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Abstract

A model of a boson lattice gas is considered with infinite-range
hopping and a repulsive single-site potential. It is found that there
is a range of critical coupling strengths Aoy < A2 < Aeg < ... in
this model. For coupling strengths between A.; and A jy1, Bose-
Einstein condensation is suppressed at densities near the integer values
p =1,...,k. This phenomenon manifests itself also in the pressure-
volume diagram at high pressures. It is suggested that this phe-
nomenon persists for finite-range hopping and might be experimen-
tally observable.



1 The model and an expression for the pres-
sure

We consider a model of bosons hopping on a lattice with sites labelled x =
1,2,...,V, given by the hamiltonian

1 =
Hy = 5 3 () = ap)(as = ay) + A Y na(ng — 1), (1.1)
zy=1 e=1

where a, and a} are annihilation and creation operators satisfying the usual
commutation relations [as,a;] = 0.y and n, = aja,. The first term is a
mean-field version of the kinetic energy operator; the second term describes a
repulsion if A > 0, as it discourages more than one particle per site. A similar,
but less general model was introduced by Toth [1]. His model is a special
case of (1.1) where A = +o0, i.e. there is complete single-site exclusion.
A disordered version of Toth’s model was considered by Ma et al. [2] and
the corresponding model with short-range hopping was analysed using path-
integral Monte-Carlo methods by Krauth et al. [3]. A nice introduction to
the mathematical analysis of the short-range hopping version of (1.1) is [4].

The grand canonical partition function corresponding to (1.1) is given by

o
Zy = e Trace e PV, (1.2)

n=0

where f3 is the inverse temperature. The pressure p(5, 1) = limy_, ﬂLV In Zy

in the thermodynamic limit can be expressed as a variational formula using
a formalism developed by N. N. Bogoliubov Jr. [5, 6] (see also [7]) and
first applied to the boson gas by Ginibre [8]. (For an interesting recent
application to a Bose gas model, see [9] and [10].) The result is:

p(B,p) = SUP{—T2

45 InTrace exp [3((n = D = Ann = 1) + r(a” + )] .
(1.3)

Here the trace is over the representation space of a single oscillator with cre-
ation and annihilation operators ¢* and a, and number operator n = a*a.
Even though this expression for the pressure is exact, the trace still has
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to be evaluated numerically. The derivation of this formula will be pub-
lished elsewhere [11]. Here we consider its implications for Bose-Einstein
condensation. Bose-Einstein condensation (BEC) occurs in this model if the
maximizer » > 0, and in that case the density of the condensate is given by
po = 2. To see this, notice that the kinetic energy term in the Hamilto-
nian can be diagonalized by means of any orthogonal matrix Oy, satisfying

Ooz = 1/V/V. Defining ¢ =¥, Oy .a# (k=0,1,...,V —1) we have

Y (a; — a;)(az — ay) = D Cick. (1.4)
7y k=1

Replacing this term by acjcy + Ekvgll cici there is an analogous formula for
the pressure:

7,.2
p(B,p, ) = Sup{ -
>0 -«

3 InTrace exp[3((s — 1)n — An(n — 1) + r(a” + )]}

g
(1.5)
Now, the density of the condensate is given by
) . dp
po = lim V<COCO> = T doley r?. (1.6)

This trick for obtaining py of introducing a gap in the spectrum of the kinetic
term, is quite standard; see for example [12] and [13].

2 Analysis of the phase diagram

The phase diagram is determined by the maximization problem (1.3). To
find the maximizer we differentiate to get

o — (a + a*) _ Trace(a + a*) exp [5((# - 1)n — )\n(n — 1) + T(a* + a))]
Traceexp [B((x — 1)n — An(n — 1) + r(a* + a))] .

(2.1)

It is convenient to define

p(r) = %ln Traceexp [B((u — 1)n — An(n — 1) + r(a* + a))] (2.2)



so that (2.1) reads 2r = p’(r). Differentiating once more we have

p"(r) =B (A—(A) | A= (A)uw), (2.3)

where A = a* + @ and (-|-)g denotes the Bogoliubov scalar product:
(A|B)y =37 / Trace *e’(ﬂ’T)HBe’TH] dr, (2.4)

with Z = Tracee ™" and H = H(r) = (1 = A\)n+ An? —r(a+a*) — un.
It follows that p"(r) > 0 for all » > 0 so that p’ is increasing. In fact,
graphs of p’ suggest that it is also concave. In fact, a very general conjec-
ture by Bessis et al.[14] suggests that the derivatives should have alternating
signs. Some special cases of this conjecture have been proved by Fannes and
Werner|[15]. Assuming the concavity of p’(r), the maximum in (1.3) must
either be attained at » = 0 or at a unique r > 0. The latter case applies
when p”(0) > 2. But, p”(0) can be computed exactly as H(0) is diagonal:
H(0) = ho(n) = —( + A — 1) n+ An? The denominator in (2.4) is

Z ¢—Bho(n) Ze [(u+A=1)n—2n?] (2.5)
n=0

To compute the numerator, remark that
Trace [(0, + a*)e_(ﬂ—T)ho(n) (CL + a*)e—Th,o(n)]

Z{ Tho(n —(B—T1)ho(n—1) + e—(,B—T)ho(n)ne—Tho(n—l)} ) (26)

We therefore compute

—Bho(n) _ ,—Bho(n—1
/ﬂ e Tho(n) o= (B—T)ho(n—1) g — e o) — e P! )- (2.7)
0 ho(n — 1) — ho(n)
It follows that Bho(n) Bho(n—1)
. 2 & e Pholn) — gmPholn=
p"(0) = (28)

ZJ;” ho(n — 1) — ho(n)

Solving the equation p”(0) = 2 yields the critical inverse temperature
Be(, A). A careful asymptotic analysis shows that the asymptotic behaviour
for small y is given by

8, ~n ;m Fp (<) (2.9)



Figure 1: The critical inverse temperature for a number of values of A. The
lower curve (light green) is for the free lattice gas: A = 0, the top curve (dark
green) is for the case of complete single-site exclusion A = +o00o. Intermediate
values are: A =2 (black), 2.7 (light blue) , 3 (royal blue) and 5 (red).

and for large y by
2
e Sn (1> N). (2.10)

For small A, B.(u, A) is simply an interpolation between these asymptotic
graphs, but for larger values of X it diverges in certain intervals of u. This
can be understood as follows. We write the equation p”(0) = 2 in the form
Af(B, u, A) = 0 where

1 a n n+1
A AN=1+— AR 81— 2.11
F(B, s A) +u—1+n§€ ORI CES) (2.11)
and Ah(n) = h(n —1) — h(n) = u— 1 —2X(n — 1). Working out the factor
in brackets yields

W —A—p+1)2+p—(A—1)?
(u—1=2xn)(p—1-2X\(n—-1))"
(2.12)
For 1 < p < 1+ 2\ the first exponential term dominates. The corresponding
factor is only negative if i is not in the interval between y_ and p given by

11
pe=A+ o E VAN S T2A+ 1 (2.13)

1 o
AfB A =14 =g+ 3 e

n=1

3



015~ | \ |

0.1 - |

Figure 2: The pressure vs. volume diagram for f = 2.5 and A = 0.1,3,5 and
+o0.

Of course, this can only happen if 4)\2 — 12\ +1 > 0, i.e. if
1

Similarly, for 1+ 2(k — 1)A < p < 1 + 2k\ one finds a gap in the interval
[tk 11, +] given by

1 1
pes = (26— DA+ 5 £ \/)\2 —(2k+ DA+ (2.15)

which can happen only if

1
AzAk=k+§+\/k(k+1). (2.16)

If p4 approaches py from outside the forbidden interval, the critical inverse
temperature (. diverges.

To compute the inverse critical temperature as a function of the density
we must solve implicitly the equation

op T2 n Bl(u+A—1)n—2n?]

p= O Y2, efllutr-Dn—n?] (2.17)

with 8 = B.(u). The gaps in u do not mean that there are gaps in the
density. The reason is that for non-integer values of p, the curves £(u)
defined implicitly by (2.17) have asymptotes at u = 2(k — 1)A + 1. Indeed,
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for large 8 the function p(f, 1) tends to a step function: p(B,pu) ~0if p < 1
and p(B,pu) ~ k if 2(k — 1)A < p < 2kA + 1. Numerical solution of the
implicit equations (2.17) and p”(0) = 2 yields the phase diagram of Figure
1.

We also compute the pressure p as a function of the density. For this, one
needs to approximate the trace in (2.2) in case 8 > (. (otherwise the trace
is a simple sum which can be easily truncated). This can be done using the
Trotter product formula, where, for greater accuracy, we use the formula

nAm Tn—|—m72k

r(a+a”) =vn!m!
(nl|e | m) nlm! kzz% F{m — })lm = k)!e

2, (2.18)

The resulting graphs, for several values of A and for = 2 are depicted in
Figures 2 and 3.
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Figure 3: The pressure vs. volume diagram at higher values of the pressure.

Figure 2 shows that for small values of A the pressure is close to that of
the free lattice gas except for small values of the specific volume v, where it
diverges. There is a clear kink in all the graphs corresponding to the onset
of Bose-Einstein condensation. As A increases, the onset of condensation
moves to lower values of v. This point is the right most point of the g,
versus p curve of Figure 1 where it intersects with the line 8 = 2. For A > )\
we expect another feature in the graph of p(v) at even smaller values of v.
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This is visible in Figure 3, but occurs at much higher pressures and cannot,
therefore be seen at the scale of Figure 2.

Similarly, at still higher pressures, one observes another s-bend in the
graph for lambda-values above A,. Interestingly, it seems that the highest-
pressure transition is of higher order whereas the lower transitions are first-
order:
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Figure 4: The pressure vs. volume diagram at still higher values of the pres-
sure.

The graph of the condensate fraction, i.e. the density of the condensate
divided by the total density is also of interest. It is shown in Figure 5. Notice
that the condensate at small values of ) is higher than that for the free gas,
whereas it is lower for higher values of \.

Notice also that there is a clear modulation in the condensate fraction.
This is not a computational error but is due to the suppression of the con-
densate at integer densities. A more accurate computation shows this more
clearly: see Figure 6.

An intuitive explanation for the suppression of Bose-Einstein conden-
sation at integer values of the density is that at or near these values the
particles tend to be evenly distributed over the lattice points and the strong



Figure 5: The condensate fraction as a function of the specific volume for
several interaction strengths.

repulsion tends to restrict their freedom to hop from site to site. The result-
ing states are almost eigenstates of the number operators n, and therefore
asymptotically almost orthogonal to the ground state of the kinetic energy.
This explanation is quite generally valid and we may expect therefore that
this phenomenon should occur in general systems of bosons on a lattice with
strong repulsion. It would be interesting to find experimental evidence for
this phenomenon.
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Figure 6: The condensate fraction for A = 3 (dashed blue line) and A = 5
(red line).
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