
Random Walks on a Complete Graph:

A Model for Infection

Nilanjana Datta
Statistical Laboratory,

Centre for Mathematical Sciences,

Wilberforce Road, Cambridge CB3 0WB, United Kingdom.

Email: n.datta@statslab.cam.ac.uk

Tony C. Dorlas
Dublin Institute for Advanced Studies

School of Theoretical Physics

10 Burlington Road, Dublin 4, Ireland.

Email: dorlas@stp.dias.ie

December 22, 2003

Abstract

We introduce a new model for the infection of one or more subjects
by a single agent and calculate the probability of infection after a fixed
length of time. We model the agent and subjects as random walkers
on a complete graph of N sites, jumping with equal rates from site
to site. When one of the walkers is at the same site as the agent
for a length of time τ , we assume that the infection probability is
given by an exponential law with parameter γ, i.e. q(τ) = 1 − e−γτ .
We introduce the boundary condition that all walkers return to their
initial site (‘home’) at the end of a fixed period T . We also assume that
the incubation period is longer than T so that there is no immediate
propagation of the infection.

In this model, we find that for short periods T , i.e. γT ¿ 1 and
T ¿ 1, the infection probability is remarkably small and behaves
like T 3. On the other hand, for large T , the probability tends to 1 (as
might be expected) exponentially. However, the dominant exponential
rate is given approximately by 2γ

(2+γ)N and is therefore small for large
N .
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1 Introduction

Models for the spread of an infection are important for studying their asymp-
totic behaviour, especially for long time. Numerous models have already been
studied [1, 2, 3]. Here we introduce a particularly simple model which con-
tains a new element. Namely, we take into account the fact that contact
with an infectious agent generally takes place during the day (i.e. a set pe-
riod) after which people return to their respective homes. This introduces a
particular boundary condition into the problem.

We model the infectious agent and the initially uninfected subjects as
random walkers on a complete graph of N sites. For simplicity we assume
that all walkers jump from site to site with the same rate, which we take
to be 1. (This obviously means that the length of the day, or appropriate
period, is measured in terms of this rate.) We then calculate the probability
distribution of the time a second walker coincides with the infected walker,
starting and ending after a period of time T at a different site. This allows us
to compute in particular the probability of infection of the second walker if
we assume that during contact with the agent the probability of infection is
given by an exponential law: q(τ) = 1− e−γτ with some constant γ > 0. The
graph of Figure 1 below shows the behaviour of this infection probability.

Asymptotically for small T , the infection probability behaves like

Pinfection(T ) ∼
γT 3

3(1 + (N − 1)e−T )2
. (1.1)

(For T ¿ 1 this reduces to 1
3N2T

3 but the above formula (1.1) is more
accurate for large N and moderately small T .) This is seen more clearly in
Figure 1, which also shows the graph for the approximation as a dadot line.

On the other hand, for large T , the infection probability tends to 1 at an
exponential rate: Pinfection(T ) ∼ constant × e−rN (γ)T , the dominant rate
being given by

rN(γ) =
1

2

(

2 + γ −
√

(2 + γ)2 − 8

N
γ

)

∼ 2γ

(2 + γ)N
(1.2)

which is clearly small for large N (as well as small γ).
Random walks on a complete graph have been studied before, especially

by Winkler [5, 4] and Aldous [6, 7], but the problem studied in this paper
has not been addressed before. Random walks on graphs have various other
applications, in particular in physics. The relation with the physics of poly-
mers [11, 12, 13] and Feynman-Kac representation of quantum many-body
systems [9, 10] is well-known. A particular application of random walks on
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Figure 1: Infection probability of a single walker as a function
of the period T for N = 10. The solid line corresponds to
the case where the walkers are constrained to return to their
starting points; the dashed line corresponds to unconstrained
walkers.

a complete graph to a lattice model of a boson gas was elaborated by Toth
[8].

2 The time of coincidence of two walkers

We label the infected agent as walker ξ0 and the initially uninfected walker
as walker ξ1. We want to compute the probability distribution of the total
length of time that the two walkers coincide, i.e. are at the same site. Similar
problems were considered by Winkler [5, 4] and Aldous [6, 7]. We can sub-
divide the total time of coincidence into a number k of intervals. Between
the intervals, the walks must avoid one another. We start by computing
the transition probabilities for two random walks between two intervals of
coincidence.

Denote by Pt(A) the probability of the event A for walks during a time
interval of length t and let P̄t(A) = Pt(A and the walks do not coincide).
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Figure 2: Infection probability as a function of the period T
for small T . The drawn line corresponds to the case where
the walkers are constrained to return to their starting points;
the dashed line corresponds to unconstrained walkers, and the
dadot line is the approximation (1.1).

Assuming unit jump rate, we have, for a single walker ξ,

P (ξ(t+ δt) = x′ | ξ(t) = x) =







1
N
δt if x′ 6= x

1− N−1
N

δt if x′ = x.
(2.1)

and

Pt(ξ : x→ x′) = e−tδx,x′ +
1

N
(1− e−t). (2.2)

Now define

g1(t) = P̄t

(

ξ0 : x→ x

ξ1 : x′ → ·

)

:=
∑

x′′ 6=x

P̄t

(

ξ0 : x→ x

ξ1 : x′ → x′′

)

. (2.3)

and

g2(t) = P̄t

(

ξ0 : x→ x′

ξ1 : x′ → ·

)

:=
∑

x′′ 6=x′

P̄t

(

ξ0 : x→ x′

ξ1 : x′ → x′′

)

. (2.4)
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We can compute g1(t) and g2(t) as follows. Let t′ denote the last time at
which ξ0 jumps. Then

g1(t) = P̄t

(

ξ0 : x→ x constant

ξ1 : x′ → ·

)

+
∑

x′′ 6=x

∑

x′′′ 6=x,x′′

∫ t

0

P̄t′

(

ξ0 : x→ x′′′

ξ1 : x′ → x′′

)

dt′

N
e−(t−t′), (2.5)

where we use the fact that

P̄t

(

ξ0 : x→ x constant

ξ1 : x′ → ·

)

= e−t. (2.6)

This follows from

P̄δt

(

ξ0 : x→ x constant
ξ1 : x′ → ·

)

=

(

1− N − 1

N
δt

)2

+

(

1− N − 1

N
δt

)

N − 2

N
δt

∼ 1− δt. (2.7)

We can express the probability in the integrand of (2.5) as follows:

∑

x′′ 6=x

∑

x′′′ 6=x,x′′

P̄t

(

ξ0 : x→ x′′′

ξ1 : x′ → x′′

)

= P̄t

(

ξ0 : x→ ·
ξ1 : x′ → ·

)

− P̄t

(

ξ0 : x→ ·
ξ1 : x′ → x

)

−
∑

x′′ 6=x

P̄t

(

ξ0 : x→ x

ξ1 : x′ → x′′

)

= e−(2/N)t − g2(t)− g1(t) (2.8)

The expression e−
2
N

t is derived in the same way as (2.6): either both walks
stay where they are, or one walk jumps to one of N − 2 other positions.

P̄δt

(

ξ0 : x→ ·
ξ1 : x′ → ·

)

=

(

1− N − 1

N
δt

)2

+ 2

(

1− N − 1

N
δt

)

N − 2

N
δt

∼ 1− 2

N
δt. (2.9)

Analogous to (2.5) we also have

g2(t) =
∑

x′′ 6=x

∑

x′′′ 6=x′′,x

∫ t

0

P̄t′

(

ξ0 : x→ x′′′

ξ1 : x′ → x′′

)

dt′

N
e−t+t′

= g1(t)− e−t. (2.10)
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Inserting this into (2.5) we obtain the following integral equation for g1(t):

g1(t) = e−t +

∫ t

0

[

e−
2
N

t′ + e−t′ − 2g1(t
′)
]

e−(t−t′) dt
′

N
. (2.11)

With the obvious initial condition g1(0) = 1 the solution is

g1(t) =
N − 2

2N
e−

N+2
N

t +
1

N
e−

2
N

t +
1

2
e−t. (2.12)

Hence, by (2.10),

g2(t) =
N − 2

2N
e−

N+2
N

t +
1

N
e−

2
N

t − 1

2
e−t. (2.13)

We will also need

f(t) = P̄t

(

ξ0 : x→ x′′

ξ1 : x′ → ·

)

, (2.14)

where x′′ 6= x, x′. (Clearly, if x′′ = x then the right-hand side is just g1(t)
and if x′′ = x′ then it is g2(t) by symmetry.) If x′′ 6= x, x′ then

f(t) = P̄t

(

x→ x′′

x′ → ·

)

=
1

N − 2

[

P̄t

( x→ ·
x′ → ·

)

− P̄t

(

x→ x′

x′ → ·

)

− P̄t

(x→ x

x′ → ·
)

]

=
1

N − 2

[

e−
2
N

t − g2(t)− g1(t)
]

=
1

N
e−

2
N

t(1− e−t). (2.15)

(Here and in the following we omit the explicit mention of the walks ξ0 and
ξ1.)

Now consider first two walks conditioned to start and end after time T
at the same point x. We compute the probability distribution of the total
time τ of coincidence of the two walks. Clearly, there is a finite probability
pT that the walks coincide over the entire time interval, i.e. if they do not
jump. This probability is

pT = exp

[

−2N − 1

N
T

]

. (2.16)

For τ < T , there will in general be a number k of intervals where the walks
do not coincide. We denote ρ

(=)
k (T, τ) the probability density for k intervals
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of non-coincidence with equal initial and final points of coincidence, and
similarly, ρ

(6=)
k (T, τ) for unequal initial and final points. Let the intervals of

non-coincidence be (t1, t2), (t3, t4), . . . , (t2k−1, t2k) where 0 < t1 < t2 < · · · <
t2k < T . Considering the last interval of non-coincidence (t2k−1, t2k), one of
the walks has to jump in a infinitesimal time dt2k−1 and one has to jump in
an infinitesimal time dt2k. These jumps happen with probability dt2k−1 dt2k

N2 .
We have to distinguish two cases: either the two points of coincidence before
t2k−1 and after t2k are the same, or they are different. In the first case, there
are two possibilities (see Figure 2): if the walk that jumps first also jumps
last, the transition probability is g1(t), if the walk that jumps first does not
jump last, it is g2(t), where t = t2k − t2k−1.

a b

t
2k-1

t
2k-1

t
2k t

2k

Figure 3: Example trajectories of walks starting and ending at
the same point. (For clarity the initial and final trajectories
of the two walks have been separated by a small distance; they
represent in fact the same point.) In (a) the first walk to
jump away is the last to return to the initial point; in (b) it
returns to the initial point before the other walk.

The total transition probability in the case in which the points of coin-
cidence immediately before and after the time interval of length t are the
same, is therefore

η(=)(t) = g1(t) + g2(t) =
N − 2

N
e−

N+2
N

t +
2

N
e−

2
N

t. (2.17)

Similarly, the total transition probability in the case in which the points of
coincidence correspond to different levels is

η(6=)(t) = [g1(t) + (N − 2)f(t)] + [g2(t) + (N − 2)f(t)]

= 2e−
2
N

t − η(=)(t)

=

(

2
N − 1

N
− N − 2

N
e−t

)

e−
2
N

t. (2.18)
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Finally, we remark that the total time of coincidence τ in case of k inter-
vals of non-coincidence equals

τ = τ ′ + T − t2k,

where τ ′ is the time of coincidence of walks in the time interval [0, T − t2k−1].
We can therefore write the following recursive equations:

ρ
(=)
k (T, τ) =

2

N2

∫ τ

0

dτ ′
∫ T−τ+τ ′

τ ′
dt2k−1 e

−2 N−1
N

(T−t2k)

{

(N − 1)ρ
(=)
k−1(t2k−1, τ

′)η(=)(T − τ + τ ′ − t2k−1)

+(N − 1)ρ
(6=)
k−1(t2k−1, τ

′)η(6=)(T − τ + τ ′ − t2k−1)

}

(2.19)

and

ρ
(6=)
k (T, τ) =

2

N2

∫ τ

0

dτ ′
∫ T−τ+τ ′

τ ′
dt2k−1 e

−2 N−1
N

(T−t2k)

{

ρ
(=)
k−1(t2k−1, τ

′)η(6=)(T − τ + τ ′ − t2k−1)

+(N − 2)ρ
(6=)
k−1(t2k−1, τ

′)η(6=)(T − τ + τ ′ − t2k−1)

+(N − 1)ρ
(6=)
k−1(t2k−1, τ

′)η(=)(T − τ + τ ′ − t2k−1)

}

(2.20)

Note that the factor of 2 arises because either of the two walkers can jump
first. The factor exp

[

−2N−1
N

(T − t2k)
]

corresponds to the final interval where
neither walker jumps.

The solutions to these equations are, as can be easily verified,

ρ
(=)
k (T, τ) =

2k(N − 1)

N2k+1
e−2 N−1

N
τe−

2
N

(T−τ)

×τ k

k!

(T − τ)k−1

(k − 1)!

[

2k(N − 1)k−1 + (N − 2)ke−T+τ
]

(2.21)

and

ρ
(6=)
k (T, τ) =

2k

N2k+1
e−2 N−1

N
τe−

2
N

(T−τ)

×τ k

k!

(T − τ)k−1

(k − 1)!

[

2k(N − 1)k − (N − 2)ke−T+τ
]

. (2.22)
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In the Appendix, we verify that (2.21) satisfies the consistency condition

pT +
∞
∑

k=1

∫ T

0

ρ
(=)
k (T, τ)dτ = PT (x→ x)2 =

1

N2

(

1 + (N − 1)e−T
)2

, (2.23)

where the right-hand side follows from (2.2).
Next consider two walkers returning to their starting points in the case in

which the two starting points are different. Let pk(τ) denote the probability
density for time of coincidence τ in this case, with k intervals of coincidence.
We can reduce this to the previous case. Assume first k > 1. There are
then at least two intervals of coincidence. In between the first and last
interval, the distribution is given by ρ

(=)
k−1 or ρ

(6=)
k−1, depending on whether

the corresponding points of coincidence are equal or not. Consider the first
case. Then the points of coincidence can either be one of the initial points
of the walks, or a different point. If they are one of the initial points, we
have, as before, a contribution η(=) for the interval of time before the first
coincidence, and by symmetry also for the interval after the last coincidence.
If the points of coincidence are different from the initial points, we get a
contribution 2f(t0) for the first interval (i.e. the time interval before the first
coincidence) and 2f(tl) for the last interval, where t0 and tl are the lengths
of these intervals. (Notice that this is the contribution for a specific point of
coincidence. We then have to multiply by a factor N − 2 for the number of
such points.) The total contribution to pk(τ) for equal first and last points
of coincidence is thus

2

∫ T−τ

0

dt0
N

∫ T

t0+τ

dt2k−1

N
η(=)(t0)ρ

(=)
k−1(t2k−1 − t0, τ)η

(=)(T − t2k−1)

+4(N − 2)

∫ T−τ

0

dt0
N

∫ T

t0+τ

dt2k−1

N
f(t0)ρ

(=)
k−1(t2k−1 − t0, τ)f(T − t2k−1).

(2.24)

In the case that the first and last point of coincidence are unequal, there
are 4 possibilities: both are equal to an initial point, the first is equal to an
initial point and the last is not, or vice versa, or both are different from the
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initial points. As is easily seen , this yields the contributions

2

∫ T−τ

0

dt0
N

∫ T

t0+τ

dt2k−1

N
η(=)(t0)ρ

(6=)
k−1(t2k−1 − t0, τ)η

(=)(T − t2k−1)

+4(N − 2)

∫ T−τ

0

dt0
N

∫ T

t0+τ

dt2k−1

N
η(=)(t0)ρ

(6=)
k−1(t2k−1 − t0, τ)f(T − t2k−1)

+4(N − 2)

∫ T−τ

0

dt0
N

∫ T

t0+τ

dt2k−1

N
f(t0)ρ

(6=)
k−1(t2k−1 − t0, τ)η

(=)(T − t2k−1)

+4(N − 2)(N − 3)

∫ T−τ

0

dt0
N

∫ T

t0+τ

dt2k−1

N
f(t0)

ρ
(6=)
k−1(t2k−1 − t0, τ)f(T − t2k−1). (2.25)

Some algebra, using (2.17) and (2.15), reduces the sum of all contributions
to

pk(τ) =
4

N2

∫ T−τ

0

dt0

∫ T

t0+τ

dt2k−1e
− 2

N
t0ρ

(6=)
k−1(t2k−1 − t0, τ)e

− 2
N

(T−t2k−1)

+
2

N2

∫ T−τ

0

dt0

∫ T

t0+τ

dt2k−1η
(=)(t0)

(

ρ
(=)
k−1(t2k−1 − t0)− ρ

(6=)
k−1(t2k−1 − t0, τ)

)

η(=)(T − t2k−1)

+
4(N − 2)

N2

∫ T−τ

0

dt0

∫ T

t0+τ

dt2k−1f(t0)

(

ρ
(=)
k−1(t2k−1 − t0)− ρ

(6=)
k−1(t2k−1 − t0, τ)

)

f(T − t2k−1),

(2.26)

which reduces further to

pk(τ) =
2(N − 2)

N3

∫ T−τ

0

dt0

∫ T

t0+τ

dt2k−1e
−N+2

N
t0

(

ρ
(=)
k−1(t2k−1 − t0)− ρ

(6=)
k−1(t2k−1 − t0, τ)

)

e−
N+2

N
(T−t2k−1)

+
4

N3

∫ T−τ

0

dt0

∫ T

t0+τ

dt2k−1e
− 2

N
t0

(

ρ
(=)
k−1(t2k−1 − t0) + (N − 1)ρ

(6=)
k−1(t2k−1 − t0, τ)

)

e−
2
N

(T−t2k−1).

(2.27)

Inserting the formulas for ρ(=) and ρ(6=), the integrals are trivial, and the
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result is:

pk(τ) =
2k

N2k+1
e−2 N−1

N
τe−

2
N

(T−τ)

× τ k−1

(k − 1)!

(T − τ)k

k!

[

2k(N − 1)k−1 + (N − 2)ke−T+τ
]

.

(2.28)

This formula in fact also holds for k = 1. Indeed, it is easily seen that

p1(τ) =
2

N2

∫ T−τ

0

dt0η
(=)(t0)e

−2 N−1
N

τη(=)(T − t0 − τ)

+
4(N − 2)

N2

∫ T−τ

0

dt0f(t0)e
−2 N−1

N
τf(T − t0 − τ)

=
2

N3
e−2 N−1

N
τe−

2
N

(T−τ)(T − τ)
[

2 + (N − 2)e−T+τ
]

. (2.29)

Finally, there is a finite probability p0 = p0(T ) that the paths do not meet
at all. This can be computed as follows. We have

P̄t+δt

( x→ x

x′ → x′

)

= P̄t

( x→ x

x′ → x′

)

Pδt(ξ0, ξ1 constant) +

+2
[

P̄t

(x→ x

x′ → ·
)

− P̄t

( x→ x

x′ → x′

)] δt

N
(2.30)

and hence

p0(t+ δt) = p0(t)

(

1− 2
N − 1

N
δt

)

+ 2[g1(t)− p0(t)]
δt

N
. (2.31)

Thus we have the differential equation

p′0(t) = −2p0(t) +
2

N
g1(t) (2.32)

with solution

p0(t) = e−2t +
2

N
e−2t

∫ t

0

g2(t
′)e2t′dt′

=
1

N

[

e−
N+2

N
t + e−t + (N − 2)e−2t

]

+
1

N(N − 1)

[

e−
2
N

t − e−2t
]

.

(2.33)

Analogous to (2.23) we now have the consistency check (see the Appendix):

p0 +
∞
∑

k=1

∫ T

0

dτpk(τ) = PT

( x→ x

x′ → x′

)

=
1

N2
(1 + (N − 1)e−T )2. (2.34)
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3 The infection probability

We first remark that if there are n initially uninfected subjects then, provided
the incubation time is longer than T , the expected number of infections after
time T is just n times the probability of infection of a single walker. It
would of course be interesting to investigate the case where cross-infection
can occur, but that case is considerably more difficult.

In order to compute the probability of transfer of infection from walker
ξ0 to ξ1 we want to compute the conditional probability of the second walker
being infected after time T given that both walkers return home after time
T . Assuming that the probability of infection upon contact for a period τ is
given by

q(τ) = 1− e−γτ , (3.1)

this probability is given by

P (infection in time T | both walkers return home) =

∑∞

k=1

∫ T

0
q(τ)pk(τ)dτ

KN(T )
,

(3.2)
where KN(T ) is the probability of both walkers returning home:

KN(T ) =
1

N2

[

1 + (N − 1)e−T
]2

. (3.3)

Notice that the exponential law (3.1) is natural in that the probability that
the infection is not transferred upon contact over a time τ , q̄(τ) = 1 − q(τ)
satisfies q̄(τ1 + τ2) = q̄(τ1)q̄(τ2). This also means that we only need the
probability distribution of the total time τ of contact in (3.2).

The numerator in (3.2) can be calculated exactly (see (A.9)), but the
result is complicated. Some insight can already be obtained (for small γ) by
approximating it with the first order contribution in γ:

γI
(1)
T = γ

∞
∑

k=1

∫ T

0

τpk(τ)dτ. (3.4)

Obviously, this approximation is appropriate only for values of γ which are
small compared to 1/T . (Notice that the jump rate of each walker has been
set equal to 1, so T has to be measured in these terms.)

We now proceed by computing the quantity I
(1)
T . Using the formula

∫ β

0

τn(β − τ)me−ατdτ =
m
∑

p=0

(

m

p

)

(n+ p)!

αn+p+1
(−1)pβm−p

−
n
∑

p=0

(

n

p

)

(p+m)!

αm+p+1
(−1)mβn−pe−αβ (3.5)
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the integrals can be evaluated:

I
(1)
T =

∞
∑

k=1

2k

N2k+1
e−

2
N

T 1

k!(k − 1)!

{

2k(N − 1)k−1

[

k
∑

p=0

(

k

p

)

(k + p)!

2k+p+1

(

N

N − 2

)k+p+1

(−1)p T k−p

−
k
∑

p=0

(

k

p

)

(k + p)!

2k+p+1

(

N

N − 2

)k+p+1

(−1)k T k−pe−2 N−2
N

T

]

+(N − 2)ke−T

[

k
∑

p=0

(

k

p

)

(k + p)!

(

N

N − 4

)k+p+1

(−1)p T k−p

−
k
∑

p=0

(

k

p

)

(k + p)!

(

N

N − 4

)k+p+1

(−1)k T k−pe−
N−4

N
T

]}

(3.6)

To evaluate the sums, we use identity (A.2) from the Appendix, and differ-
entiate to get

∞
∑

k=1

k
∑

p=0

(k + p)!

p!(k − 1)!(k − p)!
xk+p−1yp =

=
d

dx

{

∞
∑

k=1

k
∑

p=0

(k + p− 1)!

p!(k − 1)!(k − p)!
xk+pyp

}

=
d

dx

{

2x2y
√

1− 4x2y(1−
√

1− 4x2y)
exp

[

1−
√

1− 4x2y

2xy

]}

= 2
4x3y2 − 4x2y − 2xy + 1 + (2x2y + 2xy − 1)

√

1− 4x2y

(1− 4x2y)
√

1− 4x2y(1−
√

1− 4x2y)2
. (3.7)

The appropriate insertions for x and y we need to make in the four terms of
I

(1)
T are:

in the first term: x =
2(N − 1)T

N(N − 2)
and y = − N2

4(N − 1)T 2
; (3.8)

in the second term: x = −2(N − 1)T

N(N − 2)
and y = − N2

4(N − 1)T 2
; (3.9)

in the third term: x =
2(N − 2)T

N(N − 4)
and y = − N2

2(N − 2)T 2
; (3.10)
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and

in the fourth term: x = −2(N − 2)T

N(N − 4)
and y = − N2

2(N − 2)T 2
. (3.11)

This yields, after some algebra,

I
(1)
T =

T − 1

N3
+

T + 1

N3
e−2T +

2(N − 2)(T − 2)

N3
e−T +

2(N − 2)(T + 2)

N3
e−2T .

(3.12)
A simple expansion shows that for small T this behaves like 1

3N2T
3. Dividing

by KN(T ) results in the formula (1.1) quoted in the Introduction. The large

T behaviour cannot be read off from I
(1)
T as this approximation is only valid

for γT ¿ 1. The dadot curve in Figure 1 shows how γI
(1)
T deviates from

IT (γ) for large T . The exact solution for IT (γ) is derived in the Appendix.

4 Unconstrained walks

The above model made the reasonable assumption that the walkers return
home after a fixed time T . If we discard this assumption, the problem be-
comes much easier to analyse. In that case, we can represent the process by
a flow diagram as in Figure 4.

A C I

Figure 4: Flow diagram for two walkers on a complete graph
in the case in which one only distinguishes the states where
the two walkers coincide or not and the second walker is not
yet infected, and that where the second walker is infected.

Here the vertices correspond to the cases that the walks are at different
sites, i.e. apart (A), and that where they coincide (C), and (I) where the
second walker has been infected. The transition probabilities are:

Pδt(A→ C) =
2

N
δt, (4.1)

Pδt(C → A) = 2
N − 1

N
δt, (4.2)
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and
Pδt(C → I) = γδt. (4.3)

The transition matrix Pt is therefore given by Pt = e−tQ with

Q =





2
N

− 2
N

0
−2N−1

N
2N−1

N
+ γ −γ

0 0 0



 . (4.4)

The eigenvalues are 0 and

λ± =
1

2

(

2 + γ ±
√

(2 + γ)2 − 8

N
γ

)

. (4.5)

The corresponding eigenvectors are





1
1
1



 and





1
1− N

2
λ±

0



 . (4.6)

The infection probability after time T is given by

Pinf(T ) = (1, 0, 0) e−T Q





0
0
1



 . (4.7)

A simple calculation now shows that

Pinf(T ) = 1 +
λ−

λ+ − λ−
e−Tλ+ − λ+

λ+ − λ−
e−Tλ− . (4.8)

Clearly, for large T , the asymptotic behaviour is the same as in the case of
walks restrained to return to their starting points: it is given by the smallest
exponent, i.e. λ−. This is just (1.2). This is also clearly visible in Figure 1.
On the other hand, for small T , Pinf(T ) behaves like

Pinf(T ) ∼
1

2
λ+λ−T

2 =
1

N
γT 2. (4.9)

The dashed graph in Figure 1 shows the behaviour of this infection probabil-
ity as a function of T , for small T , N = 10 and γ = 1. Notice that for large
N the prefactor of the asymptotics is more important than the power of T .
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Appendix

Here we derive an explicit formula for the expectation of e−γτ and hence the
infection probability. Evaluating the integrals we have, using (3.5),

∫ T

0

e−γτpk(τ)dτ =
4k(N − 1)k−1

N2k+1

e−
2
N

T

k!(k − 1)!

×
{

k
∑

p=0

(

k

p

)

(k + p− 1)!
(

2
N
(N − 2) + γ

)k+p
(−1)p T k−p

−
k−1
∑

p=0

(

k − 1

p

)

(k + p)!
(

2
N
(N − 2) + γ

)k+p+1
(−1)k T k−p−1

×e−( 2
N

(N−2)+γ)T

}

+
2k(N − 2)k

N2k+1

e−(
2
N

+1)T

k!(k − 1)!

×
{

k
∑

p=0

(

k

p

)

(k + p− 1)!
(

N−4
N

+ γ
)k+p

(−1)p T k−p

−
k−1
∑

p=0

(

k − 1

p

)

(k + p)!
(

N−4
N

+ γ
)k+p+1

(−1)k T k−p−1

×e−(N−4
N

+γ)T

}

(A.1)

To perform the sum over k we make use of the identities

∞
∑

k=1

k−1
∑

p=0

(k + p)!

p!(k − p− 1)!k!
xk−pyp =

x(1−√1− 4y)

2y
√
1− 4y

exp

[

x(1−√1− 4y)

2y

]

(A.2)
and

∞
∑

k=1

k
∑

p=0

(k + p− 1)!

p!(k − p)!(k − 1)!
xk−pyp =

1 +
√
1− 4y

2
√
1− 4y

exp

[

x(1−√1− 4y)

2y

]

− 1.

(A.3)
The first formula applies to the second and fourth terms, the second formula
to the first and third terms. The resulting contributions are, for the first
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term:

T1 =
1

2N(N − 1)



1 +
2 + γ − 4

N
√

(2 + γ)2 − 8
N
γ





× exp

[

−1

2

(

2 + γ −
√

(2 + γ)2 − 8

N
γ

)

T

]

− e−
2
N

T

N(N − 1)
;

(A.4)

and for the third term,

T3 =
1

2N



1 +
1 + γ − 4

N
√

(1 + γ)2 − 8
N
γ





× exp

[

−1

2

(

3 + γ −
√

(1 + γ)2 − 8

N
γ

)

T

]

− 1

N
e−

N+2
N

T ; (A.5)

and for the second term,

T2 =
1

2N(N − 1)



1− 2 + γ − 4
N

√

(2 + γ)2 − 8
N
γ





× exp

[

−1

2

(

2 + γ +

√

(2 + γ)2 − 8

N
γ

)

T

]

; (A.6)

and, finally, for the fourth term,

T4 =
1

2N



1− 1 + γ − 4
N

√

(1 + γ)2 − 8
N
γ



 exp

[

−1

2

(

3 + γ +

√

(1 + γ)2 − 8

N
γ

)

T

]

.

(A.7)
Notice that, in particular, at γ = 0 we obtain

∞
∑

k=1

∫ T

0

pk(τ)dτ =
1

N2
− 1

N(N − 1)
e−

2
N

T +
1

N2(N − 1)
e−2T

+
N − 2

N2
e−T − 1

N
e−

N+2
N

T +
2

N2
e−2T . (A.8)

Adding this to p0(T ) given by (2.28) yields KN(T ) as stated in (2.33). To
obtain the infection probability, we have to subtract the contributions T1,
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T2, T3 and T4 from the right-hand side of (A.8) and divide by KN(T ). The
numerator is

IT (γ) =
∞
∑

k=1

∫ T

0

q(τ)pk(τ)

=
1

N2
+

N − 2

N2
e−T +

2N − 1

N2(N − 1)
e−2T

− 1

2N(N − 1)



1 +
2 + γ − 4

N
√

(2 + γ)2 − 8
N
γ





× exp

[

−1

2

(

2 + γ −
√

(2 + γ)2 − 8

N
γ

)

T

]

− 1

2N(N − 1)



1− 2 + γ − 4
N

√

(2 + γ)2 − 8
N
γ





× exp

[

−1

2

(

2 + γ +

√

(2 + γ)2 − 8

N
γ

)

T

]

− 1

2N



1 +
1 + γ − 4

N
√

(1 + γ)2 − 8
N
γ





× exp

[

−1

2

(

3 + γ −
√

(1 + γ)2 − 8

N
γ

)

T

]

− 1

2N



1− 1 + γ − 4
N

√

(1 + γ)2 − 8
N
γ





× exp

[

−1

2

(

3 + γ +

√

(1 + γ)2 − 8

N
γ

)

T

]

. (A.9)

A simple but tedious differentiation shows that I
(1)
T = d

dγ
IT (γ)

∣

∣

∣

∣

γ=0

as it

should.
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