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OUTLINE

Q Brief explanation of EM PDE equations: induction and continuity
@ Discretization of the computational domain

@ Finite-element method

@ Calculating and coding the inner product terms

@ Code is under development: Future plans
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A-¢ DECOMPOSITION OF THE ELECTRIC FIELD

e Considering a time dependence of ¢! in the Quasi-Static regime

V x V X E+ iwucE = iwpd’ (1)
6 =6(x,y,z)and E = E(x,y,2,1)
A-¢ decomposition: To Visualize the Inductive and Galvanic nature of the EM fields

E=—iwA— Vo @)

‘VxVXA—&-iwu&A—l—u&V(ﬁ:uJS 3)

e Setting up the second equation using the Ampeére’s law

—V -J* source location
Ved= { 0 otherwise “)
Because J = GE,
\ —iwV - (GA) — V- (6V¢) = —V - (5)
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DISCRETIZATION

o Blocks2mesh a code
written by Peter
Lelievre
<plelievre@mun.ca>,
is used to create a
three dimensional
grid of unstructured
tetrahedrons

@ The code makes a block poly file
that get fed into Tetgen

o Auxiliary subroutines
to set up the
connectivity arrays:

@ edge - to - node 100
@ edge - to - element

@ element - to - edge

Q ..

o Figure is generated
by Kitware Paraview
3.6.2
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Two EQNS TO DISCRETIZE ; THE FINITE ELEMENT METHOD

V xV XA+ iwucA+ uoVe = uf

—iwV - (6A) =V -(cVep)=-V- &L
is achieved.

o Finite-element solution
o Approximation of the vector and scalar potentials

Nedges
A=Y AN ®)

j=1

Nuodes
b= buNy 7

k=1

o N; is the edge-element vector basis function
e and Ny, is the nodal-element scalar basis function
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® N(x,y,2) = #(a; + bYx + ¢y + dfz)
°

The scalar basis function N; is equal to unity at node i and
decreases linearly in all three orthogonal directions.

Vanishes linearly towards the other nodes and faces —
guarantees the continuity of the tangential E.

The vertical component of the E is not necessarily continuous.

Edge-elements
Combines three components into one vector

tangential components are continuous while verticals are
allowed to jump

Linear Whitney 1-form functions
e _ e € e e e
NP = [ VN — Np VN

<




GALERKIN’S METHOD

@ Seeks the solution by weighting the residual of the differential equation

r=VXxXVxA+iwusA+ poVe — pd’ (8)

R:/N,--rdQ:O 9)
Q

@ Combining (8) and (9) and using the Green'’s theorem

N edges N, edges

ZAj/(VXNi)~(VxNj) dQ +iwuZAj/5Ni~deQ (10)
j=1 « j=1 Q

N, Nedges

nodes

oy ¢k/ GN; VN d2=p Y / N; - Js d2
k=1 Q2 j=1 79
ki = 1- Nuodes
izl"'Nedges
j: l"'NEdge.r
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GALERKIN’S METHOD

r=iwV-(6A) =V -5V

Rscatar = / Nkzr dQ2 =0
Q

Nedges 0 Nedges
iwA; AGN)) dS — iwA; > / VN, - (6N;) d2
=1 7S j=1 78
0

Niodes Nodes
+ ok D s A (GVN, ) dS — ¢, D /QVN,(Z-(&VNkl)dQ (11)
k=1

=1
:/Nk,v-JsdQ
o Ve

ki =1+ Nuodes
ko =1+ Nuodes
j=1- 'Nedgea'
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INNER PRODUC

@ Edge - Edge Products

[, (VXN - (v x ) a2

a1
IOMION

+(djybip — biyd) (dj1bjp

[biren = citbp) (bj1epp — ¢j1bp) (12)

— biidp) + (cidip — diepp) (cjidip — djiep) ]

Nedgex .
Uji= > / GN;N;j dQ
i—1 «Q
j=
sl 1 (13)
Ui = —L 5[ FrinGi1i1 — FinitGitin — Fi1inGini1 + Fi1i1Gpi
ij 36(\/")2 i2j2Yilj1 2j1%i1,2 i1j2912j1 i1j1%i2j2

Fij = ajaj + bibj + cjcj.
Gijj = / Ni(x, 3, N;(x, y, 2) Q2
Q
@ Mapping each tetrahedral element into the simplex (Normalized) coordinate system

Gy = /FN,-@, v WON; v, w) 3] e dv d

0 i=j
Gy = . (14)
v )
50 i#]

@ Connectivity arrays used : Edge - to - edge

Edge - to - cells
Cell - to - edges




INNER PRODUC

@ Edge - node products

Wi = / GN; - VN, dQ2
ik Q i k
@ Mapping into the normalize coordinate system

L3

L2
7

4 ¢

S3

@ 2 L1

/ N; dudydz = / NiCu, v, w) ]3] dudvdw (15)
Q Jr

. 1
/ N; dydydz = — ||
Q 24

Nedges |

Wi = > WI,-& [ (binby + cipeg + dipdy) — (bjyby + ciyex + diydy) ] (16)
i=1

@ Connectivity arrays used

Edge - to - cells
cell - to - nodes




INNER PRODUCTS; SOURCE TERMS

@ Node - node products

Zyyiy = /Q Ny - EVN, dQ

1
Zoly = T bt + it + diadi) 7)

@ Connectivity array used: Cell - to - nodes

@ Aline source of current is chosen to be a delta function of
finite length
@ Source terms
@ Edge - Source product

s = / N; - Js dQ (18)
Ja

edges
S=u 3 (2 > (apbip — apbjp)isl  (19)
i=1

@ Node - Source product

SS = / Ny, V- Js dS2 (20) ’ ’ ’ 5
Q "2 J=26(y)d( ) Box(x )jsx (22)
Nnodes
Z by /y< (21) . ! ) N
@ j; is an arbitrary scalar quantity; Box(x ) is the boxcar

function.

’

’

Box(x )= 0 ¥ >Lx<0 @3
1 0<x <I




BOUNDARY CONDITIONS ; SYSTEM OF EQUATIONS

@ Boundary Conditions
@ BCs are applied to the potentials on the truncation boundaries

i x Alpga =0 (24)
dloa =0 (25)
@ System of Equations
@ Alarge system of equations is constructed
L-u=F
Tj —wply  p Wik 0 Aj S
wpUj Tj; 0 1Wik, AJ! 0
= (26)
0 wWi,j  —Zg,k, 0 o SS
—kazj 0 0 _Zkzkl (z)i 0

@ Dimensions: L (2(Negges + Npodes)» 2(Nedges + Npodes))
© u 2(Nedges + Nnodes))
@ S (2(Nedges + Nuodes))
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EXAMPLE FOR A COARSE MESH

@ N

cells = 216, N,

nodes = 80: Ne

edges = 366

e Sparse structure of the coefficient
matrix
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FUTURE PLAN...

o The code is under development. We hope to apply it to simple Earth models

e The non-symmetric system of equations will be solved using BICGSTAB solver
with an LU preconditioner

e The performance of the above approach will be compared with a modification in
which the Lorentz gauge condition is used. Also, the relative contributions to the
electric field from the inductive and galvanic terms will be investigated in
different situations.
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