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the Dirac-Ginsparg-Wilson relation on S2
F is shown to contain an edge effect which corre-

sponds precisely to the “fuzzy” U(1)A axial anomaly on the fuzzy sphere . We also derive

a novel gauge-covariant expansion of the quark propagator in the form 1
DAF

= aΓ̂L

2 + 1
DAa

where a = 2
2l+1 is the lattice spacing on S2

F , Γ̂L is the covariant noncommutative chi-

rality and DAa is an effective Dirac operator which has essentially the same IR spectrum

as DAF but differes from it on the UV modes. Most remarkably is the fact that both

operators share the same limit and thus the above covariant expansion is not available in

the continuum theory . The first bit in this expansion aΓ̂L

2 although it vanishes as it stands

in the continuum limit , its contribution to the anomaly is exactly the canonical theta

term. The contribution of the propagator 1
DAa

is on the other hand equal to the toplogical

Chern-Simons action which in two dimensions vanishes identically .
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1. Introduction

Fuzzy physics [[2, 3] , see also [4] and references therein ] , like lattice gauge theories, is

aiming for a nonperturbative regularization of chiral gauge theories. Discretization in fuzzy

physics is achieved by treating the underlying spacetimes as phase spaces then quantizing

them in a canonical fashion which means in particular that we are effectively replacing

the underlying spacetimes by non-commutative matrix models or fuzzy manifolds [4]. As

a consequence , this regularization will preserve all symmetries and topological features of

the problem . Indeed a fuzzy space is by construction a discrete lattice-like structure which

serves to regularize, it allows for an exact chiral invariance to be formulated , but still the

fermion-doubling problem is completely avoided [7] .

Global chiral anomalies on these models were , along with other topological non-

trivial field configurations, formulated in [8, 9, 15, 19] , while local anomaly on fuzzy S2
F

was treated first in [6] then in [16, 17] . The relevance of Ginsparg-Wilson relations in
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noncommutative matrix models was noted first in [7] and [18] then in [16] . In this article

we will show that despite the fact that the concept of point is lacking on fuzzy S2, we

can go beyond global considerations and define a ”fuzzy” axial anomaly associated with a

”fuzzy” U(1) global chiral symmetry.

The plan of the paper is as follows . Section 2 contains a brief description of fuzzy S2

and its star product. Fuzzy U(1) gauge theory and fermion action on S2
F are introduced

in section 3 where we also show the absence of the fermion doubling problem on S2
F . The

Dirac-Ginsparg-Wilson relation on S2
F and the corresponding fuzzy chiral transformations

as well as the “fuzzy” U(1)A axial anomaly are discussed in section 4. In Section 5 we

derive a novel gauge-covariant expansion of the quark propagator and show explicitly that

no analogous expansion exists in the continuum theory. The continuum limit is computed

in this section where beside the canonical theta term we obtain the Chern-Simons action

which vanishes identically in two dimensions. We conclude in section 6 .

2. The Fuzzy Sphere

2.1 Algebra

The 2−dimensional continuum sphere is the co-adjoint orbit of SU(2) through the Pauli

matrix σ3 and thus it admits a symplectic structure which can be quantized in a canonical

fashion to give the so-called fuzzy sphere. We now explain briefly this result .

We can define S2 by the projector P = 1

2 + nata with ta = σa

2 since for example the

requirement P 2 = P gives precisely the defining equation of S2 as a surface embedded in

R3, namely ~n2 = 1 . At the north pole of S2 , namely at ~n0 = (0, 0, 1), this projector

is P0 = diag(1, 0) which projects down to the state |~n0,
1
2 >= (1, 0) of the 2−dimensional

Hilbert space H 1
2

of the fundamental representation of SU(2). A general point ~n of S2 is

obtained by ~n = g~n0 where g∈SU(2). The corresponding state in H 1
2

is |~n, 1
2 >= g|~n0,

1
2 >.

The projector on this state is P = |~n, 1
2 >< ~n, 1

2 | = gP0g
+ provided

gσ3g
+ = naσa. (2.1)

From this expression it is clear that S2 is indeed given by SU(2)/U(1) , and that points

~n∈S2 are equivalence classes ~n = [g] = [gh] where h∈U(1) , i.e S2 is the co-adjoint orbit of

SU(2) through σ3 .

|~n, 1
2 > and |~n0,

1
2 > are the “fundamental” coherent states at ~n and ~n0 respectively.

Roughly speaking these states will replace the points ~n and ~n0 when we go to the noncom-

mutative fuzzy sphere.

It is not difficult to see that the symplectic 2-form on S2 given by ω≡− l
2ǫabcncdna∧dnb =

ldcosθ∧dφ where l is an undetremined non-zero real number and with θ and φ being the

usual angle coordinates, can also be rewritten in the form ω = ild(Trσ3g(σ, t)
−1dg(σ, t))

where t is a time variable and σ is a parameter in the range [0, 1] . This means in particular

that the quantization of the above symplectic 2-form ω is equivalent to the quantization of

the Wess-Zumino term

L = ilT r

(

σ3g
−1ġ

)

. (2.2)
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Indeed if we define a triangle ∆ in the plane (t, σ) by its boundaries ∂∆1 = (σ, t1) ,

∂∆2 = (σ, t2) and ∂∆3 = (1, t) then it is a trivial exercise to show that

SWZ =

∫

∆
ω =

∫ t2

t1

Ldt+ il

∫ 1

0
Trσ3

(

g(σ, t1)
−1∂σg(σ, t1) − g(σ, t2)

−1∂σ(σ, t2)

)

. (2.3)

It is a known result that the quantization of the above Wess-Zumino Lagrangian (2.2) will

give all SU(2) irreducible representations with spins s≡l , i.e the values of l in the quantum

theory become strictly quantized .

The physical wave functions of the quantum system are complex valued functions on

SU(2) of the form

ψ(g) =

l
∑

m=−l

Cm < lm|U (l)(g)|ll >, (2.4)

with scalar product defined by (ψ1, ψ2) =
∫

SU(2) dµ(g)ψ1(g)
∗ψ2(g) where dµ is the Haar

measure on SU(2) . U (l)(g) is the IRR l of g∈SU(2) . Obviously < lm|U (l)(g)|ll >
transforms as the heighest weight state (l, l) under the right action g−→gg1 of the group

g1∈SU(2) , while under the left action g−→g1g , {< lm|U (l)(g)|ll >} transforms as a basis

of the Hilbert space Hl of the (2l + 1)−dimensional IRR of SU(2). This left action is

clearly generated by the usual angular momenta of SU(2) in the IRR l , namely

[La, La] = iǫabcLc ,

3
∑

a=1

L2
a = l(l + 1). (2.5)

Explicitly this action is given by

[iLaψ](g) =

[

d

dt
ψ

(

e−i σa
2

tg

)]

t=0

. (2.6)

The algebra A of all observables of the system is the algebra of linear operators which act

on the left of ψ(g) by left translations , i.e an arbitrary linear operator φF∈A will admit

in general an expansion of the form

φF =
∑

a1,..ak

αa1..ak
La1

...Lak
. (2.7)

The sum in (2.7) as we will check shortly is actually cut-off . The algebra A of all observ-

ables of the system is therefore a matrix algebra Mat2l+1 , while physical wave functions

span a (2l + 1)−dimensional Hilbert space Hl on which these observables are naturally

acting [ see [4] and references therein for more detail ] .

We define the noncommutative fuzzy sphere by Connes spectral triple (Mat2l+1,Hl,∆
F )

[1] . The matrix algebra Mat2l+1 is the above algebra A of (2l+1)×(2l+1) matrices which

acts on the (2l+1)−dimensional Hilbert space Hl of the IRR l of SU(2). Matrix coordinates

on S2
F are defined by [2, 3, 4]

(nF
1 )2 + (nF

2 )2 + (nF
3 )2 = 1 , [nF

a , n
F
a ] =

i
√

l(l + 1)
ǫabcn

F
c , (2.8)
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with

nF
a =

La
√

l(l + 1)
. (2.9)

A “fuzzy” function on S2
F is a linear operator φF∈Mat2l+1 which can also be defined by

an expansion of the form (2.7) .

Derivations on S2
F are on the other hand defined by the generators of the adjoint action

of SU(2) , in other words the derivative of the fuzzy function φF in the space-time direction

a is the commutator [La, φ
F ] . This can also be put in the form

AdLa(φ
F ) ≡ [La, φ

F ] = (LL
a − LR

a )(φF ), (2.10)

where LL
a ’s and −LR

a ’s are the generators of the IRR l of SU(2) which act respectively on

the left and on the right of the algebra Mat2l+1 , i.e LL
aφ

F≡Laφ
F , LR

a φ
F≡φFLa for any

φF∈Mat2l+1. Hence the Laplacian operator ∆F on the fuzzy sphere is simply given by the

Casimir operator

∆F = (LL
a − LR

a )2. (2.11)

The algebra of matrices Mat2l+1 decomposes therefore under the action of the group SU(2)

as l⊗l = 0⊕1⊕2⊕..⊕2l [ The first l stands for the left action of the group while the other

l stands for the right action ]. As a consequence a general scalar function on S2
F can be

expanded in terms of polarization tensors as follows

φF =
2l

∑

k=0

k
∑

m=−k

φkmŶkm(l). (2.12)

[ For an extensive list of the properties of Ŷkm(l)’s see [5] ] . This expansion is equivalent to

(2.7) but now the cut-off is made explicit . The fact that the summation over k involves only

angular momenta which are ≤2l originates from the fact that the spectrum k(k+ 1) of the

Laplacian ∆F is cut-off at k = 2l . As we will show in this article this rotationally-invariant

cut-off is non-trivial in the sense that it respects both gauge and chiral symmetries.

As one can already notice all these definitions are in very close analogy with the case

of continuum S2 where the algebra of functions A plays there the same role played here

by the matrix algebra Mat2l+1 . In fact the continuum limit is defined by l−→∞ where

the fuzzy coordinates nF
a ’s approach the ordinary coordinates na’s and where the algebra

Mat2l+1 tends to the algebra A in the sense that

φF−→φ(~n) =
∞

∑

k=0

k
∑

m=−k

φkmYkm(~n). (2.13)

In above Ykm(~n) stands for the canonical spherical harmonics . Correspondingly fuzzy

derivations reduce to ordinary ones on commutative S2 , i.e adLa(φ
F )−→La(φ)(~n) , La =

−iǫabcnb∂c . Formally one writes A = Mat∞ and think of the fuzzy sphere as having a

finite number of points equal to 2l + 1 which will diverge in the continuum limit l−→∞.
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2.2 Star Product

To make the continuum limit more precise we will need to introduce the star product

on S2
F . The irreducible representation l of SU(2) can be obtained from the symmetric

product of 2l fundamental representations 1
2 of SU(2) . Given an element g∈SU(2), its

l−representation matrix U (l)(g) is given as follows

U (l)(g) = U ( 1
2
)(g)⊗s...⊗sU

( 1
2
)(g), 2l − times. (2.14)

U ( 1
2
)(g) is the spin 1

2 representation of g∈SU(2) . Clearly the states |~n0,
1
2 > and |~n, 1

2 >=

g|~n0,
1
2 > of H 1

2
will correspond in Hl to the two states |~n0, l > and |~n, l > respectively

such that

|~n, l >= U (l)(g)|~n0, l > . (2.15)

To any fuzzy scalar function φF on S2
F , i.e an operator φF acting on Hl, we associate a

”classical” function < φF > (~n) on a classical S2 by

< φF > (~n) =< ~n, l|φF |~n, l >, (2.16)

such that the product of two such operators φF
1 and φF

2 is mapped to the star product of

the corresponding two functions

< φF
1 > ∗ < φF

2 > (~n) =< ~n, l|φF
1 φ

F
2 |~n, l > . (2.17)

A long calculation shows that this star product is given explicitly by [12]

< φF
1 > ∗ < φF

2 > (~n) =
2l

∑

k=0

(2l − k)!

k!(2l)!
Ka1b1 ....Kakbk

∂

∂na1
...

∂

∂nak
< φF

1 > (~n)
∂

∂nb1
...

∂

∂nbk
< φF

2 > (~n)

Kab = δab − nanb − iǫabcnc. (2.18)

In these coherent states one can also compute

< nF
a >=

1
√

1 + 1
l

na , < [La, φ
F ] >= (La < φF >)(~n), (2.19)

and
1

2l + 1
Trlφ

F
1 φ

F
2 =

∫

S2

dΩ

4π
< φF

1 > ∗ < φF
2 > (~n). (2.20)

The trace Trl is obviously taken over the Hilbert space Hl . Remark finally that the

coherent state |~n, l > becomes localized around the point ~n in the limit and as a consequence

Lim < nF
a >= na, Lim < φF >= φ and Lim < [La, φa] >= Laφ , etc . In this limit the

star product reduces also to the ordinary product of functions .
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3. Fuzzy Actions

3.1 Gauge Fields on S2
F

Next we would like to write down the Schwinger model on S2
F . First we introudce

2−dimensional gauge fields on the fuzzy sphere and their action . A vector field ~AF

on the fuzzy sphere can be ( similarly to scalar fields ) defined by an expansion in terms

of polarization tensors of the form

AF
a =

2l
∑

k=0

k
∑

m=−k

Aa(km)Ŷkm(l) , AF+
a = AF

a . (3.1)

In the continuum limit this expansion reduces to Aa(~n) =
∑∞

k=0

∑k
m=−k Aa(km)Ykm(~n).

Each component AF
a is a (2l + 1)×(2l + 1) matrix and the modes Aa(km) are complex

numbers satisfying Aa(km)∗ = (−1)mAa(k −m) where for each momentum (km) the cor-

responding triple (AF
1 (km), AF

2 (km), AF
3 (km)) transforms as an SO(3)−vector. We have

also to note here that a much natural expansion of vector fields on the finite dimensional

fuzzy sphere can be given instead in terms of “vector” polarization tensors [5]. The expan-

sion (3.1) is however enough for the purpose of this article since we will mostly deal with

the fermion action . Writing a gauge principle for this matrix vector field is not difficult,

indeed the action takes the usual form

SY MF =
1

4e2
1

2l + 1
TrlF

F
abF

F
ab. (3.2)

The curvature FF
ab = −FF+

ab is also given by the usual formula FF
ab≡[DF

a ,D
F
b ]−iǫabcD

F
c with

the covariant derivative DF
a = La+A

F
a or equivalently FF

ab = [La, A
F
b ]−[Lb, A

F
a ]+[AF

a , A
F
b ]−

iǫabcA
F
c . Gauge transformations are implemented by unitary transformations acting on

the (2l+ 1)−dimensional Hilbert space of the irreducible representation l of SU(2). These

transformations are DF
a −→DF ′

a = UFDF
a U

F+ , AF
a −→AF ′

a = UFAF
a U

F+ + UF [La, U
F+]

and FF
ab−→FF ′

ab = UFFF
abU

F+ where UF = eiΩ
F

and ΩF = ΩF+ is an element of the algebra

Mat2l+1 of (2l+1)×(2l+1) matrices . UF ’s define then fuzzy U(1) gauge theory . Clearly

U(1)F≡U(2l + 1) .

It is not difficult to convince ourselves that (3.2) has the correct continuum limit ,

namely

SY MF−→SY M =
1

4e2

∫

S2

dΩ

4π
FabFab , l−→∞. (3.3)

For example one can use the star product (2.18) on S2
F to see that Aa = Liml−→∞ < AF

a >

and Fab = Liml−→∞ < FF
ab >= LaAb − LbAa − iǫabcAc . Also by using (2.20) it is seen

that the trace 1
2l+1Trl behaves as the integral

∫

S2
dΩ
4π

in the limit where the star product

becomes the commutative product .

A final remark concerning vector fields is to note that the gauge field ~AF has three

components and hence an extra condition is needed in order to project this gauge field onto
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two dimensions . One adopts here the prescription of [11], i.e we impose on the gauge filed
~AF the gauge-covariant condition

DF
a D

F
a = l(l + 1). (3.4)

This constraint reads explicitely {nF
a , A

F
a } = −( ~AF )2/

√

l(l + 1) , and thus it is not difficult

to check that in the continuum limit l−→∞ the normal component of the gauge field is

zero , i.e φ≡~n. ~A = 0 .

3.2 Fermion Doubling

In close analogy with the free fermion action on ordinary S2 , free fermion action on fuzzy

S2 is defined by

SF =
1

2l + 1
Trlψ̄FDFψF , DF = σa[La, ...] + 1. (3.5)

DF is precisely the Dirac operator on fuzzy S2 [4, 7, 8, 9] , and σi’s are Pauli matrices .

The fuzzy spinor ψF is an element of Mat2l+1⊗C2 , it is of mass dimension (mass)
1
2 and

is such that ψ̄F = ψ+
F .

The so-called Grosse-Klimč́ik-Prešnajder Dirac operator DF on fuzzy S2 admits a

chirality operator which can be seen as follows , first we rewrite DF in the form [7, 4, 8, 9]

1

2l + 1
DF =

1

2
(ΓR + ΓL), (3.6)

where ΓR and ΓL are the operators

ΓL =
1

l + 1
2

[~σ.~LL +
1

2
] , ΓR =

1

l + 1
2

[−~σ.~LR +
1

2
]. (3.7)

By analogy with (2.9) we also define nL
a = LL

a√
l(l+1)

and nR
a = LR

a√
l(l+1)

with obvious con-

tinuum limits , i.e nL
a , n

R
a −→na when l−→∞ ( since the left and right actions become

identical in the limit). Remark that one can also make the identification LL
a≡La , nL

a≡nF
a .

In general all operators acting from the left can be thought of as elements of the algebra

Mat2l+1.

ΓR is the chirality operator as was shown originally in [10] , this choice is also mo-

tivated by the fact that ΓR−→ − γ = −~σ~n , when l−→∞ , (ΓR)2 = ΓR , (ΓR)+ =

ΓR , and [ΓR, φF ] = 0 for any φF∈Mat2l+1 . However this ΓR does not exactly anticom-

mute with the Dirac operator since

DF ΓR + ΓRDF =
1

l + 1
2

D2
F . (3.8)

The continuum limit of this equation is simply given by the canonical anticommutation

relation {D, γ} = 0 where the continuum Dirac operator D is given by D = σ.L+1. Remark

that for all practical purposes ΓL is also a chirality operator , it has the correct continuum
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limit , i.e ΓL−→γ when l−→∞ , it satisfies (ΓL)2 = 1 , (ΓL)+ = ΓL , and by using (3.6)

one rewrites (3.8) in the form

DF ΓL + ΓLDF =
1

l + 1
2

D2
F . (3.9)

Indeed ΓL fails only to commute with the elements of the algebra Mat2l+1 . For later use

we notice that (3.8) and (3.9) can also be rewritten in the form

DF ΓR − ΓLDF = 0. (3.10)

It was shown in [4, 7] that the pair (ΓR,ΓL) defines a chiral structure on fuzzy S2 which

satisfies a) the Ginsparg-Wilson relation , b) is without fermion doubling and c) has the

correct continuum limit . Indeed ΓR and ΓL together with the identity generate a Ginsparg-

Wilson algebra where the canonical Dirac-Ginsparg-Wilson operator is defined by DDGW =

ΓRDF while the lattice spacing is identified as a = 2
2l+1 [ see [19] and references therein

for more detail ] . The Ginsparg-Wilson relation for zero gauge field is essentially given by

equation (3.10) .

On the other hand the absence of fermion doubling can be seen by comparing the

spectrum of DF which can be easily computed to be given by

DF (j) = {±(j +
1

2
), j =

1

2
,
3

2
, ..., 2l − 1

2
} ∪ {j +

1

2
, j = 2l +

1

2
} (3.11)

with the spectrum of the continuum Dirac operator D given by D(j) = {±(j + 1
2), j =

1
2 ,

3
2 , ...,∞} [9] . As one can immediately notice there is no fermion doubling and the

spectrum of DF is simply cut-off at the top eigenvalue j = 2l+ 1
2 . The continuum limit of

this chiral structure is therefore obvious by construction .

The fuzzy gauged Dirac operator is obviously defined by DAF = DF + σaA
F
a and thus

the fuzzy gauged action is given by

SAF =
1

2l + 1
Trlψ̄FDAFψF≡

1

2l + 1
Trl

[

ψ̄Fσa[La, ψF ] + ψ̄FψF + ψ̄FσaA
F
a ψF

]

.

(3.12)

The spinor ψF is assumed here to transform in the fundamental representation of the fuzzy

gauge group U(1)F≡U(2l + 1) , i.e ψF−→ψ
′

F = UFψF , ψ̄F−→ψ̄
′

F = ψ̄FU
F+.

Again it is not difficult to see that both classical actions (3.5) and (3.12) behave

correctly in the continuum limit in the sense that SF−→S =
∫

S2
dΩ
4π
ψ̄Dψ and SAF−→SA =

∫

S2
dΩ
4π
ψ̄DAψ when l−→∞ and where ψ = Liml−→∞ < ψF > and DA = D + σaAa .

Explicitly we write

S =

∫

S2

dΩ

4π

[

ψ̄σaLa(ψ) + ψ̄ψ

]

, (3.13)

and

SA =

∫

dΩ

4π

[

ψ̄σaLa(ψ) + ψ̄ψ + ψ̄σaAaψ

]

. (3.14)
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By putting the actions (3.2) and (3.12) together we obtain the fuzzy Schwinger model on

S2
F , namely

SSchwinger =
1

4e2
1

2l + 1
TrlF

F
abF

F
ab +

1

2l + 1
Trlψ̄FDAFψF , (3.15)

where the gauge field ~AF is also assumed to satisfy the constraint (3.4) .

4. Quantum Chiral Symmetry on S2
F

4.1 Fermion Propagator

The quantum theory of interest is defined through the following path integral

∫

DAF
i

∫

DψFDψ̄F e
−SSchwinger . (4.1)

The anomaly arises generally from the non-invariance of the fermionic measure under chiral

transformations [13] and hence we will focus first on this measure and show explicitly that

for all finite approximations of the noncommutative Schwinger model on S2
F this measure is

in fact exactly invariant . Indeed we will show shortly that the U(1) “fuzzy”axial anomaly

on S2
F comes entirely from the non-invariance of the action due to edge effect . In the

appendix we will also discuss how one can shift the anomaly from the action back to the

measure.

It is also enough to treat in the following the gauge field as a background field since

all we want to compute is the fuzzy axial anomaly on S2
F and its continuum limit the

canonical local axial anomaly on S2 , i.e only the fermion loop is relevant . Quantization

of the Yang-Mills action SY MF will be reported elsewhere .

In a matrix model such as (4.1) manipulations on the quantum measure have a precise

meaning . Indeed and by following [13] we first expand the fuzzy spinors ψF , ψ̄F in

terms of the eigentensors φ(µ,A) of the Dirac operator DAF , write ψF =
∑

µ θµφ(µ,A) ,

ψ̄F =
∑

µ θ̄µφ
+(µ,A) where θµ’s , θ̄µ’s are independent sets of Grassmanian variables, and

φ(µ,A)’s are defined by DAFφ(µ,A) = λµ(A)φ(µ,A) , and normalized such that

1

2l + 1
Trlφ

+(µ,A)φ(ν,A) = δµν . (4.2)

For zero fuzzy gauge fields µ stands for j , k and m which are the eigenvalues of ~J2 =

( ~K + ~σ
2 )2 , ~K2 = (~LL − ~LR)2 and J3 respectively . Indeed the asymptotic behaviour

when AF
a −→0 of φ(µ,A)’s and λµ(A)’s is given by λµ(A)−→j(j + 1) − k(k + 1) + 1

4 and

φ(µ,A)−→
√

2l + 1
∑

k3,σ C
jm

kk3
1
2
σ
Ŷkk3

(l)χ 1
2
σ [4, 5, 9] . The quantum measure is therefore

well defined and it is given by

DψFDψ̄F =
∏

µ

dθµdθ̄µ−→
2l
∏

k=0

k+ 1
2

∏

j=k− 1
2

j
∏

m=−j

dθkjmdθ̄kjm (4.3)
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From the action SAF and the identity (4.2) one can compute the propagator < θµθ̄ν >=

δµν/λµ(A) or equivalently

< ψAB
Fα ψ̄

CD
Fβ >ev =

∑

µ

1

λµ(A)
φAB

α (µ,A)φ+CD
β (µ,A)≡(2l + 1)

(

1

DAF

)AB,DC

αβ

. (4.4)

<>ev stands for expectation value . We are assuming no monopole configurations and thus

the inverse of the gauged Dirac operator is always well defined . This inverse is defined by

the formula

(DAF )C
′

D
′

,AB
γα (

1

DAF
)AB,DC
αβ = δγβδ

C
′

DδD
′

C . (4.5)

In above we have also used the fact that because the Dirac operator DAF is self-adjoint on

Mat2l+1⊗C2 , the states φ(µ,A)’s must form a complete set , viz

1

2l + 1

∑

µ

φAB
α (µ,A)φ+CD

β (µ,A) = δαβδ
ADδBC . (4.6)

The Dirac operator (DAF )αβ and the propagator (D−1
AF )αβ carry 4 indices because they can

act on matrices of Mat2l+1 either from the left or from the right , for example DAF acts

explicitly as (DAFφ(A,µ))AB
α = (DAF )AB,CD

αβ φCD
β where

(DAF )AB,CD
αβ = (σa)αβ(DF

a )ACδBD − (σa)αβ(La)
DBδAC + δαβδ

ACδBD . (4.7)

4.2 The Dirac-Ginsparg-Wilson Relation on S2
F

We will now undertake the task of deriving the Dirac-Ginsparg-Wilson relation on S2
F in

the presence of a gauge field . As it turns out this relation contains exactly a fuzzy anomaly

which will become a local anomaly in the limit . We first start with the free theory and

rewrite the Ginsparg-Wison relation (3.10) in the form (ΓR−ΓL)DF +DF (ΓR−ΓL) = 0.This

means that in the absence of gauge fields we must have tr[ΓR − ΓL] = 0 where the trace is

taken in the space of spinors , in other words the anomaly vanishes. However if we include

the gauge field through the gauge-covariant Dirac operator DAF which can also be written

in the form

1

2l + 1
DAF =

1

2
(ΓR + Γ̂L), (4.8)

with

Γ̂L =
1

l + 1
2

[

σaD
F
a +

1

2

]

= ΓL +
1

l + 1
2

~σ. ~AF . (4.9)

[ (4.8) is to be compared with the free formula (3.6)] . Then we can compute instead the

gauge-covariant anticommutation relation

{ΓR − Γ̂L,DAF } = − 4

2l + 1

(

FF + (DF
a )2 − l(l + 1)

)

FF =
i

2
ǫabcσcF

F
ab. (4.10)
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The continuum limit of this equation is {γ,DA} = 2φ = 0 where φ is the normal component

of the gauge field on S2 which is zero by the continuum limit of (3.4). In other words , in

the continuum interacting theory one might be tempted to conclude that trγ = 0 which we

know is wrong in the presence of gauge fields. Noncommutative geometry , as it is already

obvious from equation (4.10), already gives us the structure of the chiral anomaly, indeed

by using the constraint (3.4) one can put (4.10) in the equivalent form

DAF ΓR − Γ̂LDAF = − 2

2l + 1
FF = − i

2l + 1
ǫabcσcF

F
ab. (4.11)

We recognize immediately the left hand side as a fuzzy anomaly since it vanishes in the

limit AF−→0 where (4.11) reduces to (3.10) . We will now show that this corresponds

indeed to the actual global UA(1) fuzzy anomaly on S2
F .

In the following we will also need to write down the explicit action of the operators

ΓR , Γ̂L . We have

(ΓR)AB,CD
αβ =

δAC

l + 1
2

(

− (σa)αβL
DB
a +

1

2
δαβδ

DB

)

(Γ̂L)AB,CD
αβ =

δBD

l + 1
2

(

(σa)αβ(DF
a )AC +

1

2
δαβδ

AC

)

≡δBD(Γ̂L)AC
αβ . (4.12)

In particular from the second equation we note that the operator (Γ̂L)αβ since it acts from

the left it can also be thought of as an element of the algebra Mat2l+1.

4.3 Gauge-Covariant Axial Current

Now we need to define chiral symmetry on the fuzzy sphere which must also be consistent

with gauge invariance. In the absence of gauge fields and motivated by (3.10) we define

chiral transformations by

ψF−→ψ
′

F = ψF + (ΓRλFψF ) +O((λF )2) , ψ̄F−→ψ̄
′

F = ψ̄F − (ψ̄Fλ
F ΓL) +O((λF )2).

(4.13)

It is then not difficult to check that the action SF changes by a total divergence. The

chiral parameter λF is an arbitrary matrix in Mat2l+1 . In the presence of gauge fields it

is therefore obvious that the minimal prescription is given by

ψF−→ψ
′

F = ψF + (ΓRλFψF ) +O((λF )2) , ψ̄F−→ψ̄
′

F = ψ̄F − (ψ̄Fλ
F Γ̂L) +O((λF )2),

(4.14)

where Γ̂L is the A−dependent chirality-like operator defined in (4.9) . These transforma-

tions are of course motivated by (4.11) . Indeed one can check that (4.14) reduces in the

limit to the usual chiral transformations yet it guarantees gauge invariance in the noncom-

mutative fuzzy setting since both Γ̂L and the chiral parameter λF transform covariantly as

UF Γ̂LUF+ and UFλFUF+ respectively under gauge transformations . Naive fuzzy chiral

transformations which would be again given by (4.14) but with ΓL instead of Γ̂L are in
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fact inconsistent with gauge symmetry as one might easily convince ourselves , whereas in

the case of (4.14) if one gauge transform ψF and ψ̄F by a unitary transformation UF their

chiral transform ψ
′

F and ψ̄
′

F will also rotate by the same gauge transformation UF . For

completeness we write the meaning of (4.14) explicitly as follows

ψ
′

Fα = ψFα +
1

2l + 1

(

− 2(σa)αβλ
FψFβLa + λFψFα

)

+O((λF )2)

ψ̄
′

Fα = ψ̄Fα − 1

2l + 1

(

2ψ̄Fβλ
F (σa)βαD

F
a + ψ̄Fαλ

F

)

+O((λF )2). (4.15)

The change of the action under these fuzzy chiral transformations (4.14) is given by
∫

DψF
′Dψ̄′

F e
−S

′

AF =

∫

DψFDψ̄F e
SθF e−SAF−∆SAF , (4.16)

with

∆SAF = − 1

2l + 1
Trlλ

F [DF
a ,J 5

a ] − i

(2l + 1)2
ǫabcTrlψ̄Fλ

FσcF
F
abψF

J 5
a = ψ̄FσaΓ

RψF − [(ψ̄Fσa)α, (Γ
RψF )α]. (4.17)

An immediate remark is that the change in the action is not simply a total covariant

divergence but there is an extra piece which vanishes ( as it stands ) only in the continuum

limit, i.e we have a gauge-invariant edge effect. It is clear that the source of this edge effect

is the RHS of the Ginsparg-Wilson relation (4.11).

The theta term in the path integral (4.16) is also gauge-invariant and it is given ex-

plicitly by

SθF = − 1

2l + 1
Trl

∑

µ

φ+(µ,A)λF (ΓR − Γ̂L)φ(µ,A). (4.18)

[This is gauge-invariant since for example φ(µ,A) must transform as ULφ(µ,A) in order

for the Dirac equation to be gauge-invariant]. Due to the finiteness of the matrix model ,

it is an identity easy to check that the theta term SθF is zero , indeed by using (4.6) and

(4.12) we compute

SθF = 2Trl

(

λF tr2(σD
F )

)

+
2

2l + 1
Trl(λ

F )Trl

(

tr2(σL)

)

≡0. (4.19)

tr2 is the 2−dimensional spin trace , i.e tr21 = 2 , tr2σa = 0 , etc . In fact it is this trace

which actually vanishes, and hence it seems that the chiral WT identity ∆SGF = SθF is

not anomalous due to the non-invariance of the measure under chiral transformations but

rather anomalous due to edge effects ( the second term of the first equation of (4.17) ) .

We write this WT identity ∆SGF = 0 in the form

< [DF
a ,J 5

a ] >ev=
i

2l + 1
ǫabc < (σc)αβF

F
abψFβψ̄Fα >ev . (4.20)

Using the propagator (4.4) we find the anomaly

[DF
a , < J 5

a >]CB = iǫabc(F
F
ab)

CDtr2σc(D
−1
AF )DA,BA. (4.21)
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This is the “fuzzy” form of the global UA(1) axial anomaly on S2
F . The inetgrated form

of this anomaly is clearly given by

AθF = − i

2l + 1
ǫabc(λ

F )BC(FF
ab)

CDtr2σc(D−1
AF )DA,BA. (4.22)

The central claim of this article is that higher modes of the fuzzy sphere are essentially the

source of the anomaly. In fact these top modes are the source of the edge effects we saw in

(4.11) and in (4.17) which effectively yielded the non-vanishing anomaly (4.21) . Remark

that if we make the top modes larger , i.e l−→∞ , these effects in (4.11) and (4.17) become

smaller while the fuzzy anomaly (4.21) remains non-zero . In the strict limit l−→∞ these

edge effects in (4.11) and (4.17) completely disappear while the anomaly (4.21) survives [

see below for the explicit proof ]. This is the origin of the anomaly in this context .

5. The Continuum Limit

5.1 Gauge Covariant Expansion on S2
F

By definition the local axial anomaly on S2 is the continuum limit l−→∞ of the fuzzy

axial anomaly (4.21) given also in (4.22). From equation (4.22) one can immediately notice

that the computation ( perturbative or otherwise ) of the exact Dirac propagator (DAF )−1

is needed in order to obtain a closed formula of the fuzzy anomaly and its continuum

limit. Towards this end the best approach is as usual to expand the above propagator in

a gauge covariant manner and then calculate the anomaly. As it turns out there exists a

gauge covariant expansion on the noncommutative fuzzy sphere which is not available in

the continuum setting and which yields a non-perturbative result in the limit . In fact it is

precisely in this sense that the fuzzy sphere is said to be a gauge-invariant, chiral-invariant

regularization of the continuum physics . This is also in contrast with other approximation

schemes in which gauge covariant expansions are so often absent .

This gauge covariant expansion can be motivated as follows . Starting with zero gauge

field one can see that the free Dirac propagator 1
DF

admits the expansion

1

DF
=

1

a

1

D2
F

(ΓR + ΓL) =
aΓL

2
+

1

Da
, (5.1)

with

1

Da
= ib

1

|DF |2
D′

F ΓL. (5.2)

In above we have used the result ΓRΓL = −1 + a2

2 (D2
F + 2i b

a
D′

F ) as well as equation (3.10)

where a is the lattice spacing introduced before , i.e a = 2
2l+1 , and b =

√

1 − a2

4 .

D′

F is the Watamura Dirac operator given by D′

F = ǫabcσan
F
b L

R
c [4, 10]. The continuum

limit D′

of D′

F is related to D ( the continuum limit of DF ) by D′

= iγD and hence both

operators D′

and D have the same spectrum . This does not mean that they commute

since in fact we have {D′

,D} = 0 . In the fuzzy , the spectrum of (DF )2 as we have seen
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is simply cut-off at the top modes j = 2l + 1
2 and is given by (j + 1

2)2 while the spectrum

of (D′

F )2 is deformed given by

(D′

F (j))2 =

{

(j +
1

2
)2[1 +

1 − (j + 1
2)2

4l(l + 1)
] , j =

1

2
,
3

2
, ..., 2l +

1

2

}

. (5.3)

In particular the eigenvalues of D′

F when j = 2l + 1
2 are now exactly zero while for other

large j’s these eigenvalues are very small [10]. As a consequence of this behaviour we have

in fact the exact anticommutation relation {ΓR,D′

F } = 0 .

Next we remark that the “Dirac” operator Da defined in (5.2) is such that D−2
a =

D−2
F − a2

4 . In other words on the top modes j = 2l + 1
2 , (Da)

2 is strictly infinite whereas

for the other large j’s the eigenvalues of (Da)
2 are quite large. On the IR modes the

spectrum of (Da)
2 is essentially equal to that of D2

F . Indeed one can explicitly compute

the spectrum of (Da)
2 and one finds the result

(Da(j))
2 =

{

(j +
1

2
)2

(2l + 1)2

(2l + 1
2 − j)(2l + 3

2 + j)
, j =

1

2
,
3

2
, ..., 2l +

1

2

}

. (5.4)

This means in particular that as far as the second term in (5.1) is concerned modes with

large j’s do not effectively propagate . We will show ( after we also take the gauge field

into account ) that the contribution of these UV modes to the anomaly translates in the

continuum limit into the contribution of contact terms whereas the contribution of the IR

modes vanishes identically . As it turns out contact terms yield only a toplogical Chern-

Simons Lagrangian which in two dimensions vanishes identically . This also reflects in a

sense the fact that the above UV modes are suppressed in the propagator (Da)
−1. On the

other hand although the first term aΓL

2 in (5.1) vanishes as it stands in the continuum limit

, its contribution in that limit is not zero and is exactly given by the canonical theta term.

Putting these facts together we conclude that the anomaly emerges essentially from the

UV region of the spectrum as expected. We now give a rigorous proof of this result.

In the presence of gauge fields the free expansion (5.1) becomes a covariant expansion

given by

1

DAF
=

1

D2
GF

1

a

(

1

2
{ΓR, Γ̂L} 1

Γ̂L2
+

1

2
[ΓR, Γ̂L]

1

Γ̂L2
+ 1

)

Γ̂L. (5.5)

We use now the results

{ΓR, Γ̂L} = a2

[

D2
AF − FF − 2

a2

]

, [ΓR, Γ̂L] = 2iabD′

GF . (5.6)

FF is defined in (4.10) and D′

AF is the gauged Watamuras Dirac operator defined by

D′

AF = ǫabcσax
F
b L

R
c where xF

b ’s are the covariant coordinates given by xF
b =

DF
b√

l(l+1)
. In

other words xF
b reduces to nF

b in the absence of gauge fields and to nb in the continuum

limit. We use also the fact that Γ̂L = bσax
F
a + a

2 to deduce the result Γ̂L2 = 1 + a2FF ,

then by putting all these ingredients together we find that the gauge covariant expansion

of the full propagator is given by

1

DAF
=
aΓ̂L

2
− a3

2

FF

1 + a2FF
Γ̂L +

1

DAa
, (5.7)
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with

1

DAa
=

1

D2
AF

[

ibD′

AF +
a

2
FF

]

1

1 + a2FF
Γ̂L. (5.8)

It is not difficult to see that each term in this expansion is exactly covariant under gauge

transformations . It is also obvious that (5.7) reduces in the limit AF
a −→0 to (5.1) .

Furthermore in the continuum limit l−→∞ , (5.7) reduces to 1
DA

= 1
D2

A

(iD′

Aγ) which is

actually an identity since DA = iD′

Aγ and thus the expansion (5.7) is simply not available

to us in the continuum .

In order to compute the contribution of (DAa)
−1 it is obvious that one needs also an

expansion of 1
D2

AF

. To this end we recall first that the square of the Dirac operator DAF

is given by D2
AF = DAF + (La − LR

a + AF
a )2 + i

2ǫabcσcF
F
ab . By using the constraint (3.4)

we can write this square in the form

D2
AF = 2l(l + 1)PAF

[

1 − 1

PAF
vF
a n

R
a

]

, (5.9)

where nR
a ’s are the fuzzy coordinates which act from the right , i.e nR

a = LR
a√

l(l+1)
and where

PAF = 1 +
1 + FF +

√

l(l + 1)σxF

2l(l + 1)
, vF

a = xF
a +

σa

2
√

l(l + 1)
. (5.10)

It is clear that the only bit in D2
AF which acts on the right is ~nR and that PAF acts entirely

on the left . This means that the operator (PAF )αβ can now be treated as a matrix in

Mat2l+1 . We think now of PAF as a propagator and of nR
a v

F
a as a vertex and write the

expansion

1

D2
AF

=
1

2l(l + 1)

∞
∑

N=0

(

1

PAF
vF
a n

R
a

)N 1

PAF

=
1

2l(l + 1)

∞
∑

N=0

(

1

PAF
vF
a1

1

PAF
vF
a2
...

1

PAF
vF
aN

1

PAF

)(

nR
a1
nR

a2
...nR

aN

)

.

(5.11)

The meaning of this expansion will only be clear in the continuum limit which we will take

shortly. The propagator 1
PAF

acts now from the left and thus it can also be thought of as

a matrix in Mat2l+1⊗Mat2 rather than as an operator . It is given by

1

PAF
= (1 − a

2
Γ̂L − a2

2
FF )

1

1 − a3

4−a2 {Γ̂L, FF } − a4

4−a2 (FF )2
, (5.12)

Therefore given any two operators (XL
a )αβ and Y R

b which act from the left and from the

right respectively , i.e (XL
a )αβf≡(Xa)αβf and Y R

b f≡fYb for any f∈Mat2l+1 , we can
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compute

(

1

D2
AF

XL
a Y

R
b

)AB,CD

αβ

=
1

2l(l + 1)

∞
∑

N=0

(

1

PAF
vF
a1

1

PAF
vF
a2
...

1

PAF
vF
aN

1

PAF
Xa

)AC

αβ

(

Ybn
F
aN
...nF

a2
nF

a1

)DB

.

(5.13)

To summarize , the gauge covariant expansion of the propagator 1
DAF

is defined by equations

(5.7) , (5.8), (5.11) and (5.12) . Using these equations together with the definition (5.13)

one obtains an explicit formula for the exact quark propagator on S2
F , viz

(

1

DAF

)AB,CD

αβ

=

(

aΓ̂L

2
− a3

2

FF

1 + a2FF
Γ̂L

)AC

αβ

δBD +

(

1

DAa

)AB,CD

αβ

, (5.14)

with
(

1

DAa

)AB,CD

αβ

=
ibǫabc

2l(l + 1)

∞
∑

N=0

(

1

PAF
vF
a1

1

PAF
vF
a2
...

1

PAF
vF
aN

1

PAF
σax

F
b

1

1 + a2FF
Γ̂L

)AC

αβ

(

Lcn
F
aN
...nF

a2
nF

a1

)DB

+
a

4l(l + 1)

∞
∑

N=0

(

1

PAF
vF
a1

1

PAF
vF
a2
...

1

PAF
vF
aN

1

PAF

FF

1 + a2FF
Γ̂L

)AC

αβ

(

nF
aN
...nF

a2
nF

a1

)DB

.

(5.15)

As we have explained this gauge covariant expansion does not exist on the continuum

sphere . It will be used here to derive the fuzzy axial anomaly and its continuum limit the

local axial anomaly .

5.2 Local Axial Anomaly

This expansion isolates in fact ( in a gauge covariant fashion ) the anomalous bit in the

fermion propagator . More precisely , although the first term in (5.14) vanishes as it stands

in the large l limit , its contribution ( i.e its trace ) gives exactly the canonical anomaly .

Indeed we can easily compute

δ1AθF ≡ − i

2l + 1
ǫabc(λ

FFF
ab)

BD

[

tr2σc

(

aΓ̂L

2

)DA,BA

+ tr2σc

(

− a3

2

FF

1 + a2FF
Γ̂L

)DA,BA]

= −2b
iǫabc

2l + 1
Trlλ

FFF
abδ1x

F
c , (5.16)

where

δ1x
F
c = xF

c − a2

2b
tr2

(

σc
FF

1 + a2FF
Γ̂L

)

. (5.17)

This gauge-covariant vector ~δ1x
F in the continuum limit becomes exactly the unit vector

~n on the 2−dimensional sphere and hence the fuzzy anomaly (5.16) reduces in that limit

to the theta term on S2 , in other words

−2b
iǫabc

2l + 1
Trlλ

FFF
abδ1x

F
c −→− 2iǫabc

∫

S2

dΩ

4π
λ(~n)Fab(~n)nc , when l−→∞. (5.18)
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For example by using the star product on S2
F one can see that in the continuum limit

l−→∞ where a−→0 and b−→1 we have δ1x
F
a −→na , FF

ab−→Fab , λF−→λ while the trace
1

2l+1Trl becomes the integral
∫

S2
dΩ
4π

.

5.3 The Chern-Simons Action

From equation (5.8) one can immediately read the remaining two extra corrections corre-

sponding to the propagator 1
DAa

, viz

δ2AθF = − i

2l + 1
ǫabc(λ

FFF
ab)

BDtr2σc

(

1

D2
AF

(ibD′

AF )
1

1 + a2FF
Γ̂L

)DA,BA

= −iǫabc

(

1

1 + a2FF
Γ̂LλFFF

abσc

)CD

βα

(

1

D2
AF

(
i

2
b2ǫpqrσpx

F
q n

R
r )

)DA,CA

αβ

, (5.19)

and

δ3AθF = − i

2l + 1
ǫabc(λ

FFF
ab)

BDtr2σc

(

1

D2
AF

(
a

2
FF )

1

1 + a2FF
Γ̂L

)DA,BA

= −iǫabc

(

1

1 + a2FF
Γ̂LλFFF

abσc

)CD

βα

(

1

D2
AF

(
a2

4
FF )

)DA,CA

αβ

. (5.20)

By using the expansion (5.11) with (5.12) together with the definition (5.13) we obtain for

δ2AθF and δ3AθF the formulae

δ2AθF = −2b
iǫabc

2l + 1
Trlλ

FFF
abδ2x

F
c

δ2x
F
c =

∑

N=1

(

1

2l + 1
Trl(n

F
aN
...nF

a1
nF

r )

)(

tr2(
1

PAF
vF
a1

1

PAF
vF
a2
...

1

PAF
vF
aN
δF
rc)

)

(5.21)

and

δ3AθF = −2b
iǫabc

2l + 1
Trlλ

FFF
abδ3x

F
c

δ3x
F
c =

∑

N=0

(

1

2l + 1
Trl(n

F
aN
...nF

a1
)

)(

tr2(
1

PAF
vF
a1

1

PAF
vF
a2
...

1

PAF
vF
aN
δF
c )

)

, (5.22)

where δF
rc and δF

c stand for

δF
rc =

iǫrpq

2b

1

PAF
σpx

F
q

1

1 + a2FF
Γ̂Lσc , δ

F
c =

a2

4b3
1

PAF
FF 1

1 + a2FF
Γ̂Lσc. (5.23)

Before we take the continuum limit of these expressions we remark that the components of

the two vectors ~δ2x
F and ~δ3x

F are matrices in Mat2l+1 which are covariant under gauge

transformations. Furthermore because of the presence of the traces Trl(n
F
aN
...nF

a1
nF

r ) and

Trl(n
F
aN
...nF

a1
) , the components δ2x

F
c and δ3x

F
c are also invariant under the extra symmetry

nF
a −→wF

a = W+nF
a W where W is an arbitrary unitary transformation given by W =

eiα
F
, αF∈Mat2l+1. These transformations W are different from gauge transformations U

introduced in section 3 . For example one can see from their explicit action

nF
a −→wF

a = W+nF
a W = nF

a +
1

√

l(l + 1)
W+[La,W ], (5.24)
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that the fuzzy coordinates wF
a reduce to the same continuum coordinates na in the limit, in

other words this extra symmetry is not available in the continuum . Using this symmetry

one can therefore rewrite the vectors δ2x
F
c and δ3x

F
c in the equivalent form

δ2x
F
c =

∑

N=1

(

1

2l + 1
Trl(w

F
aN
...wF

a1
wF

r )

)(

tr2(
1

PAF
vF
a1

1

PAF
vF
a2
...

1

PAF
vF
aN
δF
rc)

)

(5.25)

and

δ3x
F
c =

∑

N=0

(

1

2l + 1
Trl(w

F
aN
...wF

a1
)

)(

tr2(
1

PAF
vF
a1

1

PAF
vF
a2
...

1

PAF
vF
aN
δF
c )

)

. (5.26)

We can now immediately write down the continuum limit of the above expressions . We

already know that in this limit a−→0 , b−→1 , 1
2l+1Trl−→

∫

S2 , nF
a −→na , xF

a −→na,

FF
ab−→Fab , λF−→λ , αF−→α and Γ̂L−→γ . From equation (5.10) we also see that in this

limit PAF−→1 and vF
a −→na , whereas from equation (5.24) we see that wF

a −→na . For

example the continuum limit of (5.21) is given by

δ2Aθ = −2iǫabc

∫

S2

dΩ

4π
λ(~n)Fab(~n)δ2xc(~n)

δ2xc(~n) =
i

2

∫

S2

dΩ
′

4π
(~n×~n′

)ptr2

(

σc

∑

N=1

(~n.~n
′

)Nσpγ(~n)

)

. (5.27)

It is easily seen that all the expected continuum divergence arises from the series
∑

N=1(~n.~n
′

)N

when ~n = ~n
′

, i.e from contact terms . Thus we need first to separate contact terms as

follows

δ2xc(~n) =
i

2

[

(~n×~n′

)ptr2

(

σc

∑

N=1

(~n.~n
′

)Nσpγ(~n)

)]

~n
′
=~n

+ δ2xc(~n)|nct (5.28)

where

δ2xc(~n)|nct =
i

2

∫

~n
′
6=~n

dΩ
′

4π
(~n×~n′

)ptr2

(

σc

∑

N=1

(~n.~n
′

)Nσpγ(~n)

)

. (5.29)

It is clear that in δ2x
F
c (~n)|nct we have |~n.~n′ | = |cosθ| < 1 where θ is the angle between

~n and ~n
′

and thus the series
∑

N=1(~n.~n
′

)N is now convergent . We can therefore simply

substitute the result

∑

N=1

(~n.~n
′

)N =
~n.~n

′

1 − ~n.~n′
,

and thus obtain

δ2xc(~n)|nct =

∫

~n
′
6=~n

dΩ
′

4π

(

nc(~n.~n
′

) − n
′

c

)

~n.~n
′

1 − ~n.~n′

= (ncnd − δcd)ne

∫

S2

dΩ
′

4π

n
′

dn
′

e

1 + ǫ− ~n.~n′
,
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where in the second line we have replaced
∫

~n
′
6=~n

dΩ
′

4π
by the intgeral over the full sphere

∫

S2
dΩ

′

4π
with the prescription ǫ > 0 so that the contribution of the terms ~n

′

= ~n is kept

equal to zero .

Remark that ncδ2xc(~n)|nct = 0 and hence the contribution of the above non-contact

terms is identically zero since in the continuum we also have naAa = 0 , ǫabcFab =

2inc∂b(Ab) and thus

δ2Aθ|nct = −2iǫabc

∫

S2

dΩ

4π
λ(~n)Fab(~n)δ2xc(~n)|nct

= 4

∫

S2

dΩ

4π
λ∂b(Ab)ncδ2xc|nct

≡ 0. (5.30)

For contact terms the series
∑

N=1(~n.~n
′

)N is obviously divergent and thus the first term of

equation (5.28) is not well defined . Thus it is natural to go back to the finite expression

(5.25) and think of it now as a gauge-invariant regularization of contact terms with a cut-

off l provided here by the fuzzy sphere . Since we are interested in the continuum theory

the cut-off l is effectively large and thus one may retain only the first few corrections to

the continuum theory . As it turns out the contribution of contact terms is regularized

completely and in a gauge-invariant manner if we only keep O(1
l
) corrections. To see how

all this works explicitly , we use the star product on S2
F and replace δ2x

F
c by its image

< δ2x
F
c > (~n) via the coherent states , namely

< δ2x
F
c > (~n) =

∑

N=1

(
∫

S2

dΩ
′

4π
< wF

aN
> ∗...∗ < wF

a1
> ∗ < wF

r > (~n
′

)

)

×
(

tr2 <
1

PAF
> ∗ < vF

a1
> ∗ < 1

PAF
> ∗ < vF

a2
> ∗...∗ < 1

PAF
> ∗ < vF

aN
> ∗ < δF

rc > (~n)

)

.

Since non-contact terms are regular in the limit one can still treat them in the same way as

before and hence their contribution is zero . This means that < δ2x
F
c > (~n) is dominated

by contact terms , namely

< δ2x
F
c > (~n) =

∑

N=1

(

< wF
aN

> ∗...∗ < wF
a1
> ∗ < wF

r > (~n)

)

×
(

tr2 <
1

PAF
> ∗ < vF

a1
> ∗ < 1

PAF
> ∗ < vF

a2
> ∗...∗ < 1

PAF
> ∗ < vF

aN
> ∗ < δF

rc > (~n)

)

.

From equation (2.19) we have < nF
a >= na − 1

2l
na + O( 1

l2
) and thus we can compute to

this order in 1
l

the following quantities

< Γ̂L >= γ +
1

l
(−1

2
γ + σA+

1

2
) +O(

1

l2
) , <

1

PAF
>= 1 − 1

2l
γ +O(

1

l2
)

< vF
a >= na +

1

l
(−1

2
na +Aa +

σa

2
) +O(

1

l2
) , < wF

a >= na +
1

l
(−1

2
na + iLa(α)) +O(

1

l2
)

< δF
rc >=

i

2
ǫrpq

(

nqσpγσc +
1

l
σp(−nqγ + nqσA+

1

2
nq + γAq)σc −

1

2l
nqγσpγσc

)

+O(
1

l2
).
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Also by using the star product on S2
F we compute

<
1

PAF
> ∗ < vF

a >=<
1

PAF
>< vF

a > +O(
1

l2
) = na +

1

l

(

− 1

2
na +Aa +

σa

2
− 1

2
γna

)

+O(
1

l2
).

Remark for example the continuum limit δF
rc−→δrc = i

2ǫrpqσpnqγσc when l−→∞ as well as

the limit < 1
PAF

> ∗ < vF
a > −→na when l−→∞. Finally and by using once again the star

product we compute the formulae

< wF
aN

> ∗...∗ < wF
a1
> ∗ < wF

r > (~n) = < wF
aN

> ... < wF
a1
>< wF

r >

+
1

2l
Kpqnr

N
∑

i=2

∑

j<i

naN
...∂pnai

...∂qnaj
...na1

+
1

2l
Kpr∂p(naN

...na1
) +O(

1

l2
),

and

<
1

PAF
> ∗ < vF

a1
> ∗...∗ < 1

PAF
> ∗ < vF

aN
> ∗ < δF

rc > = <
1

PAF
>< vF

a1
> ... <

1

PAF
>< vF

aN
>< δF

rc >

+
1

2l
δrcKpq

N−1
∑

i=1

∑

j>i

na1
...∂pnai

...∂qnaj
...naN

+
1

2l
Kpq∂p(na1

...naN
)∂qδrc +O(

1

l2
).

Putting all these results together we obtain the contribution of contact terms in the form

< δ2x
F
c > (~n) = tr2

(

∑

N=1

(

<
1

PAF
>< vF

a >< wF
a >

)N

< δF
rc >< wF

r >

)

= (l + 1)

(

tr2 < δF
rc >

)

< wF
r >,

where we have also used the result

∑

N=1

(

<
1

PAF
>< vF

a >< wF
a >

)N

=
∑

N=1

(1 − 1

l
)N = l + 1.

In other words the sum over N is linearly divergent with l and hence the remaining term

(tr2 < δF
rc > ) < wF

r > must approach in the continuum limit 0 at least as 1
l

in order to

reproduce a finite expression. A final calculation shows that this is indeed the case where

from the equation

tr2 < δF
rc > =

i

2
ǫrpqnqtr2σpγσc +

iǫrpq

2l
tr2σcσp( − nqγ + nqσA+

1

2
nq + γAq) −

iǫrpq

4l
nqtr2γσpγσc

= (nrnc − δrc) +
iǫrcqnq

l
− 1

l
[nrnc − δrc − ncAr − nrAc],

we deduce that (tr2 < δF
rc > ) < wF

r >= 1
l
[Ac− iLc(α)] . The contribution of contact terms

is therefore finite equal to

< δ2x
F
c > (~n) = Ac − iLc(α), (5.31)
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and as a consequence

δ2Aθ = −2iǫabc

∫

S2

dΩ

4π
λ(~n)Fab(~n)Ac(~n). (5.32)

The dependence on the arbitrary function α drops because of the identity ǫabcFabLc(α) = 0.

This is equivalent to the fact that the term −iLc(α) in (5.31) can always be canceled by

a continuum gauge transformation A
′

a = Aa − iLa(Ω), i.e the fuzzy symmetries (5.24) are

not available as expected in the continuum setting since they can be eliminated by gauge

symmetries . (5.32) is exactly the topological Chern-Simons action in two dimensions and

thus it vanishes identically as one might easily check. Its emergence from contact terms

of the propagator 1
DaA

is intimately related to the fact that the top modes of the Dirac

operator DAa as opposed to those of the exact Diarc operator DAF are very large .

Similarly to above the last correction to the anomaly given by equation (5.22) has the

limit

δ3Aθ = −2iǫabc

∫

S2

dΩ

4π
λ(~n)Fab(~n)δ3xc(~n)

δ3xc(~n) =

∫

S2

dΩ
′

4π
tr2

(

∑

N=0

(~n.~n
′

)Nδc(~n)

)

. (5.33)

The vector ~δ(~n) in above is in fact identically zero as one might easily check . Again for non-

contact terms the series
∑

N=0(~n.~n
′

)N converges and thus the corresponding contribution

clearly vanishes . For contact terms we have to regularize as before but since now the vector

< ~δF > (~n) vanishes as 1
l2

and not as 1
l

we immediately conclude that the contribution of

contact terms is zero in this case and thus we obatin the result

δ3Aθ ≡ 0. (5.34)

6. Conclusion

We showed that the local axial anomaly in 2−dimensions emerges naturally if one postulates

an underlying noncommutative fuzzy structure of spacetime . As we have discussed in this

article this result consists in three main parts :

1) We showed that the Dirac-Ginsparg-Wilson relation on S2
F contains already at the

classical level the anomaly in the form of an edge effect which under quantization becomes

precisely the “fuzzy” U(1)A axial anomaly on the fuzzy sphere.

2) We derived a novel gauge-covariant expansion of the quark propagator in the form
1

DAF
= aΓ̂L

2 + 1
DAa

where a = 2
2l+1 is the lattice spacing on S2

F , Γ̂L is the covariant

noncommutative chirality and DAa is an effective Dirac operator which has essentially the

same IR spectrum as DAF but differes from it on the UV modes since the eigenvalues

of DAa on the top modes are very large compared to those of DAF . Most remarkably

however is the fact that both operators share the same continuum limit and thus the above

covariant expansion is not available in the continuum theory .

3) The first bit in this expansion aΓ̂L

2 although it vanishes as it stands in the continuum

limit , its contribution to the anomaly is exactly the canonical theta term. The contribution
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of the propagator 1
DAa

is on the other hand equal to the toplogical Chern-Simons action

which in two dimensions is identically zero . In particular we have explicilty shown that

beside the cut-off l provided by the star product of the fuzzy sphere itself there is no need

to any extra regulator even while approaching the limit .

Finally we have to note that a complete extension of the above results to the case

of monopoles is more or less straightforward after we identify correctly the corresponding

bundle structure on S2
F . As it turns out this is indeed possible and thus the extension can

be made without much difficulty . The relevant detail will be however reported elsewhere.

The computation of the effective action of the Schwinger model on the fuzzy two-sphere,

which will allow us on the other hand to probe the solvability of the model , will also be

reported elsewhere .
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7. Appendix

1 On continuum S2 exact chiral invariance of the free classical action is expressed by the

anticommutation relation {γ,D} = 0 which is in fact the limit of the Ginsparg-Wilson re-

lation (3.10). In the presence of gauge fields , the Ginsparg-Wilson relation (3.10) becomes

(4.11) and the edge effect seen there is exactly the source of the anomaly . We will now

show that if we try instead to formulate chiral invariance on the fuzzy sphere without edge

effect then the action becomes complex and not gauge invariant and thus not quantizable

in any canonical fashion .

As we have already said the continuum limit of the classical actions (3.5) and (3.12) are

given respectively by (3.13) and (3.14) . (3.14) was already shown to be gauge invariant,

but under the canonical continuum chiral transformations ψ−→ψ
′

= ψ + λγψ , ψ̄−→ψ̄
′

=

ψ̄ + λψ̄γ , one can show that it is invariant only if the gauge field is constrained to satisfy

naAa = 0 because of the identity DAγ+γDA = 2 ~A.~n. From the continuum limit of (3.4) it is

obvious that this constraint is satisfied and hence chiral symmetry is maintained. However

one wants also to formulate chiral symmetry without the need to use any constraint on the

gauge field , indeed the action

∫

dΩ

4π

[

ψ̄Dψ + ψ̄σ̂aAaψ

]

. (7.1)

is strictly chiral invariant for arbitrary gauge configurations . σ̂a is the Clifford algebra

projected onto the sphere , i.e σ̂a = Pabσb , Pab = δab − nanb . The action (7.1) is also still

gauge invariant because of the identity naLa = 0 . Action (7.1) can be rewritten as follows

SC =

∫

dΩ

4π

[

ψ̄Dψ + ǫabcψ̄ZbncAaψ

]

, Za =
i

2
[γ, σa]. (7.2)

– 22 –



From this form of the action one can immediately define the following chiral-covariant Dirac

operator DC = D + ǫabcZbncAa. The difference between the continuum gauge-covariant

Dirac operator DA and the continuum chiral-covariant Dirac operator DC is proportional

to the normal component φ = naAa of the gauge field , i.e DC = DA − γφ , and hence they

are essentially identical ( by virtue of the constraint naAa = 0 ) , i.e (3.14) and (7.2) are

equivalent actions . The Fuzzy analogue of (3.14) is (3.12) whereas the fuzzy analogue of

(7.2) is the action

SCF =
1

2l + 1
Trl

[

ψ̄FDFψF + ǫabcψ̄FZ
F
b n

F
c A

F
a ψF

]

, ZF
a =

i

2
[ΓLσa + σaΓ

R]. (7.3)

The underlying fuzzy Dirac operator is obviously given by DCF = DF +ǫabcZ
F
b n

F
c A

F
a which

tends in the large l limit to DC . This means in particular that the two Dirac operators

DCF and DAF have the same continuum limit. As a consequence the corresponding fuzzy

classical actions (7.3) and (3.12) approach the same continuum action (3.14) in the limit.

Remark also that the Dirac operator DCF satisfies the Ginsparg-Wilson relation DCF ΓR−
ΓLDCF = 0 and hence the action (7.3) is invariant under free fuzzy chiral transformations

ψF−→ψ
′

F = ψF + ΓRψFλ
F +O((λF )2)

ψ̄F−→ψ̄
′

F = ψ̄F − λF ψ̄F ΓL +O((λF )2). (7.4)

In here the chiral parameter λF which is still a general (2l + 1)×(2l + 1) matrix does

not transform under gauge symmetries in contrast with the case considered in section 4.

Also these fuzzy chiral transformations (7.4) as opposed to the fuzzy chiral transformations

(4.14) do not depend on the gauge field , yet both (7.4) and (4.14) reduce in the limit to

the same continuum chiral transformations .

Remark however that the Dirac operator DCF is not self-adjoint as well as not gauge-

covariant. In other words the action (7.3) is complex and not gauge invariant and thus it

is not suited for any quantization procedure.

2 Measure-Transforming Chiral Symmetries In the remainder of this appendix we

introduce measure-changing chiral transformations as opposed to the chiral transformations

(4.14) which leave the measure invariant. These new transformations as it turns out yield

the same anomaly (4.21) and thus they are equivalent to the transformations (4.14) . The

only difference is the fact that this anomaly (4.21) arises now from the measure instead.

We will also define gauge-invariant axial current as opposed to the gauge-covriant axial

current defined in section 4.3.

Remark that since ΓR − Γ̂L−→ − 2γ when l−→∞ , the continuum limit of (4.18) is

the usual formal answer, i.e

Sθ = −
∫

dΩ

4π
λ(x)

∑

µ

φ+
µ (x)(−2γ)φµ(x). (7.5)

In the continuum the sum
∑

µ is not cutoff since all orbital angular momenta are allowed

and obviously φµ(x) stands now for the eigenfunctions of the continuum gauged Dirac
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operator DA = D + σaAa . These states satisfy the completeness relation
∑

µ

φα(x)φ+
β (y) = δ2(x− y)δαβ . (7.6)

If we try now to use this completeness relation in (7.5) we will instead get the ill-defined

expression Sθ = 2
∫

dΩ
4π
λ(x)δ2(0)tr(γ) and thus a regularization is needed . For example

Fujikawa regularization of (7.5) was performed in [16] and was shown there to reproduce

the correct anomaly . Here however we know from (4.19) that the action (4.18 ) on this

finite matrix model is identically zero and this can not be made into anything else which

seems in contradiction with Fujikawa regularization of (7.5) .

It is therefore natural to modify appropriately chiral transformations in such a way as

to shift the anomaly (4.21) from the action to the measure . The required deformation is

not difficult to find and one obtains

ψF−→ψ
′

F = ψF + (ΓRλψF ) +O(λ2)

ψ̄F−→ψ̄
′

F = ψ̄F − (ψ̄FλΓ̂L) − (ψ̄FλδΓ) +O(λ2), (7.7)

where the deformation δΓ is given by

δΓ = − i

2l + 1
ǫabcσcF

F
ab

1

DAF
. (7.8)

Remark that (7.7) is also dictated by (4.11) which can be put in the equivalent form

DGF ΓR − (Γ̂L + δΓ)DGF = 0. Remark also that all needed requirement are satisfied by

this deformation : δΓ is gauge covariant and drops in the limit and therefore the trans-

formations (7.7) are consistent with gauge symmetry and reduce in the limit to ordinary

chiral transformations . Remark also that we can invert the gauged Dirac operator since

we are considering only trivial U(1)−bundles over S2 , i.e there is no monopole. Under

these modified chiral transformations the change in the action is only a total covariant

divergence , namely

∆SAF = − 1

2l + 1
Trlλ[DF

a ,J 5
a ], (7.9)

while the measure becomes non-symmetric , in other words

SθF = − 1

2l + 1
Trl

∑

µ

φ+(µ,A)λ(ΓR − Γ̂L − δΓ)φ(µ,A)

= − i

2l + 1
ǫabc(λ)BC(FF

ab)
CDtr2σc(D−1

AF )DA,BA. (7.10)

This anomaly is of course exactly identical to the result (4.22) since what we have just

done is to shift the anomaly from the action to the measure . Remark also that since

ΓR − Γ̂L − δΓ−→− 2γ when l−→∞ the continuum limit of the first line of (7.10) is still

given by (7.5) which as we said needs a proper regularization, whereas the second line

of (7.10) can now be thought of as a regularization of (7.5) which is provided in this

noncommutative context by the fuzzy sphere .

– 24 –



3 Gauge-Invariant Axial Current Similarly to the gauge-covariant axial current

defined in section 4.3 we define now gauge-invariant axial current . First we introduce the

following chiral transformations

ψF−→ψ
′

F = ψF + (ΓRψF )λ+O(λ2)

ψ̄F−→ψ̄
′

F = ψ̄F − λ(ψ̄F Γ̂L) − λ(ψ̄F δΓ) +O(λ2), (7.11)

where now the chiral parameter λ is a matrix in Mat2l+1 which does not transform under

gauge transformations. Under these gauge-invariant chiral transformations the change in

the action is only a total divergence , namely

∆SGF = − 1

2l + 1
Trlλ[La, J

5
a ],

J5
a = ψ̄FσaΓ

RψF . (7.12)

The measure is still non-symmetric but its change is now of the form

SθF = − 1

2l + 1
Trlλ

∑

µ

φ+(µ,A)(ΓR − Γ̂L − δΓ)φ(µ,A)

= − i

2l + 1
ǫabc(λ)BA(FF

ab)
CDtr2σc(D−1

AF )DB,CA. (7.13)

The contribution of ΓR − Γ̂L vanished by a similar argument to that which led to (4.19) .

The WT identity ∆SGF = SθF will now simply look like

[La, J
5
a ]AB = iǫabc(F

F
ab)

CDtr2σc(D−1
AF )DB,CA. (7.14)

In this case since [La, J
5
a ]AB does not transform under gauge transformations , one can

immediately conclude that the left hand side must also not transform under gauge trans-

formations and therefore it can only be proportional to the identity , i.e [La, J
5
a ]AB∝δAB .
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