

◦ simplify form of Maxwell's equations 

◦ avoid singularities introduced by sources 



Gauged EM potentials 

 Magnetic vector potential, 𝐴  

 Electric scalar potential, Φ 

 EM potentials are defined by: 

 

𝐵 ≡ 𝛻 × 𝐴  

 

𝐸 ≡ 𝑖𝜔𝐴 − 𝛻Φ 



Coulomb gauged formulation 

 Simultaneous solution of two equations that 
constitute incompletely gauged coupled vector-
scalar potential formulation of Maxwell’s 
equations: 

 

𝛻2𝐴 + 𝑖𝜔𝜇0𝜎 𝐴 + 𝛻Ψ = −𝜇0𝐽 𝑠 

𝛻 ∙ 𝑖𝜔𝜇0𝜎 𝐴 + 𝛻Ψ = 0 

 

 For unique 𝐴 , Coulomb gauge condition must be 
applied:     

                            𝛻 ∙ 𝐴 = 0 



Secondary potential formulation 

 Source of arbitrary shape, complexity, and 

orientation can be introduced by defining  

set of known primary potentials 𝐴 𝑝,Ψ𝑝  

 

 Normally, primary potentials are analytic 

expressions for induction in 

homogeneous formation of constant 

electrical conductivity, 𝜎𝑝 



Primary potentials for MT 

 EM field of electric dipole at infinity is 
plane wave 

 Natural source is modeled as big electric 
dipole very far away  

 Primary potentials are potentials from 
dipole source located in homogeneous 
formation of uniform electrical 
conductivity, 𝜎𝑝: 

𝐴 𝑝 𝑟 =
𝐼𝑑𝑠

4𝜋𝑟
𝑒−𝑘𝑟𝑥  

 



Secondary potentials 

 𝐴 𝑠,Ψ𝑠  are defined by: 

𝐴 ≡ 𝐴 𝑝 + 𝐴 𝑠, Ψ ≡ Ψ𝑝 + Ψ𝑠 

 Finally, governing equations become: 

𝛻2𝐴 𝑠 + 𝑖𝜔𝜇0𝜎 𝐴 𝑠 + 𝛻Ψ𝑠

= −𝑖𝜔𝜇0∆𝜎 𝐴 𝑝 + 𝛻Ψ𝑝  

𝛻 ∙ 𝑖𝜔𝜇0𝜎 𝐴 𝑠 + 𝛻Ψ𝑠

= −𝛻 ∙ [𝑖𝜔𝜇0𝜎 𝐴 𝑝 + 𝛻Ψ𝑝 ] 



Boundary conditions 

 

 Homogeneous Dirichlet boundary 

condition on outer boundary of domain: 

 

𝐴 𝑠,Ψ𝑠 ≡ 0, 0  



NUMERICAL SCHEME 



Physical problem discretization 

 

 Frequency-domain finite-element  

  (FD-FE) scheme based on unstructured 

  tetrahedral meshes 



Solver for resulting system of 

equations  
 

 Preconditioned complex biconjugate  

   gradient stabilized (BCGStab) algorithm 

 



Parallel implementation 

 

 Domain decomposition technique using  

 

◦ master-slave strategy 

◦ MPI 



POSTPROCESS  



Postprocess 

 Fields (𝐸𝑠, H𝑠) are obtained from 

potentials (𝐴 𝑠, Ψ𝑠) by numerical 

differentiation: 

◦ moving least-squares interpolation (MLSI) 

scheme 



MLSI  

 Each Cartesian component of 𝐴 𝑠 and Ψ𝑠 

are approximated by linear functions: 

   𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 

 Spatial derivatives of potentials are first 

   three coefficients (𝑎, 𝑏, 𝑐) 

 MLSI determination of 𝑎, 𝑏, 𝑐  at 

arbitrary test point is made in weighted 

least-squares sense 



WLS 

 Minimize sum of weighted squared 

residuals between linear function and FE-

computed values of potentials at 𝑁 ∼
30 nearest nodes to test point 

 Weighting function has positive 

exponential form which is maximum at 

test point and decreases monotonically 

with increasing distance away from it 



RESULTS 

Simple homogeneous half space 



Real part of Ex Imaginary part of Ex 



Real part of Ey Imaginary part of Ey 



Real part of Ez Imaginary part of Ez 



Real part of Hx Imaginary part of Hx 



Real part of Hy Imaginary part of Hy 



Real part of Hz Imaginary part of Hz 


