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1 Introduction

Two key issues of classical and quantum information theory are storage and transmission of informa-
tion. An information source produces some outputs (or signals) more frequently than others. Due
to this redundancy one can reduce the amount of space needed for its storage without compromising
on its content. This data compression is done by a suitable encoding of the output of the source. In
contrast, in the transmission of information through a channel, it is often advantageous to add redun-
dancy to a message, in order to combat the effects of noise. This is done in the form of error-correcting
codes. The amount of redundancy which needs to be added to the original message depends on how
much noise is present in the channel (see e.g. [18, 36, 30]). Hence redundancy plays complementary
roles in data compression and transmission of data through a noisy channel. In this review we focus
only on data compression in Quantum Information Theory.

In Classical Information Theory, Shannon showed that there is a natural limit to the amount of
compression that can be achieved. It is given by the Shannon entropy. The analogous concept in
Quantum Information Theory is the von Neumann entropy. Here we review some of the main results
of quantum data compression and the significance of the von Neumann entropy in this context.

The review is structured on follows. We first give a brief introduction to the Shannon entropy and
classical data compression. This is followed by a discussion of quantum entropy and the idea behind
quantum source coding. We elaborate on data compression schemes for three different classes of
quantum sources, namely memoryless (or i.i.d.) sources, ergodic sources and sources modelled by
Gibbs states of quantum spin systems. In the bulk of the review, we concentrate on source-dependent,
fixed-length coding schemes. We conclude with a brief discussion of universal and variable-length
coding.

In this short review, we have only concentrated on certain aspects of data compression in Quantum
Information Theory. For other important developments see e.g. [1, 16, 29, 36, 37, 8, 21, 2].

2 Classical Data Compression

2.1 Entropy and source coding

A simple model of a classical information source consists of a sequence of discrete random variables
X1, X2, . . . , Xn, whose values represent the output of the source. Each random variable Xi, 1 ≤ i ≤ n

takes values xi from a finite set, the source alphabet X . Hence X (n) := (X1, . . . , Xn) takes values
x(n) := (x1, . . . , xn) ∈ X n. The sequences x(n) constitute the output or signal of the source. We recall
the definition of entropy (or information content) of a source:

If the discrete random variables X1, . . . , Xn which take values from a finite alphabet X have joint
probabilities

P(X1 = x1, . . . , Xn = xn) = pn(x1, . . . , xn)

then the Shannon entropy of this source is defined by

H(X1, . . . , Xn) = −
∑

x1∈X1

· · ·
∑

xn∈Xn

pn(x1, . . . , xn) log pn(x1, . . . , xn). (2.1)
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Here and in the following, the logarithm is taken to the base 2. This is because the fundamental unit
of classical information is a bit, which takes two values, 0 and 1. Notice that H(X1, . . . , Xn) in fact
only depends on the (joint) probability mass function (p.m.f.) pn and can also be denoted as H(pn).

There are several other concepts of entropy, e.g. relative entropy, conditional entropy and mutual
information. See for example [10, 30].

Two important properties of H(X) are as follows:

(a) 0 ≤ H(X) ≤ log |X | and (b)H(X) is concave in X. (2.2)

In the next section, analogous quantities are introduced for quantum information and the correspond-
ing properties are stated.

Suppose that the random variables X1, X2, . . . , Xn are independent and identically distributed (i.i.d.).
Then the entropy of each random variable modelling the source is the same and can be denoted by
H(X). From the point of view of Classical Information Theory, the Shannon entropy has an important
operational definition. It quantifies the minimal physical resources needed to store data from a classical
information source and provides a limit to which data can be compressed reliably (i.e., in a manner in
which the original data can be recovered later with a low probability of error). Shannon showed that
the original data can be reliably obtained from the compressed version only if the rate of compression
is greater than the Shannon entropy. This result is formulated in Shannon’s Noiseless Channel Coding
Theorem [35, 10, 30] given in Section 2.3.

2.2 The Asymptotic Equipartition Property

The main idea behind Shannon’s Noiseless Channel Coding Theorem is to divide the possible values
x1, x2, . . . . . . xn of random variables X1, . . . , Xn into two classes – one consisting of sequences which
have a high probability of occurrence, known as typical sequences and the other consisting of sequences
which occur rarely, known as atypical sequences. The idea is that there are far fewer typical sequences
than the total number of possible sequences, but they occur with high probability. The existence of
typical sequences follows from the so-called Asymptotic Equipartition Property:

Theorem 2.1 (AEP) If X1, X2, X3, . . . are i.i.d. random variables with p.m.f p(x), then

−
1

n
log pn(X1, . . . , Xn)

P
−→ H(X), (2.3)

where H(X) is the Shannon entropy for a single variable, and pn(X1, . . . , Xn) denotes the random
variable taking values pn(x1, . . . , xn) =

∏n
i=1 p(xi) with probabilities pn(x1, . . . , xn).

This theorem has been generalised to the case of sequences of dependent variables (Xn)n∈Z which are
ergodic for the shift transformation defined below. It is easiest to formulate this for an information
stream which extends from −∞ to +∞:

Definition A sequence (Xn)n∈Z is called stationary if for any n1 < n2 and any xn1 , . . . , xn2 ∈ X ,

P(Xn1 = xn1 , . . . , Xn2 = xn2) = P(Xn1+1 = xn1 , . . . , Xn2+1 = xn2).
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We define the shift transformation τ by

τ ((xn)n∈Z) = (x′n)n∈Z, where x′n = xn−1. (2.4)

Then (Xn)n∈Z is called ergodic if it is stationary and if every subset A ⊂ X Z such that τ(A) = A,
has probability 0 or 1: P((Xn)n∈Z ∈ A) = 0 or 1.

It is known that (Xn)n∈Z is ergodic if and only if its probability distribution is extremal in the set of
invariant probability measures.The generalisation of Theorem 2.1 [28, 9] now reads:

Theorem 2.2 (Shannon-McMillan-Breiman Theorem) Suppose that the sequence (Xn)n∈Z is
ergodic. Then

lim
n→∞

{

−
1

n
log pn(X1, . . . , Xn)

}

= hKS with prob. 1, (2.5)

where hKS is the Kolmogorov-Sinai entropy defined by

hKS = lim
n→∞

1

n
H(X1, . . . , Xn) = inf

n

1

n
H(X1, . . . , Xn). (2.6)

Remark. One can prove, using convexity, that the sequence 1
nH(pn) is decreasing, and bounded below.

We now define the set of typical sequences as follows:

Definition Let X1, . . . , Xn be i.i.d. random variables with p.m.f. p(x). Given ε > 0, the typical set

T
(n)
ε is the set of sequences (x1 . . . xn) for which

2−n(H(X)+ε) ≤ p(x1 . . . xn) ≤ 2−n(H(X)−ε). (2.7)

In the case of an ergodic sequence, H(X) is replaced by hKS in (2.7).

Let |T
(n)
ε | denote the total number of typical sequences and P{T

(n)
ε } denotes the probability of the

typical set. Then the following is an easy consequence of Theorem 2.1.

Theorem 2.3 (Theorem of Typical Sequences) For any δ > 0 ∃ n0(δ) > 0 such that ∀n ≥ n0(δ)
the following hold:

(a) P{T
(n)
ε } > 1 − δ, and (b) (1 − δ) 2n(H(X)−ε) ≤ |T

(n)
ε | ≤ 2n(H(X)+ε).

2.3 Shannon’s Noiseless Channel Coding Theorem

Shannon’s Noiseless Channel Coding Theorem is a simple application of the Theorem of Typical
Sequences and says that the optimal rate at which one can reliably compress data from an i.i.d.
classical information source is given by the Shannon entropy H(X) of the source.

A compression scheme Cn of rate R maps possible sequences x = (x1, . . . , xn) to a binary string of
length dnRe: Cn : x 7→ y = (y1, . . . , ydnRe), where xi ∈ X ; |X | = d and xi ∈ {0, 1} ∀ 1 ≤ i ≤ dnRe.
The corresponding decompression scheme takes the dnRe compressed bits and maps them back to a
string of n letters from the alphabet X : Dn : y ∈ {0, 1}dnRe 7→ x′ = (x′1, . . . , x

′
n). A compression–

decompression scheme is said to be reliable if the probability that x′ 6= x tends to 0 as n → ∞.
Shannon’s Noiseless Channel Coding Theorem [35, 10] now states
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Theorem 2.4 (Shannon) Suppose that {Xi} is an i.i.d. information source, with Xi ∼ p(x) and
Shannon entropy H(X). If R > H(X) then there exists a reliable compression scheme of rate R for
the source. Conversely, any compression scheme with rate R < H(X) is not be reliable.

Proof (sketch) Suppose R > H(X). Choose ε > 0 such that H(X) + ε < R. Consider the set T
(n)
ε

of typical sequences. The method of compression is then to examine the output of the source, to see

if it belongs to T
(n)
ε . If the output is a typical sequence, then we compress the data by simply storing

an index for the particular sequence using dnRe bits in the obvious way. If the input string is not
typical, then we compress the string to some fixed dnRe bit string e.g. (00 . . . 000). In this case, data
compression effectively fails, but, in spite of this, the compression–decompression scheme succeeds
with probability one as n→ ∞ by Theorem 2.3.

If R < H(X) then any compression scheme of rate R is not reliable. This also follows from Theorem 2.3
by the following argument. Let S(n) be a collection of sequences x(n) of size |S(n)| ≤ 2dnRe. Then
the subset of atypical sequences is highly improbable, whereas the subset of typical sequences has
probability bounded by 2nR2−nH(X) → 0.

3 Quantum Data Compression

3.1 Quantum Sources and Entropy

A quantum information source is defined by a sequence of density matrices ρn, acting on finite-
dimensional Hilbert spaces Hn representing the possible states of the source, n labelling the size of
the emitted signal (i.e., the message).

A density matrix ρ is a positive definite operator on a Hilbert space H with Tr(ρ) = 1, and the
expected value of an operator A on H is given by

φ(A) = Tr (ρA). (3.1)

The functional φ on M = B(H), the algebra of linear operators on H, is positive (i.e. φ(A) ≥ 0,
if A ≥ 0 ) and maps the identity 1 ∈ M to 1. Such a functional is, confusingly, also called a
state. Conversely, given such a state on a finite-dimensional algebra M, there exists a unique density
operator ρφ such that (3.1) holds, so the concepts can be used interchangeably. (This is not true in
the infinite-dimensional case.)

Diagonalising ρn,

ρn =

Nn
∑

k=1

λ
(n)
k |ψ

(n)
k 〉〈ψ

(n)
k |, (3.2)

one can interpret λ
(n)
k as the probability with which the eigenstate |ψ

(n)
k 〉 occurs. In (3.2)Nn = dim Hn.

One can usually consider Hn to be an n-fold tensor product of the same Hilbert space H. The case
that ρn is also a tensor product corresponds to an independent source.

In Classical Information Theory, the optimal rate of data compression is given by the Shannon entropy
of the source. The analogous quantity in Quantum Information Theory is the von Neumann entropy
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S(φ) also written as S(ρφ). It is defined by

S(φ) = −Tr
(

ρφ log ρφ

)

= −
N
∑

k=1

λk log λk, (3.3)

(The logarithm is taken to base 2 as before.) It has properties analogous to H(X), in particular
[31, 30].

Proposition 3.1 If H is a finite-dimensional Hilbert space, then for states φ on B(H),

(a) 0 ≤ S(φ) ≤ log (dim(H)) and (b) S(φ) is concave in φ.

3.2 Compression schemes and fidelity

Consider a quantum information source {ρn,Hn}, where ρn has spectral decomposition given by (3.2).

To compress data from such a source one encodes each eigenstate |ψ
(n)
k 〉, by a state ρ̃

(n)
k ∈ B(H̃n)

where dim H̃n = dc(n) < Nn. Thus, a compression scheme is now a map Cn : |ψ
(n)
k 〉 7→ ρ̃

(n)
k ∈ B(H̃n).

Obviously, the goal is to keep the dimension dc as small as possible. As in the classical case, i.e.
Theorem 2.4, we are interested in finding the optimal limiting rate of data compression, which in this
case is given by

R∞ := lim
n→∞

log dc

n
. (3.5)

The reliability or fidelity of a compression scheme can be measured in various ways. We use the
following definition of fidelity:

Fn =
∑

k

λ
(n)
k 〈ψ

(n)
k | [ρ̃

(n)
k ]1/2|ψ

(n)
k 〉. (3.6)

This fidelity satisfies 0 ≤ Fn ≤ 1 and Fn = 1 if ρ̃
(n)
k = |ψ

(n)
k 〉〈ψ

(n)
k | for all k. A compression–

decompression scheme is said to be reliable if Fn → 1 as n→ ∞.

Analogous to the classical case, reliable coding is achieved by looking for a typical subspace T
(n)

ε of

the Hilbert space Hn for a given ε > 0. If P
(n)
ε is the projection onto T

(n)
ε , we put

|ψ̃
(n)
k 〉 :=

P
(n)
ε |ψ

(n)
k 〉

||P
(n)
ε |ψ

(n)
k 〉||

, ; αk := ||P (n)
ε |ψ

(n)
k 〉|| ; βk = ||(1 − P (n)

ε )|ψ
(n)
k 〉||, (3.7)

and set
ρ̃

(n)
k := α2

k|ψ̃
(n)
k 〉〈ψ̃

(n)
k | + β2

k|ψ0〉〈ψ0|, (3.8)
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where |ψ0〉 is any fixed state in
(

T
(n)

ε

)⊥
. The fidelity of this compression scheme satisfies

Fn ≥
∑

k

λ
(n)
k 〈ψ

(n)
k | ρ̃

(n)
k |ψ

(n)
k 〉

=
∑

k

λ
(n)
k

[

α2
k|〈ψ

(n)
k |ψ̃

(n)
k 〉|2 + β2

k|〈ψ
(n)
k |ψ0〉|

2
]

≥
∑

k

λ
(n)
k α2

k|〈ψ
(n)
k |ψ̃

(n)
k 〉|2 =

∑

k

λ
(n)
k α4

k

≥
∑

k

λ
(n)
k (2α2

k − 1) := 2An − 1. (3.9)

In the following subsections we discuss different classes of quantum sources for which one can find

typical subspaces T
(n)

ε such that the quantity An (and hence the fidelity Fn ) tends to 1 as n→ ∞.

3.3 Schumacher’s theorem for memoryless quantum sources

The notion of a typical subspace was first introduced in the context of quantum information theory
by Schumacher [33]. He considered the simplest class of quantum sources namely memoryless or i.i.d
sources for which the density matrix ρn is a tensor product ρn = π⊗n. It is obvious that the von
Neumann entropy of such a source is given by

S(ρn) ≡ S(π⊗n) = nS(π) (3.10)

In this case the eigenvalues λ
(n)
k in (3.2), can clearly be written as

λ
(n)
k1,...,kn

=
n
∏

i=1

λki
, (3.11)

where λk are the eigenvalues of π. Since
∑

k λk = 1 we can consider the probability distribution

defined by these eigenvalues and define the corresponding classical typical subset T
(n)
ε of indices

(k1, . . . , kn) as in Theorem 2.3. Defining T
(n)

ε as the space spanned by the eigenvectors |ψ
(n)
k1,...,kn

〉

with (k1, . . . , kn) ∈ T
(n)
ε we obtain immediately the quantum analogue of the Theorem of Typical

Sequences:

Theorem 3.2 (Typical Subspace Theorem) Fix ε > 0. Then for any δ > 0 ∃ n0(δ) > 0 such
that ∀n ≥ n0(δ) and ρn = π⊗n, the following are true:

(a) Tr
(

P
(n)
ε ρn

)

> 1 − δ, and (b) (1 − δ) 2n(S(π)−ε) ≤ dim(T
(n)

ε ) ≤ 2n(S(π)+ε),

where P
(n)
ε is the orthogonal projection onto the subspace T

(n)
ε .

(Notice that S(π) = H(X), where X is a random variable with probability distribution given by {λk}.)
Moreover, TrP (n)

ε ρn = P
[

(k1, . . . , kn) ∈ T (n)
ε

]

.)

Using the above theorem, Schumacher [33, 24] proved the following analogue of Shannon’s Noiseless
Channel Coding Theorem:
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Theorem 3.3 (Schumacher’s Quantum Coding Theorem) Let {ρn,Hn} be an i.i.d. quantum
source: ρn = π⊗n and Hn = H⊗n. If R > S(π) then there exists a reliable compression scheme of rate
R. If R < S(π) then any compression scheme of rate R is not reliable.

Proof (i) R > S(π): Choose ε > 0 such that R > S(π) + ε.

For a given δ > 0, choose the typical subspace as above and choose n large enough so that (a) and
(b) in the Typical Subspace Theorem hold. Then note that

α2
k = 〈ψ

(n)
k1,...,kn

|P (n)
ε |ψ

(n)
k1,...,kn

〉 (3.12)

and hence An = Tr (P
(n)
ε ρn) > 1 − δ.

(ii) Analogous to the proof of Shannon’s theorem, if ρn 7→ ρ̃n is a compression scheme with rate
R < S(π) then, there are subspaces Kn = supp(ρ̃n) of dimension ≤ 2dnRe (assuming for simplicity

that H has dimension 2), on which ρ̃n is concentrated. Considering the projections onto T
(n)

ε and its
complement, we then find that the fidelity which tends to 0 as n→ ∞.

3.4 Ergodic Quantum Sources

A quantum generalisation of classical ergodic sources is defined as follows. First consider the analogue
of an infinite sequence of random variables which is a state on the infinite tensor product of a finite-
dimensional ∗-algebra M. The latter is given by the norm-closure of the increasing sequence of finite
tensor products

M∞ =
⋃

n

⊗n
k=−nM (3.13)

A translation-invariant state φ∞ on M∞ is said to be ergodic if it cannot be decomposed as a (non-
trivial) convex combination of other translation-invariant states. The analogue of the Kolmogorov-
Sinai entropy (2.6) for an ergodic state φ∞ is called the mean entropy and is given by

SM (φ∞) = lim
n→∞

1

n
S(φn), (3.14)

where φn is the restriction of φ∞ to Mn := M⊗n.

Following Hiai and Petz [17], we define the following quantity for any state φ on an arbitrary finite-
dimensional ∗-algebra M and a given δ > 0:

βδ(φ) = inf
{

log Tr(q) : q ∈ M, q∗ = q, q2 = q, φ(q) ≥ 1 − δ
}

. (3.15)

We also define a state φ∞ on M∞ to be completely ergodic if it is ergodic under transformations
on M∞, induced by l-fold shifts on Z, for arbitrary l ∈ N. The following theorem is due to Hiai and
Petz [17], who proved it in a slightly more general setting:

Theorem 3.4 (Hiai & Petz) Suppose that φ∞ is a completely ergodic state on M∞ and d :=
dimM <∞, and set φn = φ∞�Mn

. Then, for any δ > 0, the following hold:

(1) lim sup
n→∞

1

n
βδ(φn) ≤ SM (φ∞), (3.16)

and (2) lim inf
n→∞

1

n
βδ(φn) ≥ SM (φ∞) − δ log d. (3.17)
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Proof of (1): Choose r > SM (φ∞) and let ε < r − SM (φ∞) and h = r − ε. By the definition of
SM (φ∞), there exists l ∈ N such that S(φl) < l h. Let {|ei〉}

l d
i=1 be an orthonormal set of eigenvectors

of ρφl
, with corresponding eigenvalues λi, i.e. let

ρφl
=

l d
∑

i=1

λipi, (3.18)

where pi = |ei〉〈ei| is the projection onto |ei〉, be the spectral decomposition for ρφl
. Denote the

spectrum X = {λi}
l d
i=1. For n ∈ N, introduce the probability measures νn on X n by

νn(A) = φnl(qA), (3.19)

where, for any A ⊂ X n, the projection qA is defined by

qA =
∑

(λi1
,...,λin )∈A

pi1 ⊗ . . .⊗ pin . (3.20)

Similarly, we define ν∞ on X Z. The sequence of random variables (Xn)n∈Z with distribution ν∞ is
then ergodic since φ∞ is completely ergodic (and hence l-ergodic).

By the Shannon-McMillan-Breiman theorem 2.2,

−
1

n
log νn({(x1, . . . , xn)} → hKS (3.21)

almost surely w.r.t. ν∞, where hKS is the Kolmogorov-Sinai entropy. The latter is given by hKS =
limn→∞

1
nHn = infn∈N

1
nHn, where

Hn = −
∑

(x1,...,xn)∈Xn

νn({(x1, . . . , xn)}) log νn({(x1, . . . , xn)}). (3.22)

Notice in particular that
hKS ≤ H1 = S(φl) < l h. (3.23)

If we let T
(n)
ε be the (typical) subset of X n such that

−
1

n
log νn({(x1, . . . , xn)}) ∈ (hKS − ε, hKS + ε), (3.24)

for (x1, . . . , xn) ∈ T
(n)
ε then we have ν∞(T

(n)
ε ) ≥ 1 − δ for n large enough. Moreover, since

νn({(x1, . . . , xn)}) ≥ e−n(hKS+ε) for all (x1, . . . , xn) ∈ T
(n)
ε , and the total measure is 1,

|T (n)
ε | ≤ en(hKS+ε) ≤ en(l h+ε). (3.25)

It follows that Tr(q
T

(n)
ε

) ≤ en(l h+ε) whereas φnl(qT (n)
ε

) = νn(T
(n)
ε ) ≥ 1 − δ and we conclude that

1

nl
βδ(φnl) ≤

n(l h+ ε)

nl
< r (3.26)

from which (3.16) follows upon taking n→ ∞, since r > SM (φ∞) was arbitrary. (Notice that βδ(φn)
is decreasing in n since Mn ⊂ Mn+1.)

Proof of (2): Given ε, δ > 0 and n ∈ N, choose a projection qn with φn(qn) ≥ 1− δ and log Tr(qn) <
βδ(φn)+ ε. Since SM (φ∞) = inf 1

nS(φn) we have SM (φ∞) ≤ 1
nS(φn). We now use the following simple

lemma:
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Lemma 3.5 If φ is a state on a finite-dimensional ∗-algebra M, and q ∈ M is a projection, then

S(φ) ≤ H(p) + φ(q) log Tr(q) + (1 − φ(q)) log Tr(1 − q), (3.27)

where H(p) = −p log p− (1 − p)log(1 − p) (the binary entropy) with p = φ(q).

Proof . First notice that if [ρφ, q] = 0 then the result (3.27) follows from the simple inequality

−
m
∑

i=1

λ̃i log λ̃i ≤ logm if
m
∑

i=1

λ̃i = 1. (3.28)

Indeed, diagonalising ρφ, the eigenvalues λi divide into two subsets with corresponding eigenvectors
belonging to the range of q respectively its complement. Considering the first set, we have, if m =
dim(Ran(q)), and taking λ̃i = λi

/

(
∑m

i=1 λi) in (3.28),

−

m
∑

i=1

λi log λi ≤ −

(

m
∑

i=1

λi

)

log

(

1

m

m
∑

i=1

λi

)

= −Tr(qρφ) [ log Tr(qρφ) − log Tr(q) ] .

Adding the analogous inequality for the part of the spectrum corresponding to 1−q, we obtain (3.27).

In the general case, i.e. if [ρφ, q] 6= 0, define the unitary u = 2q − 1 and the state

φ′(x) =
1

2
[φ(x) + φ(uxu)]. (3.29)

Then [ρφ′ , q] = 0 and by concavity of S(φ) and the result for the previous case

H(X) + φ(q)Tr(q) + (1 − φ(q))Tr(1 − q)) ≥ S(φ′) ≥ S(φ) (3.30)

since φ′(q) = φ(q).

Continuing with the proof of (2), we conclude that

S(φn) ≤ H(p) + φn(qn) log Tr(qn) + (1 − φ(qn)) log Tr(1 − qn)

≤ 1 + βδ(φn) + ε+ δn log d.

Dividing by n and taking the limit we obtain (3.17).

It follows from this theorem that we can define a typical subspace in the same way as in Schumacher’s

theorem. Indeed, given δ > 0 and ε > 0, we have that for n large enough, there exists a subspace T
(n)

ε

equal to the range of a projection qn such that φn(qn) > 1 − δ and en(SM (φ∞)−δ log d−ε) < dim(T
(n)

ε ) =
Tr(qn) < en(SM (φ∞)+ε). The proof of the quantum analogue of the Shannon-McMillan Theorem is then
the same as that of Schumacher’s theorem [32, 5]:

Theorem 3.6 Let φ∞ be a completely ergodic stationary state on the infinite tensor product algebra
M∞. If R > SM (φ∞) then there exists a reliable quantum code of rate R. Conversely, if R < SM (φ∞)
then any quantum compression scheme of rate R is not reliable.
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Remarks. Theorem 3.4 also holds for higher-dimensional information streams, with essentially the
same proof. (The existence of the mean entropy is more complicated in that case.) The condition
of complete ergodicity in this theorem is unnecessary. Indeed, Bjelakovic et al. [5] showed that the
result remains valid (also in more than one dimensions) if the state φ∞ of the source is simply ergodic.
They achieved this by decomposing a general ergodic state into a finite number of l-ergodic states, and
then applying the above strategy to each. Moreover, they also proved [6] an analogue of Breiman’s
almost-sure version of the Shannon-McMillan theorem [9]. It should also be mentioned that a weaker
version of Theorem 3.4 was proved in 1998 by King and Lesniewski [26]. They considered the entropy
of an associated classical source, but did not show that this classical entropy can be optimised to
approximate the von Neumann entropy. This had in fact already been proved by Hiai & Petz [17] in
1991. The relevance of this work for quantum information theory was finally pointed out by Mosonyi
and Petz [32].

3.5 Source coding for quantum spin systems

In this section we consider a class of quantum sources modelled by Gibbs states of a finite strongly
interacting quantum spin system in Λ ⊂ Z

d with d ≥ 2. Due to the interaction between spins, the
density matrix of the source is not given by a tensor product of the density matrices of the individual
spins and hence the quantum information source is non-i.i.d. We consider the density matrix to be
written in the standard Gibbsian form:

ρω,Λ =
e−βHω

Λ

Ξω,Λ
, (3.31)

where β > 0 is the inverse temperature. Here ω denotes the boundary condition, i.e., the configuration
of the spins in Λ = Z

d \ Λ, and Hω
Λ is the Hamiltonian acting on the spin system in Λ under this

boundary condition. (See [13] for precise definitions of these quantities). The denominator on the
right-hand side of (3.31) is the partition function.

Note that any faithful density matrix can be written in the form (3.31) for some self–adjoint operator
Hω

Λ with discrete spectrum, such that e−βHω
Λ is trace class. However, we consider Hω

Λ to be a small
quantum perturbation of a classical Hamiltonian and require it to satisfy certain hypotheses (see [13]).
In particular, we assume that HΛ = H0Λ + λVΛ, where (i) H0Λ is a classical, finite-range, translation-
invariant Hamiltonian with a finite number of periodic ground states, and the excitations of these
ground states have an energy proportional to the size of their boundaries (Peierls condition; see e.g.
[7, 12]); (ii) λVΛ is a translation-invariant, exponentially decaying, quantum perturbation, λ being the
perturbation parameter. These hypotheses ensure that the Quantum Pirogov Sinai theory of phase
transitions in lattice systems (see [7], [12]) applies.

The power of Quantum Pirogov-Sinai theory is such that, in proving reliable data compression for
such sources, we do not need to invoke the concept of ergodicity.

Using the concavity of the von Neumann entropy S(ρω,Λ) one can prove that the von Neumann entropy
rate (or mean entropy) of the source

h := lim
Λ↗Zd

S(ρω,Λ)

|Λ|

exists. For a general van Hove sequence, this follows from the strong subadditivity [27] of the von
Neumann entropy.
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Let ρω,Λ have a spectral decomposition

ρω,Λ =
∑

j

λj |ψj〉〈ψj |,

where the eigenvalues λj , 1 ≤ j ≤ 2|Λ|, and the corresponding eigenstates |ψj〉 depend on ω and Λ.
Let Pω,Λ denote the probability distribution {λj} and consider a random variable Kω,Λ which takes
a value λj with probability λj :

Kω,Λ(ψj) = λj ; Pω,Λ(Kω,Λ = λj) = λj .

The data compression limit is related to asymptotical properties of the random variables Kω,Λ as
Λ ↗ Z

d. As in the case of i.i.d. sources, we prove the reliability of data compression by first proving
the existence of a typical subspace. The latter follows from Theorem 3.7 below. The proof of this
crucial theorem relies on results of Quantum Pirogov Sinai theory [12, 7].

Theorem 3.7 Under the above assumptions, for β large and λ small enough, for all ε > 0

lim
Λ↗Zd

Pω,Λ

(

|
−1

|Λ|
logKω,Λ − h| ≤ ε

)

= lim
Λ↗Zd

∑

j

λj χ{|−|Λ|−1 log λj−h|≤ε} = 1, (3.32)

where χ{... } denotes an indicator function.

Theorem 3.7 is essentially a Law of Large Numbers for random variables (− log Kω,Λ). The statement
of the theorem can be alternatively expressed as follows. For any ε > 0,

lim
Λ↗Zd

Pω,Λ
(

2−|Λ|(h+ε) ≤ Kω,Λ ≤ 2−|Λ|(h−ε)
)

= 1. (3.33)

Thus we can define a typical subspace T ω,Λ
ε by

T ω,Λ
ε := span {|ψj〉 : 2−|Λ|(h+ε) ≤ λj ≤ 2−|Λ|(h−ε)}. (3.34)

It clearly satisfies the analogues of (a) and (b) of the Typical Subspace Theorem, which implies as
before that a compression scheme of rate R is reliable if and only if R > h.

3.6 Universal and variable length data compression

Thus far we discussed source-dependent data compression for various classes of quantum sources. In
each case data compression relied on the identification of the typical subspace of the source, which
in turn required a knowledge of its density matrix. In Classical Information Theory, there exists a
generalisation of the Theorem of Typical Sequences due to Cziszar and Körner [11] where the typical
set is universal, in that it is typical for every possible probability distribution with a given entropy.
This result was used by Jozsa et al. [22] to construct a universal compression scheme for quantum i.i.d
sources with a given von Neumann entropy S using a counting argument for symmetric subspaces.
This was generalised to ergodic sources by Kaltchenko and Yang [25] along the lines of Theorem 3.4.
Hayashi and Matsumoto [14, 15] supplemented the work of [22] with an estimation of the eigenvalues
of the source (using the measurement smearing technique) to show that a reliable compression scheme
exists for any quantum i.i.d source, independent of the value of its von Neumann entropy S, the

11



limiting rate of compression being given by S. If one admits variable length coding, the Lempel-Ziv
algorithm gives a completely universal compression scheme, independent of the value of the entropy,
in the classical case [38, 10]. This algorithm was generalised to the quantum case for i.i.d sources by
Jozsa & Presnell [23], and to sources modelled by Gibbs states of free bosons or fermions on a lattice
by Suhov and Johnson [19, 20]. A more general analysis of variable length coding, and in particular
prefix-free codes was initiated by Schumacher and Westmoreland [34].

Another important question is the efficiency of the the various coding schemes. The above-mentioned
schemes for quantum i.i.d. sources are not efficient, in the sense that they have no polynomial time
implementation. Recently, it was shown by Bennett et al. [3] that an efficient, universal compression
scheme for i.i.d sources can be constructed by employing quantum state tomography.

Acknowledgements The authors would like to thank Y.M.Suhov for helpful discussions.
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