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Abstract

We analyze the relations between the large deviation principle of the “local” particle densities
of the x— and k—spaces respectively. Here the k—space means the space of momentums (the
Fourier transform counterpart of the x— space). This study gives new insights on the results of
papers [2], where the authors have found the corresponding large deviation principle of the local
particle density in the x— space. In particular, for a very large class of stable Hamiltonians we
show that the “local” particle densities (x— and k—spaces) are equal to each other from the
point of view of the large deviation principle. In other words, the “local” particle densities in
the z— and k—spaces are in this case exponentially equivalent [1]. Applying this result to the
specific case of the Perfect Bose Gas, we found an alternative proof to the one done in [2].
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1. Set up of the problem
We define by A € R¥! and A ¢ A € R?, two cubic boxes respectively of volume V = [A] = L2
and V = ‘K‘ =Li<V.

1.1. Boson Fock spaces
1.1.1. The infinite volume boson Fock space

The infinite volume boson Fock space F§ is constructed over L? (R?) (see for example [3]):

+oo
=P H» @Lsym (R%), (1.1)
p=0

with H®7%) defined as the symmetrized p-particle Hilbert space appropriate for bosons, whereas
HP=9) = C. One can also define a scalar product and so a norm in F deduced from

Vf,heL*(RY), (thQRd /f r) dz < +00.

For any f € L? (Rd) , the action of the annihilation and creation operators is given for ¢» € D (f),
a dense subset of 77, by

(@(F) )P (21, .. 1,) = (p—|—1)1/2/d:1;f( TP (2,21, 1)
» (1.2)
M*U7¢ﬂm0mwuﬂb)EP*VQ2:11x0¢@_nth~w@wuﬂw%

where T; means that the argument x; is omitted, and
vf? h < L2 (Rd) ) [CL (f) 70’* (h>] = (fa h‘)L2(]Rd> ]I]:go,

with [z~ defined as the identity operator on F3’.
The operator-valued distributions, i.e., the fields a () and a* (x), are defined in the infinite
system such that formally one has

f def (x)a(w),
=] daf (0)a (a). )
Their corresponding action is formally given by
(a (@) )" (21, y) = (0 + 12 (2,21, 1),
(1.4)

(a* (2) V)P (24, ..., 2,) = p~ /2 i §(z—z) VPV (21,34, 0 1)
=1



for some functions ¢ € F¥. In fact the operator a (z) is a well-defined operator acting on a
dense subset D (§) of F5, whereas its adjoint a* (x) is not. However a* (z) is a well-defined
quadratic form on D (6) x D(§). Then the two equalities in (1.3), or in (1.4), should be
understood in the sense of quadratic forms or using, instead of standard functions f, the set of
distributions: a (z) = a (§ (x)), a* (x) = a* (6 (z)).

We can also define the two (infinite volume) quadratic forms given by

(ax))? (21, .oy 2p) = (p+ D2 [ deep®D (g 2y, x,),

. (1.5)
p . .
(@f ) (1, oy ) = p 2 30 eRri) @D (2 By )
=1

for k € R? and ¢ € D (e**) , a dense subset of 7. The quadratic form a;, could be interpreted
as a densely defined operator acting on D (e“”) C Fp whereas its adjoint aj, is at least a well-

defined quadratic form on D (e**) x D (e™*7).

1.1.2. The finite volume boson Fock space

For any cubic box Ay C R? of volume Vy = |Ag| = L&, ie., for Ay = A or Ay = K, the
corresponding finite volume boson Fock space F g\O) is constructed over L? (Ag):

400 ~+o0
}-g\o) E@ 3 (Do.p) E@ Lfym. (AP, (1.6)
p=0 p=0

Ao,p=0) =

where H»0P70) is the symmetrized Hilbert space for p bosons enclosed in Ag, and H!
HP=0) = C.
Notice that L? (Af) C L* (R%), so by (1.1) and (1.6) we have .7:1(3/\0) C F%. Then the projection

operator P, from F3° to F ](SAO) is defined for any p > 0 by

oW (X)) (X) = (PR (X) = o (X) ¢ (X)

with X = (21,...,x,) € R%®. For any set A C R? x4 (X) is the corresponding characteristic
function for p > 0 particles defined by

(1.7)

p
1 for z € A.
e (0 =[Trated = { ot S (1.9
=1

Notice that for p = 0, P,, is the identity of C.
We denote by a,’f Ao = {a,’; A OF Qp, Ao} , the standard operators defined by

Qg py =@ (\/Voe ’ r 0 ()
on Fy, see (1.2), where
21N,
AL = {k eR:a=1,..d ky = 72" and ng = 0,41, 42, ... } (1.10)
0

is the ”Fourier transform” of the box Ay corresponding to periodic boundary conditions on Ag.
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Remark 1.1. If the cubic box A is such that A € A € R? with L = nL, n € N\ {0}, notice
that one has A* C A*, see (1.10).

Remark 1.2. By (1.5) combining with Py, (1.7)-(1.8), the operator ay, (1.9), defined on
Fg, is equal to

P
L for ke RY

a =aq
k,Ao k Nils

1.2. Particle number operators
1.2.1. The finite volume particle number operators
Using periodic boundary conditions on A, the finite volume particle number operator is equal

to
% Z ayay

keA*

Nipbe EZ ap aGkA = Pp Py, (1.11)
keA*

with A* defined by (1.10) for Ag = A. The second part of (1.11) comes from Remark 1.2. The
operator N 1. is well-defined on a dense subset

+oo 9
A 0o
Nl(% ) = {w cFy: E prjgp)w@) . < —|—oo} (1.12)
p=0

of the boson Fock space Fg (1.1). Here P is defined by (1.7) for Ag = A.

Remark 1.3. The particle operator number in an infinite volume is formally equal to

No 54 o () a (x) do o éa;akdk, (1.13)

see (1.4) and (1.5). Notice that N, is well-defined on a dense subset
+o0 ) 9
o0 — o0 p
pefverms 3, <o) (L1
p:

of the boson Fock space Fg .

1.2.2. The local particle number operators

Let A € A € RY such that A* € A* C ERd, cf. (1.10) and Remark 1.1. Notice that the
corresponding boson Fock spaces verify F éA) C .7-"](3/\) C Fy, see (1.1) and (1.6). Then, using

the projection operator P; from Fz° to F, éA) (1.7)-(1.8), we define the following local sequences
of operators:



e in the "z—space”,

N~
Ny = Moy = [ @ (@) ale)dr, py = 2, (1.15)

A

where Ny is called the (z—space) local particle number operator, whereas py is the local
(x—space) particle density operator,

e in the "k—space” or momentum space,

) N
Ve =X choun, o5 = 20 110
keA*

respectively denoted as the local (k—space or momentum space) particle number operator
and the local (k—space) particle density operator. A* C A* is defined by (1.10) for Ay = A.

The two operators N (1.15) and Nj. (1.16) are respectively well-defined on

N {w e Fi i’) prx(mw(p)
pe

A * +o0 —~ 2
M) = {w ery: X [P0 < +oo} >N,
p=0 ?

2
< +oo} DNZ,
H(P)
(1.17)

where @(p) (K) = @(p) (ki, ..., kp) is the fourier transform of ® (X) = ¢ (xy, ..., x,) . Here Pg)
is defined by (1.7) for Ag = A*, with K = (ki, ..., k,) € R% instead of X = (z1, ..., x,) € R%.

1.3. Grand-canonical Boson Gibbs States
1.3.1. Finite volume Hamiltonian

We consider a system X of bosons of mass m enclosed in the cubic box A C R? of volume
V = |A| = L%, defined by some Hamiltonian acting on a dense subset of Fg (1.1):

1
X _ * * * _ X
HA,p.b.c = E EkAp Ak, T B E v (q) Ay —q, AQky+q, AUk Ay A = ThpbeTt UA,p.b.c7 (1.18)
keA* k1,k2,qEA*

Here g, = h%k%/2m > 0 is the one-particle energy spectrum of free bosons whereas the function
v (q) is interpreted as the fourier transform of an integrable two-body interaction potential
pe Lt (Rd). All sums run over the set A*, i.e., we use periodic boundary conditions on A.

Remark 1.4. There is conservation of the particle number in the box A for the Bose gas X
(1.18), i.e.,
[HR b Napbe] = [UR pber Napbe] = 0. (1.19)



Remark 1.5. For A C A such that A* € A*, ¢f. (1.10) and Remark 1.1, by (1.18) combining
with Remark 1.2 we have

1% v\’
ng\(,p.b.c = PK,p.b.c (?Tmp-b-c + (?) U/{p.b.c) Pf\,p.b,cy
)

A
where Py, . is the "projection” operator from Fpg’ to the boson Fock space Fpy ;). C }"é )

constructed on the Hilbert space <L2 (K)) of periodic functions on A.
p.b.c

We assume that v (q) is such that U, . is a stable interaction [5], i.e., there is B > 0 such
that
U/)\fp.b.c > _BNA,p.b.c; (120)

with Ny b defined by (1.11). An example is given by v (¢) = 0 for ¢ € R, i.e., by the Perfect
Bose Gas (Perfect Bose Gas) Ty pp.c.
The grand-canonical pressure

1

1
P (B,p) = BV InTreg (PAe_ﬁ (FRpncnNapbe) p A> = gy Ty <€_B(H§p'b‘c_um’p‘b‘c))

3V
(1.21)

exists, even in the thermodynamic limit, for (3, u) € QX with

(@) Q¥ ={B >0} x {1 < pgp < +00} or (b) Q¥ ={B> 0} x {p < +o0}, (1.22)

see (1.20). Here B > 0 is the fixed inverse temperature whereas p is the chemical potential.

1.3.2. The (finite volume) grand-canonical Gibbs state for a fixed particle density

In the grand-canonical ensemble (3, 1), the Hamiltonian Hy . (1.18) defines a finite volume
Gibbs state

TT]:I%O ((—) PAefﬂ(H/)\(,p.bAcfﬂNA,p.b.c)PA> T,r. <(_) eiﬂ(H/)\(,pAb.cflu‘NA,p.b.c>>

X —
A T'r'j.‘%o (PA6—6<H[)\(,pAb,c_MNA,p.b4c)PA) TT}_(A) (e_/g(Hl)\(,pbAc_NNA,p.b.c))

well-defined on the C*-algebra A% of bounded operators acting on the boson Fock space F5

(1.6). Pa (1.7)-(1.8) is the projection operator from F3 to the boson Fock space .7-"1(3/\) C Fg.
Then we assume also that the corresponding particle density

pa (B, 1) = wy, <NA"‘;'b'C) = 9upi (B, 1) < 400, (B,p) € QF, (1.24)

as a function of y is strictly increasing (i.e., px (8, i) is strictly convex) and verifies

(a) lim py (B,p) = +ocor (b) lim py (B,u) = +oo. (1.25)

M= fsup H—+00



In fact, the assumption (1.25), combining with the strict monotonicity of pX (8, 1), allows to
define a new Gibbs state w{ o (—) corresponding to a fixed particle density p in the grand-

canonical ensemble:

with uX (p) defined as the unique solution of equation

Napb.c
WA WX () ( o ) =px (B:1x (p) = p. (1.27)

Remark 1.6. The norm on A% is defined by

1A@] %
VA e A%, ||A|’ e = su — T < o
B A P
PEFE HSOHfgo

Remark 1.7. One always has
wip (]Ifff) =1

Remark 1.8. Even llcNT\ ¢ Aog (or NA,p.b.c ¢ AOBO)7 cf (115)7 one has
wip (NT\) < wi\(,p (Napbe) = pV < +0o0,

see (1.26)-(1.27). Note also that the unbounded operator N3 could be interpreted as the limit
of a sequence {N}\")}NEN of bounded operators, i.e., N}\n) € Ay forn € N, and wy , (N3) could
be seen as:

wip (NT\) = lim wf’p (Nj(xn)) < +o00.

n—-+o00

1.3.3. The (infinite volume) grand-canonical Gibbs state

The equality (1.26) defines a sequence of Gibbs states {wy , (=)} 4 over the C*-algebra A but
we don’t know, a priori, if this sequence of linear functions A% — C converges or does not.
First, note that

lij{n wl){p (Nyo) zlij{n w/{p (Napbe) = +00,

see (1.11), (1.13), and (1.23)-(1.27), whereas

N, N,
: X sYoo } s X Apbc |
hj{n Wi, ( v ) —hj{n Wi, ( v ) =p. (1.28)

In fact the problem in the thermodynamic limit does not comes from the fact that the operator
N4 is unbounded but from the nonlocality of the operator N.

For example, considering the Perfect Bose Gas, i.e., for ¢ € R? v (¢) = 0 in (1.18), one gets the
same problem if we want to analyze the following limit

. PBG( x : PBG (_x
hj{n wal, (azag) :h/{n Vwib¢ (ag paga) = +00,



see (1.5), (1.9) and Remark 1.2, whereas for any k € R%\ {0} one has
1
65<ern£nufm<p>>

< +00.

a.a
: PBG k% 1. PBG ( * _
11[{n Wa, (7) —hlrxn Wa, (a,ﬁAak,A) =

-1

In this case, the operators { Ny = ajay}, ga are nonlocal.
Then we add two following assumptions on the convergence of the sequence {wf\( p} A over

the C*-algebra A%:

e In the thermodynamic limit we assume that the Gibbs state wy , (cf. (1.23), (1.26)-(1.27))
defines an infinite volume Gibbs state wff acting on A% for a fixed particle density p > 0
and inverse temperature 3 > 0:

wf (A) :h/r\n wl){p (A), for any A € A%, (1.29)

i.e., the sequence {wy )} 4, converges weakly to w?.
e We assume that the Gibbs state wf is invariant by translation.

e Moreover for any finite box A C A of volume V < V, we have

lim wy, (N3) =lim wi, (NeoPx) = w, (NooP3) = w, (N3) < +00, (1.30)

see (1.15), i.e., if V remains finite, the Bose system X (1.18) has no collapse in some finite
area of R%.

Remark 1.9. The limit (1.30) could be seen as
hl{n wl)\(’p (N3) :h}\nngrfoo wf\{p (N[% > = w;( (Ny) < +oo, (1.31)

where the sequence {N%n)} of bounded operators converges to the unbounded operator
neN

N;i ¢ A%, see Remark 1.8. Nevertheless, we don’t know, a priori, if we can exchange the two
limits in (1.31), i.e., if there is uniform convergence.

Remark 1.10. The equalities (1.19)-(1.22) and the condition (1.25) are also verified by the
Bogoliubov Weakly Imperfect Bose Gas (cf. eq. (3.81) in [6]) with g, = 0 in the thermo-
dynamic limit, see [7-9]. In fact, assuming the three last conditions of this subsection, cf.
(1.29)-(1.30), all the proofs done below remain true for the Bogoliubov Weakly Imperfect Bose
Gas.

2. Large deviation principle of the local particle densities: x— versus
k—spaces.

Considering the two cubic boxes A C R? and ACAC R¢, we assume that n (V) =V/ vV —

+00. For example we define L as a function of L by
L=~ (Z) I, (2.1)

7



where

lim 7 (z) = +00; Yz >0, 7 (x )GN\{O}:>n< ) V/V € N\ {0}. (2.2)

T——+00

By (2.1)-(2.2) note that A* C A*, see (1.10) and Remark 1.1. Then, similar to the analyze done
n [2] for the Perfect Bose Gas (cf. (1.18) with Up . = 0), the aim is to find a new method
to evaluate the limit

1 1
li/{n 6—‘71111?{/07\61} = li/{n ﬁ—vlnwip (x: (1)) » (2.3)
for any interval I = [a,b]. We recall that p; (1.15) is the particle density operator in the box
A and X 4 is the characteristic function of a set A C R. In fact, for A — R¢, our purpose is to
show the very close relations between the behavior of the local (z—space) particle density px
as a "random variable” and the one of the local (k—space) particle density operator p;. (1.16).
Intuitively, our arguments are the following :

1° The operators N and pj are defined by (1.15) where, & priori, there is no speaﬁc bound-
ary condition on A. However, using for any k € A* (cf. (1.10) for Ay = A) the cre-

ation/annihilation operators
b gt [ XA ik
a g =a ( NG e : (2.4)

(cf. (1.9)), we could also define the following operators

N~
. — * ~ ~ Ajp.b.c
NA,p.b.c ZE : ak,f\ak,/\’ pA,p.b.c ‘7 ) (25)
keA*

see (1.11) with A instead of A. In fact, N3 ppe and pg oy are the local (z—space),
respectively particle number and particle density, operators considering periodic boundary
conditions on A.

2° Notice that the set

{ ﬁ }kef\* 20

is an orthonormal basis of the Hilbert space <L2 (A)) of squared integrable functions
p-b.c
in A with periodic boundary conditions on the box A. Since <L2 (K)) is a dense
p-b.c

subset of L? (K) in which there is, a priori, no periodic boundary conditions, intuitively
one should formally have




In fact, since wfp (py\) < 400 and wf\{p <PK,p.b.c) < 400 (Remark 1.8), the Theorem B.1
in Appendix B implies for w = wy , (cf. (1.23), (1.26)-(1.27)) that:

Xy (3) =X, (Prpne)

. N (2.8)
wi, (X1 (Pr)) =wi, (XI <p/~\,p.b.c)> ;
for any interval I = [a,b] C R, which by (2.3) implies
1 1
lim —InP{pz el zlim—Nln]P’{pN CEI}. 2.9
i 5‘/ { A } i 5‘/ A,p.b. ( )

3° Then the study of the fluctuations of the xr—space local density seems to be equivalent
to analyze the fluctuations of the k—space local density, except that the corresponding
plane waves e are, for a finite A, truncated by the function x; (z) (one should not

worry about the term ﬁ which is just a renormalization term). Therefore, since the
invariance by translation of the Gibbs state wzf , the fluctuations should remain the same

in the limit A — R? if you use, instead of the truncated plane wave (2.6), the full plane

wave
{ Xa () 6ikx}
\/V keA*

defined on the full box A and so, instead of the operator ak#x (2.4) the standard operators

a,ﬁA (1.9), i.e., instead of pg . (2.5) we analyze the local (k—space) particle density
operator (1.16). Consequently by (2.9) we should have:

1 .1 1
hl{n ﬂ—vlnP{pK € I} :h/{n ﬁ—f/lnP{pK’pAb.C € I} :117I\n 6—‘71111P’{p7\* € ]},

for any interval I = [a,b] C R. In other words, the “local” particle densities {PT\}N’
A
{ Pi pbc} and {pj.} are exponentially equivalent [1].
phef N

This heuristic is in fact shown to be true, see Theorem 3.7 and Remarks 3.8-3.9 in the next
section. For a direct application of all these results on the Perfect Bose Gas, see Section 3.4.

3. Rigorous results
Now, we present below the rigorous arguments and results.
3.1. Expectation value of the local particles densities

As a first stage, we analyse the expectation value of p; (1.15) and p;. (1.16).
Theorem 3.1. There is vy, (z) such that

hj{n wip (PK) :h/;\n wf\{p (,07\*) , (3.1)

for any function v (z) in (2.1)-(2.2) verifying v (x) > ~, (z) for z > 0.
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Proof. From Remark 1.2 one has
Py Px
AN =0k——, Q. 3 = Ok—F—=,
NN

~ yn(V
for any k € R%. Using an equivolume partition {AZ} ™) of the full box A (cf. (2.1)-(2.2)):
i=1

(3.2)

n (‘7> =V/V e N\ {0}, see (2.1),

Vi e {1n(\7 } Al =Vi=V,
Vi je {1n V)} i+, ANk ={o}, (3.3)
n(V) ' n(V) _
igl A; = A and notice that Zl Vi=1V,
one has -
n(V)
Py=)_ Py, (3.4)
i=1
which by (3.2) implies
7) ") 5
Q. \% ~
ap.A = —P; = ——a, ., for k € A* 3.5
k,A ; \/V Az — V kaAz ( )

1
(005 0) e = = > llaraelFs

1
X = = E a; x
(SO? pA,p.b.c(p) Fer Vv — H k,Agp

for any ¢ € NE(;K) ﬂ/\/f(}*) (1.17), by (3.5) we get

2

_|n(7) n(7) ~
1 \%4 1 vV 2
(0050 e = = D 7122 wi®|| =5 2220 v |wad .
VvV —~ V|4 V =~V F
keA* i=1 oo kel i=1 o
B
(V) (V)
\%4 1 2 V
_ - - - . . (36
V= v Z HaW\i@ Fer 1% ZZI <¢’pAi’p'b'C¢)fg° (36)

keA*
Since the density matrix
PAe_ﬁ(HI{p‘b_c_u/%(p)NA,p.bAC>PA

&y = 3.7
b TT_y:}oBo (67'8(H/i(,p.b4c7:u§(p)NA,p.b,c)> (3.7)

10



is a positive self-adjoint operator defined on F3°, there is an operator D defined on F7 such
that
dy ,=D*D. (3.8)

Let {¢,} -, be an orthonormal basis for Fg°, then by (3.8) one gets
Trye (dy ,A) = Trrs (D*DA) = Trzs (DADY)

+oo “+oo
= Y (9w DAD'g) e =) ((D°¢,), A[D"0,)) e (3.9)
n=1 n=1

for any A € A¥. Therefore, using the Gibbs state wy , (1.26) (see also (1.23)), from (3.9)
extended for the unbounded operators pz. and p; . the equality (3.6) implies that

= n(7) n(7)

Vv 1
(.dip (pK*) = V Z w})\(,p <p/~Xi,p.b.c) = n <‘7> wiﬁ (P/L—,p.b.c> : (310)

i=1 =1

Notice that the infinite volume Gibbs state w? (1.29) is invariant by translation. So ¥i,j €

{1, ey T (‘N/>} one has
X . X . X X
) (pxi,p.b.c> 211/{11 Wa,p <p1~\i,p.b.v3> :h/I\Il WAp (pj\j,p.b.c> =W, <p1~\j,p,b.c> )
and if V and V are here two independent parameters, one gets
li/g\n w;( (pA pbc> —hmhm wAp <pA pbc) —hmhm wAp (pA pbc> —hin wy <pA pbc) . (3.11)

Let us consider the function f (z,y), defined for x > 0, y > 0 by

1 1
F(27) =5 (prnne) =2 (r5,000)- 3.12

Then, considering V' and V as two independent parameters, by (3.11) the function f (z,vy)
(3.12) verifies:

alsgrg)nlllir(lyr f(z,y) —lllrxnhm [wi{p (p&’p‘b.c) - wfp (pT\j,p.b.cﬂ = 0. (3.13)
- -1
Using Lemma C.1 (Appendix C), there exists a function yo () > 0, i.e., T’ <V) = {yo <1/V)} ,
such that
111%1+ Yo () =0,

I = lim_li =0
Jim f (@, y (2)) = lim, T f (2, y) =0,

for any |y ()| < |yo (z)| in a neighborhood of (0,0), i.e
llmF V>
¥ . _ . . (3.14)
hin |: A (p]\i,p.b.c> - wA,p (pj\j,p.b.c>i| :1171;11 |:wp <p1~\i,p.b.c> - wp (pj\j,p.b.c>i| = O’

11



for V>T (‘7> and 7,5 € {1, ) <I7> } In fact, using the invariance by translation of the
infinite volume Gibbs w) (1.29), Vi € {1, M (‘7) }, by (3.14) one has

h}{n wf\(,p <p7\,p.b.c) :1171;11 w;(— <p7\,p.b.c> :1171;11 w;(— <p7\i,p.b.c) :117I\Tl wf\(,p (pj\i,p.b.c> ’ (315)

for V>T (\7> or L > ¢/T <Z3>, then for v (z) > 7, (z) = 7' YT (23) in (2.1)-(2.2). By

(3.10), notice that wy , (pz.) is similar to a sum of n (V) = V/V (3.3) expectation values

X; <A> of "random variables” p3_ s 1€
1

n(V) n(V)
X, (2) = ﬁ > (Prnne) = ﬁ > i (A). (3.16)

=1 =1

Since by (3.15) the expectation values {XZ- <A>} are all equal to X = w <p1~\ b C) in the
i=1 P-D-
limit A — R? then by (3.15)-(3.16) we obtain

h}\n wi , (pi) :h}\n wy, <p/~\7p'b.c) , (3.17)
for v (x) > 7, (z) which by (2.8) implies (3.1).

Remark 3.2. For the Perfect Bose Gas, i.e., UR . = 0 (1.18), the corresponding finite volume

Gibbs state wfﬁG is already translation invariant inside the box A, i.e., Vi € {1, ) (V)}
(3.3) we have

PBG _ __  .PBG ~
WALp <pAi,p.b.c> = WAy <pA,p.b.c> :

Then, from (2.8) and (3.10), the equality (3.1) is already verified in finite volume:
wiﬁG (pK*) = wiﬁG <p[~&,p.b‘c> = wiﬁG (p]\) '

3.2. The logarithmic moment generating functions
Let us consider g;\( (A) and g[%i (A) respectively defined by

1 _
glz\( ()\) = —‘7 ln WA/)\(,,O (eﬁ)\NA) 9

v (3.18)
g3. (N = i Inwy , (ePNax) .

Lemma 3.3. By (1.19)-(1.22) and (1.24)-(1.25), if the case (a) is verified, then for uy (p) <
Hsyp ONE has:

VA < Asups wf{p (eﬂ)‘Nﬁ < 400 and w/)f, (eﬁ)‘NK*) < +00,
lim wffp (ePM2) = 400 and  lim wffp (ePMNas) = +o0, (3.19)
A=A, ’ A=A, ’

sup sup

12



with Asup = ey — fia (p), whereas if the Bose system satisfies (b) then wy , (e”*Ma) and
wf\(’p (ePNax) exist for any A € R and

: X AN+ : X AN<.\
AETOO wi, (€)= +oo, AEIEOO wi, (€)= fo0. (3.20)

Proof. Let us consider the case (a), cf. (1.22) and (1.24)-(1.25), i.e., there is p,, < 400 such
that for § > 0 one has

— X —
TT]—“(BA) (6 ﬂ(HA,p.bAc MNA,p.b.c)> < +o00, for M < fgyups

lim 77 (e—ﬂ<H§pAb.c—uNA,pAb@)) o (3.21)
H—Hsup B
(i) IEA <0 and p < fgyy, Le., N5 <Tpe and eMix < o, then by (1.19), we find
TT]__(A) eﬁ)xN]\e_ﬁ(H[)\(,p,b‘c_ﬂNA,p.bAc)> S Tr]__(A) <e_ﬁ<H1)X(,p.b,c_MNA,p~b<C>) ’
” 7 3.22
Tr 6/3>\NK*e_ﬁ(H/{p'b‘c_NNA,p.bc)) <Tr o <€—B<Hl’\{p'b'c—MNA,p'b‘c)> ( )
FB - Fg )
and by (1.23) and (3.21) one gets
w/)\(,u (€B’\N7‘) < 400, w})f’u (eﬁ’\NR*) < o0, if A <0 and p < pig,. (3.23)
(4) X >0 and A+ p < pigyy, i-e.,
]I}_g\) < 66)‘N7\ < eﬁ)\NA,pAb.C’ ]I}_]OBO < eﬁ)‘NZ* < eﬂANA,pAbA%
then using (1.19) one has
Tr]—'(BA> eﬁ)\N]\G_B(Hﬁp,b.c_#NA,p,bL) S T,r.f(BA) <6_6(H1)\(,p.b.c_(u+>‘)NA,p.b.C) 7
T’]” (A) eﬂAN{NX* ei’B(H/)\(,DbACiuNAvP-b‘C)) < TT (A) <eiﬂ(H/)\{,pAbAcf(U+)‘)NA,p.b.c))
FB - Fg )
and by (1.23) and (3.21) one gets
wi{u (emNT\) < 400, wf\(’u (e’g)‘Nﬁ*) < 400, if A>0and A+ pu < Hsup- (3.24)

(i7) By Remark 1.5 combining with (2.5), F éA) CF l(;A) C Fg implies:

Tfr (eﬂ)‘Nj\* e_ﬂ(Hl)\(’p‘b,C_MNA,pAb.c)> Z T,r (7\) (6_5[8] (lex,pAbAc—i_gU{p_b‘c_(p’—i_/\)N/N\,pAb,c)) )

(3.25)

F

and for A > 0, n<‘~/) V)V >1,

v v
TTE(;A) (eﬁwK e—ﬂ(Hl)\(,p‘b'C—#NA,p‘b.c)> > Trf(ﬂ) (e—{ﬁv] (Tx,pb.ﬁvUgfp'b'c—(uﬂ)m,p.b.c)) .
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(iv) Let us consider the Bogoliubov (convexity) inequality [5,10] applied to the two Hamiltonians

X
H7 (1.18) and

-~ v
X 7 X
1~X,p.b.c - TA + U

,p.b.c V /N\,p.b.c’

then one has

(B GONG (B (Y N |,V
lnTT]-‘](SA) (e A( A,p.b. Ap-b )) _lnTr]:](BA) (e A( AW A,p.b. )) > BA (1 — V X

X X
X w/~\,,u+>\ (Ux,p.b.c) )

(3.27)

with 3 = BV /V > 0. Here w%ﬁ/\ (—) (1.23) represents the grand-canonical Gibbs state for
the Hamiltonian H% with chemical potential (u+ A), an inverse temperature $; and using
periodic boundary conditions on A. Then by (1.20) and (3.27)

(3.28)
where the pressure p% (B3, a) and the particle density p% (B3, ) are respectively defined for

a box A by (1.21) and (1.24). Since

pi (Bxs @) = dapyy (B3, ),

B3 (HX — —(u+MNj . 17
lnTTf(;\) (6 A< A.p-b.c Aop-b- )> > VBx

B

by (1.22) one gets

e [pgf (B (1u+ V) - B <1 - %) oX (B (V)| = 400, (3:29)
which by (3.25) and (3.28) implies
i Tro <eﬁ)\N7\*e—B(H/)\{p'b_C—MNA,pb.c)) — 400,
A= [peup—H] B
i.e., by (1.23)-(1.27) one has
ol el () = o (3.30)
Moreover by (3.26) combining with (3.28) and (3.29) we find also
lim wf’p (ePN3) = +o0. (3.31)

A— [P‘sup 7“5\( (p)]

(v) If one has the case (b) then wy , (e”*Vi) and wy , (e”Va+) exist for any A € R and verify
(3.20), see arguments in (7)-(iv) with pg,, — +oc.
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Remark 3.4. If the case (a), cf. (1.22) and (1.24)-(1.25), is verified, the functions g%{ (A\) and
g;\i (A) (3.18) are strictly convex for A < Agup = fgup, — Ha (p) and verifies

lim g5 (A) = lim g3, (A) = +oo, (3.32)

A—Asup A= Asup
see Lemma 3.3. If one has the case (b), then gi( (\) and g/z\(* (A) (3.18) are strictly convex for
A € R and

Jim g (V) = Tim g7, (A) = +o0. (3.33)
Theorem 3.5. In the domain of existence of g5 (\) (3.18) (or of g3, (\)), there exists 7, ()

such that
g () =lim gz (V) =lim g3 (V) (3.34)

for v () = 7, (z) (2.1)-(2.2).

Proof. (i) If the case (a) is verified then for pi (p) < pigps A > 0 and A < Agup = fgyp — K (P)
by (1.19) and (1.26)-(1.27) one gets

Ry (™) < 2, (e ™Vors) = =¥ (B () +3) < o

W, (pre™Vr) < X (8,1 (p) + ) < +ox, -
wi , (pz-eMM2) < gpf (8,1 (p) +A) < +o0, )
Wi, (pr-e™as) < %p (8,13 (p) + ) < +oo.

with p; = N3/V (1.15), pg. = Ni./V (1.16) and py ppe = Napne/V (L11). If A < 0, by
(1.26)-(1.27) one has

V 1%
o (P3e™0) < =Wk, (Papne) = =0 < Hoo,
W, (pxe™5e) < Zp < +o00,
(3.36)
Wi (Pa-€™8) < =p < oo,
Wi, (pr.e”Mir) < “ip < +o0.
Therefore using (3.18), (3.35), (3.36) and Remark 3.4, one gets
wi, ([pz — pa-] €M) wi, ([px — px.] PVar)
WX, (eP3) < +o00, e (M) < 400, (3.37)

for A < ASUP = Hgup — /’L?\( (p)
If the case (b) is verified then, using the same arguments with pu,,, — 400, (3.37) is also
satisfied for \ € R.
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(1) Using the Bogoliubov inequality (A.17) (Appendix A), one gets
g (V) =gy () <A (05— pae) - (3.38)

Here we define the new state Cf\(fx* for A e A by

i () =Troy (75.4) o5 = [25] e (3.39)
with
25 = wr, (eMN3) = Treg (dy ,e™3) < +oo, (3.40)

and the density matrix d} , defined by (3.7).
(#4i) Since O'i(~ (3.39) is a density matrix, notice that the state Q)\ 1 (3.39) is a normal state

which converges to a quasi-normal state (3 on A% (see discussion p. 26 in [11]). In fact we
conjecture that
¢y (A) =lim wi(/\Himux(p) (A), for any A € AY, (3.41)
A TUURTA

see (1.23) and (1.26). Note that this last conjecture (3.41) is just a remark and is not necessary
for the rest of this proof.

Following the arguments using for the proof of Theorem 3.1 for the state ¢ f ;. instead of w{ p
one has

n(V)
g () = ﬁ ; s (Prpne) 7 (V) = VIV EN{0} 21)-22),  (342)

~yn(V
where we use an equivolume partition {A,} ) (3.3) of the full box A. Then, using the
i=1
invariance by translation of Cfx* (3.39) in the limit A — RY, there is 7, (z) such that

hm C/\ i (pj\*) zli/;\n Ci?\* (PT\,p.b.c> , (3.43)

for v (z) > v (z) (2.1)-(2.2) which, by Theorem B.1 in Appendix B for w = Cf\%\* and (3.38),
implies 7

li%\n [g%(* (A) — g% (V] <o. (3.44)

~ yn(V
(iv) Using again an equivolume partition {AZ}( ) (3.3) of the full box A and the operator

N3 ppe (2.5), by the Bogoliubov inequality (A.17) (Appendix A) for i € {1, M <17>} one has
1 BAN; 1 X [ PME; pbe A ox
v lnwAp (e A ) % Inwy , (e P ) > VC)\’Ki’p'b'C (Nﬁi,p.b.c — NI\*) ; (3.45)

where Vi € {1, ey T (?)} we define the new states CfN for A e A¥ by

A;i,p.b.c
—1
X _ X X _ | ex X PANR e
C/\,Ai,p.b.c (A) o TT}—}%O (O-)\,Ai,p.b‘cA> ’ O-A,Ai,p.b.c - [Z)\,Ai,p.b.c] dA7P€ ' ’ (346)
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with
Z5spe =k (7M0rv) = Do (a0 heove) < oo, (3.47)
see also (3.7) for the definition of dy ,. Therefore by (3.45) we obtain
W 1 » ()
X ANF « X A, .p.bc N X 3 AT
3 {5_V I, (#5) = 55w, (¢ )} > S e (Nipne ~ Vi)
i=1

i=1

which implies

1 Lo N N

— Inwy, (M) —— 3 =, (M) = o 3 (P —oxe)
8V n (V) v (V) =

V) =1 n

(3.48)

Following the arguments done from (3.2) to (3.10) for the states Cf\(x b (3.46) instead of wy ,

b
one has

n(V)
vie {Lon (V)}. e (o) = ﬁ > i (ane) 649

If A >0, then

.o iy . . X X
VZ,] € {17 . n (V) } , 1 7é Js C)\,T\j,p.b‘c (thp_b_(:) S CA,Kj,p.b.C (P&-,yb.c) ’

and by (3.49) we obtain

1

n(V)
A 7= D Qe (pgi,p,b_c) ~ R ppe (PR2) ¢ 20, for A= 0. (3.50)
n <V> i=1

If A <0, then

VZ,] € {17 w0 (‘7) } 3 i 7£ j’ Ci\(,/xj,pb.c (p/N\i’p.b,c> Z Ci\(,/‘j,p‘b.c (p/N\]-’p.b,c> )
and by (3.49) we obtain

A

n(V)

X X
Z C)\,Ki,p.b.c <p1~X¢,p.b.c> - C)\,/N\j,p.b.c (,07\*) Z O; for A S 0. (351)
=1

)

n(V) n(V)

1 X 1 X X
~ Z C)\,Ki,p.b.c (pj\i,p.b.c - pK*) S ~ Z ()\,Ki7p.b.c (pxzyp-bﬁ) B C)\,/Ki . ,p-b.c (va) ?
) & ) &
) o)
X X X
~ Z g)\J\i,p.b.c (p/N\i,p.b.c - p]\*) Z —~ Z CA,T\Z-,p.b.c (p/N\i’p_b,c> - C)‘J\imax p.b.c (,07\*) )
n <V> i=1 n (V) i=1
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With 4min, max € {1, e, n <V>} such that

Vi € {1’ ey T (‘7> } ’ Ciximin,p.b.c (p/N\*) S Ci(,xi,p.b.c (pINX*) S <§\{,1N\imax,p.b.c (p]\*) )

then from (3.50) and (3.51)

n(V) n(V)
ﬁ 2 Cxomme (Propwe = P2) 22 % 2 Cxomne (Prpne) = Capne (22) ¢ 20,
(3.52)
with

j_ i A0,
"\ i if A< 0.

Moreover using the same arguments than for the proof of the Theorem 3.1 (invariance by
translation of w’ (1.29)), there is 7, (x) such that

n(V)

. 1 1 AN~ . 1 AN~
lim — E — Inwy <eﬁ Awpb-‘f) =lim — lnw? (6’8 A*"b‘), 3.53
A= sy )
for v (z) > 4 (z) (2.1)-(2.2), and so, by (3.18) and (3.48) combining with (3.52), we get
1
lim ¢X (A) > lim — Inw? (eﬁwkp»b-c) . 3.54
gl ()2 I o, (350

(v) Again by the Bogoliubov inequality (A.17) (Appendix A) one has
1 AN~
)\C‘;\(J\ (p}i o vap-b-c> § 6_17 In w}){p (eﬁ A,p'b‘c) - g[z\( ()\) S )\CA))\(J\,p.b.c (P}i - p]\,p.b.c) . (355)
where we define the new state ( f\( i for A € AR by

-1
Ox ) =Trzp (0334) oz = |25] e, (3.56)

with
Zyx = Wi, (€P5) = Trag (df 0™ < +oo. (3.57)

Using the Theorem B.1 in Appendix B for w = ij\ b (3.46) and w = ij\ (3.56) one gets

Cipbe (Px - Px,p.b.c) =i (px - px,p.b.c) =0,
which by (3.55) implies
1
X _ X ( BAN; .
97\ ()\) - B—Vvlnw,\’p (6 Ap-b. > . (358)

Consequently, combining (3.44) with (3.54), by (3.58) we find (3.34) for v(z) > 7,(x) =
sup {7, (), 72 (2)} (2.1)-(2.2). W
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Remark 3.6. For the Perfect Bose Gas, i.e., U{ 5% = 0 (1.18), the corresponding finite volume
Gibbs state wp BG js already translation invanant inside the box A. Then we have

CPBG (pi-) = Cfg? <p7x’p.b‘c> CPBG (pz) cf. (3.42)-(3.43) and Theorem B.1 (Appendix B),
n(V)

1 1 _
m ; g—i?lnwﬁf’g <6ﬁANAi,p_b.c> -7 lnwflgG < ﬁANApbc> el (3.53),

which, by (3.38) and by (3.48) combining with (3.52) and (3.58), implies
93¢ () = g7 (),
in the domain of existence of gPBG (A) or ngG (A), ie. for X < pB (p) (1, = O for the
Pertfect Bose Gas).
3.3. Main results
Notice that we restrict our analysis on a domain of (3, u) in which
li%n wff’p (pj\) < 400, li;xm wff’p (p;v) < +o00.

We choose also v (z) in (2.1)-(2.2) which diverges to oo sufficiently quickly (cf. (2.2)) such that
Theorems 3.1 and 3.5 are verified. Note that

{r =m0}

A

A

= Do)

are two sequences of convex functions (cf. Remark 3.4) which verify (3.32) or (3.33) and also

oraf () = () ana 0 = (B,

7
with Cf\(ﬂ* and Cffx respectively defined by (3.39)-(3.40) and (3.56)-(3.57). So, for any a > 0

there are two sequences {)\7\ a}~ and {)‘7\* a}N such that
IR 4JA

8>\g/3\( <)\/~\7a> = a, 6>\g/3\(* (AK*,a> = q. (3.59)
From Theorem 3.5, note that

)\a Zliyl )\7\* a zli;n /\1~\a' (360)
A ’ A ’
Then we can express the main statement of this section:

Theorem 3.7. If for any a > 0,

. X : X

i G (Vo) (08)) =m0 G5 (W) (03)) = 0 (3.1
then for any interval I = [a,b] one has

1 1
lim Eg InP{p; €I} =lim i InP{pz. €1} (3.62)

The states Cf\( and C are defined by (3.39)-(3.40) and (3.56)-(3.57) respectively.
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Proof. (The proof is just an application of the one done in [2]). We recall that

Qx =P{pa € I} =wi, (xs (r3)) - (3.63)
see (2.3), and
Qx. =P{pz. € I} =wi, (v (px.)) (3.64)
where x4 is the characteristic function of A C R.

Let us consider the case (a), cf. (1.19)-(1.22) and (1.24)-(1.25). Let a > p. Since p3 (8, i) is
strictly increasing in p, we have 0 < Az , < Asup = fgup — H4 (p), cf. Remark 3.4 and (3.59).

(i) Using the state Cf?\ (3.56)-(3.57), (3.63) is equal to

Qx=42 AC)\A ( X (pA)) (3.65)

with the partition function Z X defined by (3.57). Using the exponential Chebychev inequality
we find a first upper bound for Q3:

Qx < Wiy (P =z, (3.66)

for any 0 < A < Agup.
Therefore using (3.61) for ¢ € (a,b) one gets

X X —BAz . N;
Qi 2 23 i%.A (6 A X fad (PK)>

Aa?
X 7,80‘7/\~ X
> Z3 500G 7 (N (5))
> aZi{ BG VA o € (0,1). (3.67)

Therefore combining (3.66) with (3.67) we find
1
gl%( (AT\,a) —CAf, T+ o(l) < 6—‘7 InQj; < gf{ <>‘7\,a) —aXy, + o(1),
for any ¢ € (a, b), which implies

1
lim — InQx = ¢~ (\,) — adg, 3.68
m 25 Rz =9" () (3.68)

with A, defined by (3.60) and ¢~ ()\,) defined by (3.34).
(it) Using exactly the same argument for Q3. (3.64), by (3.61) we find

1
X (e ) —exs < o <X (M ) —ads :
;- <)\A*7a> CAj. o to(1) < 5 InQz. < g3. <)\A*,a> arz. , +o(1), (3.69)
with Az. , solution of (3.59). By (3.60), (3.68) and (3.69) one gets

1 1
lim — In Q. = g% (\) — a\, =lim — In Q.
3 ﬂV A ( ) i ﬂV A

i.e., (3.62) (see (3.63) and (3.64)).

Using exactly the same kinds of argument for a < p, i.e., for A < 0, one gets the same result.
If the case (b) is verified then, following the same arguments with ug, — +o0o, (3.62) is also
satisfied. W
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Remark 3.8. In fact, the condition (3.61) is necessary to prove Theorem 3.7 only if there is
a conventional Bose-Einstein condensation for the fixed particle density p and/or a fixed local
particle density a in the Bose gas X (1.18), see for example (I11.2)-(111.14) in [2].

Remark 3.9. Moreover, it is not clear if the first two limits in (3.61) are correlated to each
other and if this technical assumption can be deleted in the general setting. Actually, this
condition (3.61) appears to be only sufficient in order to imply the existence of a large deviation

principle for p3. and pj respectively, with the correct constant {‘K‘ = 17}

3.4. A direct application to the Perfect Bose Gas

(i) Using periodic boundary conditions, the Perfect Bose Gas is of course defined by (1.18) with
Upope =0, 1. HY = Typbe As we have already seen that the proofs are really simpler
in this case, see for example Remarks 3.2 and 3.6.

(ii) Moreover, we can directly compute the logarithmic moment generating function gP BG(X)
(3.18) associated with the local particles density pz. (1.16):

gll;BG ()\) PBG (67 PBG( )_|_ )\) PBG (ﬁ, PBG( )) 7

where pP BG (3, 1) is the Perfect Bose Gas pressure for a finite box A. Therefore, by Theorem
3.5 (more precisely, see Remark 3.6), we directly get

Trow (N = g7 (N = g77¢ (V) = p 79 (8,107 (p) + X) = 0379 (8,127 (p)) - (3.70)
The computation of the logarithmic moment generating function gP BG ()\) was already found
in [2] with completely different arguments, which use the high spemﬁ(:lty of Th pbe. In partic-

ular, these arguments [2] could not have been extended to a quartic Hamiltonian in term of
creation/annihilation operators.

(iii) Let

Napb.e
— llm pPBC (B, 1) = lim hm wPBG (pp) = lim lim wfﬁG < Apb )
p— p—0- p—0= A ’ V

be the critical density of the Perfect Bose Gas, see (1.23) for H3 1. = Tapbe (Hop = 0).
Then, if for any a > 0,

hjl\n inf V In CPBG’A* (X[MJF%] (Wx*)) —h/{n inf V In CPBCfA (X[MJF%] (W\)) =0, (3.71)

PBG PBG)

(which is proven in [2] only for p < ps
interval I = [a, b] one has

and which may be false for p > p then for any

A

| 1 1
lim — InP{p; € I :lim—~ln]P’{p~ Ce[} —lim — P {pr. € I},
37 { A } e Ap.b. TG { A }
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PBG

(as in [2] we assume that the infinite volume Gibbs state w,”“ of the Perfect Bose Gas makes

sense, see Section 1.3.3).

(iv) By (3.70) one directly finds
1
lim —InP{pz el su
m s {prel}= Sup I Fit5é .6 (%),
as soon as (3.71) is verified. Here

PBG ( ) PBG (

H _hm ILL p) S :usup = 07

see (1.27) for Hy . = Tapbe, and the rate function fLF%(z) is defined as the Fenchel-
Legendre pransform of gP BG(N), i.e.

i (@)= il {gTEC () = e} = g5 () - a (3.72)

The kth cumulant of {5 = ( — wK%G ( Tx)) /ﬁ is given by

Oy (k) = ! dle PANR k>
A( )_ n(‘uAp(6 A) ) _2a

gEvR2 [dAF N o
Then, as in [2], by (3.70), one gets:

PB
¢ &

o for p < p. converge, as A /' R? to a gaussien variable with variance

—hmﬁ ( PBG (ﬁ MPBG( ))) < +OO,

e for p > pP'BG the variable £; does not converge, as A/ R%, to those of a gaussien since
P Pe A

lim 57 (32052 (8,125 (1)) = +oo.
A

Appendix A. .

The aim of this appendix is to prove the Bogoliubov convexity inequality [5,12-16] for the two
logarithmic moment generating functions

1 1
g (N = o nwy, (M), g5 (\) = FG Inwy, (€M), (A1)

where the operators N; and N, are two local self-adjoint operators acting on Fg° satistying
N1 = P\N1 Py, Ny = PyN5P,, i.e., the restrictions of N; and N on .7-"1(3/\) are also self-adjoint
and

wip (ele) < 400, wff’p (eﬁ’\NQ) < 400,
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for a domain of A. Here Py (1.7)-(1.8) is the projection operator from F5 to the boson Fock

space f(A) C Fp. First we recall that wy , (cf. (1.23)-(1.27) and (1.29)) is normal [17] which
means the existence of a density matrix d Ap (3.7), i.e., a positive trass-class operator dy pon
F7 with

T?“]:%o (dip) = 1, (A2)

such that

wip (A) = TT]:EO (dipA) s Ae AOBO, (A3)
see (B.2), (B.3) and Theorem 2.4.21 in [17]. Let us define for any A € A the two states Ci{l
and Cf\(zz

o () = Trg (o3,4), o, = (28] " e, ",
(i(,z (A) = Trre (03,A), o3y = [Zﬁ] dX PN :
with . ; . .
Zya =i, (€77) = Trry (df e77) < +oo, (A5)

Z5s = wi , (ePAN2) = Tryy (dfépeﬁ)‘m) < +o0.

Since the restriction of N; and N, are self-adjoint in F. g\), there are, in F ](3/\), two orthonormal
basis {gpln};rz and {goZn}Jroj, respectively two sets of eigenvectors for Ny and N, with real
cigenvalues {E1,}'° and {Ey,,} %

nl’

ngpl,n = El,ngplm? NZ(JOQ,n = E277’L902,n7

BAN, _ _BAE, BAN: ' _BAE,
€ (pl,n =e nsol,n7 € 902,11 =e n902,n7

with ¢, ,,, @y, € FY for n > 1. The family {eﬁ’\Nl}ﬁ>0 (or {eﬁ’\NQ}B>O) got the name Gibbs
semigroup generated by Ny (or Na), see [14].

Lemma A.1l. (Jensen inequality) Let £ be a real random variable with expectation E (|¢]) <
oo. For any real convex function g on R! one has

E(g()>g(E(©)). (A.6)
Proof. By convexity of g there are two numbers x5 € R! and X () such that
g(x) > g(xo) + X(zo) (x — x9) . (A.7)

Let x = & and g = E (). Then by (A.7)
E(g() =g (E(()),
which proves (A.6). W

Lemma A.2. (Peierls-Bogoliubov inequality) Let {e"**} 40 be a Gibbs semigroup generated
by the self-adjoint operator H. Then for any orthonormal basis {n,,} +°° in Fp ™ one gets:

TT}—JEO;O (eﬁ)\HdiP) = TT]—‘}B BAHd >Z Mhs dA pnn eXp {ﬁ)‘ (nna dA pHnn)]:oo} ) (AS)

with
~ M

N, = = , for n > 1.
\/(Un? dA,pnn)]_-%o
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Proof. Let u € Fg¥ be a vector such that (u, dfpu)]m = 1. If {,,} 2] is an orthonormal basis
’ B

_l’_
of eigenvectors of H associated with the eigenvalues {E, } |, then u =) wu,p, and

+oo
(u, B e )f;; =3 PEny, (u,df{pgon)f%o. (A.9)

n=1

Since (u d ) Fe = Z Up, (u dx p<p,n) s = 1, we could consider (A.9) as an expectation of the

convex function of the random variable {F, } _, with respect to the probability distribution

+
defined by {un (u dy pgon) Po} . Then by the Jensen inequality (A.6) one gets

—+o0
X X
(u7 eﬂAHu)]:oo Z eBAnglEnun<usz,p@n)}—%o — eﬁk(u’dA,PHu>]:%o ) (Alo)
B

By definition (3.7) of the density matrix dj ,, note that

TT]—‘%O (eﬂ’\defp) = TT]_.(A) (eﬁ’\dep) )
: { :

and dX is a strictly positive operator in F j(BA whereas for any ¢ € Fy\F. J(BA), df{ ,% = 0. Then

for any orthonormal basis {1, },, oo L in F, ](3 ) one has
+oo
AH 71X X _BAH X _BAH X _BAH
Trry (eﬁ d/\,p) =Trry (d/\,peﬂ ) - Tr]—‘g” (d/\,peﬁ ) :zzl (nn’d M, )]—‘]g?’

Therefore, by the strictly positivity of dy , (3.7) in F g\), we find

“+oo

Trp (PMY,) =D (08X 1) e (s A3, 177,) s

n=1

with
~ My

M =
\/(nnv dA pnn) FP

Since (7,,, dx pnn) =1, by (A.10) one gets

n > 1.

)

+o00
Trp (eP1dX,) = 3 (s A1) e (s 07 00)

n=1
—+00

> Z (nnu dA pnn) oo EXP {ﬁA (nn7 dA pHnn)]:OO}

n=1

(A.11)

which proves (A.8). The rest is a consequence of invariance of the T'r ) (.) with respect to
B

the choice of an orthonormal basis in F g\). [ |
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Remark A.3. The right side of the last inequality (A.8) could also be considered as an expec-

+00
tation of the convex function exp of the random variable {(ﬁn, dx pHﬁn) foo} with respect
’ B Jn=1

+oo
to the probability distribution defined by {(nn, dx pnn) Po} using the fact that
? B

n=1
+oo +o0
TT}?}O (df\(ﬁ) = Tr]-'g\) (df\(ﬁ) :Z (nmdi\(,pnn)]-‘%o :Z (nn7df\(,pnn)f§o =L
n=1 n=1

Then by the Jensen inequality (A.6) one gets

+oo
Treg (¢MMdY,) = Trpo (62 ,) = exp {Z (T @X 1) o BA (7T di{pH’ﬁn)fgo} =

n=1

+o0o
= exp {Z BA (nn, df’pHnn)f?} = exp {ﬁ)\TngA) (df’pH)} —
n=1

= exp {ﬁ)\TT}‘%O (dff’pH)} ,

ie.,
Sy () 2 exp {83, ().

Theorem A.4. (Bogoliubov convexity inequality) Let N1 and Ny be two self-adjoint generators
of Gibbs semigroups. Suppose that Trzs [P (Ny — Ny)| and Trzs [ (Ny — Ny)] are
bounded with Nl = PANlpA, N2 = PANQPA, cf. (17)—(18) Then

By (N1 = Np) SInTrpse (dy ™M) —InTrpe (dy ™M) < BACK, (N1 — No),  (A12)
where (3, and (3, are defined by (A.4)-(A.5).

Proof. Since Ni = PyNP,, let {90171};: be an orthonormal basis of eigenvectors of Ny in
fg\)‘ Now by (A8) one gets
Trflg’o (df\(’peﬂ)\l\b) _ TT]:](3M (dfpeﬁ/\NQ) TT}‘](BA) (d%,peﬁ/\(NH-Nz—Nl))
Trag (di,e™)  Trp (dy e )
bl B ’

+oo
2 (1 dX NN g, )

n=1
(d,e™M)

(df’pem]\’l) N Tr

F

TT]:J(BA)

= M@y podX  (N2=N1)Py OO}
Z eﬂ)\ELn ((701 n’ d%pgpl n)]:oo e{ﬁ ((101, A’p( ? 1)9017 )]:B
’ ’ ’ B

n=1

v

+00 x !
Z eﬁ/\El,n (gol,'rw dA,pgpl,n)]:%o

n=1

(A.13)

ith
W Sol,n

\/(@1,117 d%,pgol,n)]:%o
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Therefore using now (A.6), from the inequality (A.13) one obtains

TT}_%O (d}){peﬁ)\]\b) oo GBAEL” (901,71’ di(,p(ipl,n)]:%o (al,rw di\(,p (N2 - Nl) @1,71)_7:%0
T dX’ BAN1 = CXp 6)\ Z +o0
1o (d ™) n=1 32 e (1 4y dX 01 0) e
n=1 ' ' ’ B

which, by (A.4) and (A.14), implies

Tr]_-go (dipeﬁ/\Nz) +oo efAELR (gan’ di{,p (N2 — N1> Spl,n)]-‘go

> exp{ A ~ N
oy (2,) 5T o (ot
; PN TR

n=1

= exp {BAR; (N2 — N1) ) (A.15)

If we rename N, and Ny, then (A.15) reads as

Trr (di,e™™)

Trr B (dipemNg)

> exp { AACRo (N1 — No) ). (A.16)

The inequalities (A.15) and (A.16) imply (A.12). B

Corollary A.5. For the functions gi* (\) and g3 (\) (cf. (A.1)), one gets the Bogoliubov
inequality:

N N N N
A, (71 - 7) <X () — g () <A, (71 - 7) . (A.17)

Appendix B. .

First we recall the definition of p; = N/~\/17 (1.15) and pg3 ;. = NT\,p.b.c/v (2.5):

N5 1
pp= =2 == /a* (x)a(x)dx,
v v/
A B.1
. NK,p.b.c - 1 " ( )
pK,p.b.c - ‘7 - ? Z akj\akjb

keA*

Now let us consider a normal state w defined on A% [17], i.e., a state defined by a density
matrix p,, (a positive trace-class operator p, on F5’) with

Trrg (p,) = 1. (B.2)

such that
VAe AR ,w(A) = Trre (p,A) . (B.3)

Then we have the following result:
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Theorem B.1. If
w (,07\) < 400, w (PT\,p.b.c> < +00, (B.4)

then one gets:
(4)
w (Wx) =w <p1~\,p.b.c) ) (B5)
(71) for any continuous function h (x) vanishing at oo,
w (i (ox) = (h (Prpne) ) (B.6)

(i19) for any interval I = [a,b] C R,

@ (xr (2) = (X7 (Pape) ) - (B.7)

Here x4 is the characteristic function of a set A C R whereas p; = NK/XA} and pg ,p. =
N/lp'b.c/v are respectively defined by (1.15) and (2.5) (or see (B.1)).

ﬁ keA*

is an orthonormal basis of the Hilbert space (L2 (K)) of squared integrable functions in A
p-b.c

Proof. (i) Since the set

with periodic boundary conditions on the box K, one has

. -1 . -1
(p]X * ZH}—?) (‘0/~\,p.b.c. = (px,p.b.c + 7’]1}—1030) (px,p.b.cJ (BS)
for any periodic function ¢z . € F, éA). Now a function ¢ € F7° could be written as

p=Pip+ (1- Px) ¢ =95+ Prais (B.9)

with the projection operator P; defined by (1.7)-(1.8) and

. -1 . -1

(rx £ilrg) ¢ = ppai + (px Tilrg) @3,
. -1 . -1 (B.10)

<'07\,p.b.c = ‘]Ifz?) Y= Prax T (Px,p.b.c * Zﬂf;?) PF-

i ~
Note that p; € F, ](3 ) may be not periodic on A. However from (3 one can arbitrary change

the value of 3 (x) for x € OA and define a periodic function CRpbe €F éA) with

PA,p.b.c. () = 5 (z) for z € /NX\é)/NX

Therefore
P = pr,p.b‘c. + (SOJN\ - SDTX,p.b.c.) = (pjw\,p.b.c‘ + Por- (Bll)
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So, from (B.8)-(B.11) one gets

2 2

_l’_
P

_ -1 _
H {(PT\ ilrg) " = (Papue ilrz ) } e I (e
Fi

2

1
+ H [(Px,p.b.c + iﬂf%") } PoaA

Fiy
< 2)leills =0,
which implies )
H {(pj\ tilry) " = (Prpne * z‘ﬂf%o)_l} - (B.12)
5

Since

. -1 . -1 . -1 . -1
(pj\,p.b.c + le?) - (pINX + ZH]:]%O) = <p7\,p.b.c + ZHf?) (p/N\,p.bAc - p/~\> (p/~\ + Z]If}?) ’

notice that the equality (B.12) implies also

2
=0, (B.13)

7

H (pK,p.b,c - p7\> ¥

for any ¢ in the domain of definition of p; and pg .-
Now, since w is a normal state defined by (B.3), if (B.4) is satisfied, using an orthonormal basis
{¢, ::.i of 7 in the definition domain of pz and pg ., one gets

400
@ (Papne) = Trop (Pubipne) =2 (Pibus Prpmctn) - (B.14)
B

The equality (B.13) implies

(40 (Papne = 01) ) . =0, (B.15)

for any 1, 1, in the domain of definition of pz and pz . then with ¢, = pip, and ¥y = ¢,
by (B.14) we obtain

400 +o0
o (Prpne) = 2o (Pt Prpnetn) . =D (Pt P20 s
n=1

B n=1
= Trry (purz) =w (07) (B.16)

ie., (B.5).

(77) Let us consider a continuous function h (z) vanishing at oo. Since the polynomials in
(z +4)"" are dense (using the norm ||—||_) in the set of continuous functions vanishing at oo,
for a given £ > 0, there exists a polynomial P (s,t) such that

1 1
h — P =
H (@) (mm-z)Hm sup
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Therefore
< -, (B.18)

|7 (a) = P (o5 + i) ™" (o — i) )

-1 -1
Hh <p1N\,p,b.c> - P ((pf\,p.b.c + Zﬂf]%O) ’ <p1~\,p.b.c - ZH?]?) )

Here we recall that the norm on A% is defined in Remark 1.6. Moreover, by extending (B.12)
we find

and
2

(B.19)

<€
AE 2

. ~1 . -1 . -1 . -0\ |17
HP((pT\_’_Z]IfEO) ) (p[Nx _ZH]'—EO) ) _P ((px,p.b.c—i_ZH}—?) ) (PT\,p.b.C_Z]If}?) ) = 0
AOO
“(B.20)
Then for any € > 0, by (B.18)-(B.20) we get
2
[ e0) =1 (rne) [ <=
B
which implies that
2
B
Consequently for any ¢ € F3° we have
2
H [h (px) =1 (Px,p.b.c)] ?||,.. =0 (B.22)
B

Therefore using the same arguments than for (i), cf. (B.13)-(B.16) one gets (B.6).

(#7i) Notice that the last result (B.21) is true only for a continuous function vanishing at oo
but we are interested in evaluating the limit (B.21) for the characteristic function y; (x), i.e.,
for a continuous function only for z € R\ {a, b} with compact support I = [a, b]. Therefore for
a given ¢ > 0, and any compact [¢,d] C R\{a—9,b+d}, § > 0, there exists a polynomial
P (s,t) such that

sup
z€c,d]

1 1 €
- P <z B.23
o -r ()| <5 (B.23)
with Is = [a — 0,0+ d]. Using P,; and 73(1,1, defined as the projections on the eigenspaces
associated with all the eigenvalues p € R\ {(a — ¢ —1,a) U (b,b+d+ 1)} of respectively px
and pg 1. (0 > 0), (B.12) remains true even if we use, instead of p; and PR pb.c: the operators

PappiPap and ﬁavbpi\,p.b‘cﬁ%b' Then by (B.23) we get:

)XL; (PaspiPap) — X1, (ﬁa,bpf\p.b.cﬁa,b) H =0, (B.24)

lim
A A

Consequently, since

X1 (IOK) = X](; (Pa,bpf\,])a,b) y XI <p/~\7p,b,c> = XL; <ﬁa,bpx7p,b,cﬁa,b> s

by (B.24) one obtains
=0, (B.25)

h/,Iin HXI (p]\) — X1 (p]\,p.b.c> ‘AOBO

which implies (B.7). B
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Corollary B.2. If
w (p/~\) < +OO’ W <p/~\,p.b.c> < +OO7

then one gets:
9 (Vo) 08)) =9 (o2 (P200c) )
with px and pg ,, . respectively defined by (1.15) and (2.5) (or see (B.1)).
Appendix C. .
Lemma C.1. Let us consider a real function f (x,y) defined in a neighborhood of (0,0). If

limlim f (z,y) =0, (C.1)

z—0y—0

then there is a function yo (x) such that

lim Yo (':E) = 07
v=0 T _ (C.2)
lim f (z,y (x)) =limlim f (z,y) =0,
z—0 r—0y—0
for any |y (x)| < |yo (x)| in a neighborhood of (0, 0).
Proof. From (C.1), Ye > 0,3n > 0 such that Vz,|z| < n, one has
: o €
and
~ ~ . €
3 (x) > 0: vy, [y| <7 (), ‘f(x,y) — lim f(x,y)‘ <3 (C.4)
So, there is a function y, (z) such that
Ve >0,3n >0V, |zl <7, |yo(2)] <min{7j(z) e} <e, (C.5)
ie.,
hII(l) Yo (x) = 0.

Therefore, Ve > 0,3n > 0 such that Vz, |x| < n, one has

lim f(z,y) — limlim f (z,9)|,
y—0 z—0y—0

z—0y—0

F o) = liging F )| < | o @) =ty 7 )| +

for any |y (x)| < |yo ()| in a neighborhood of (0,0), which by (C.3) and (C.4) combining with
(C.5), implies

'f (z,y (x)) — imlim f (x,y)| < &,

z—0y—0

e, (C2). B
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