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Abstract

We analyze the relations between the large deviation principle of the “local” particle densities
of the x− and k−spaces respectively. Here the k−space means the space of momentums (the
Fourier transform counterpart of the x− space). This study gives new insights on the results of
papers [2], where the authors have found the corresponding large deviation principle of the local
particle density in the x− space. In particular, for a very large class of stable Hamiltonians we
show that the “local” particle densities (x− and k−spaces) are equal to each other from the
point of view of the large deviation principle. In other words, the “local” particle densities in
the x− and k−spaces are in this case exponentially equivalent [1]. Applying this result to the
specific case of the Perfect Bose Gas, we found an alternative proof to the one done in [2].
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1. Set up of the problem

We define by Λ ⊂ Rd≥1 and Λ̃ ⊂ Λ ⊂ Rd, two cubic boxes respectively of volume V ≡ |Λ| = Ld

and Ṽ ≡
∣∣∣Λ̃
∣∣∣ = L̃d < V.

1.1. Boson Fock spaces

1.1.1. The infinite volume boson Fock space

The infinite volume boson Fock space F∞B is constructed over L2
(
Rd
)
(see for example [3]):

F∞B ≡
+∞⊕

p=0

H(p) ≡
+∞⊕

p=0

L2sym.
(
Rdp
)
, (1.1)

withH(p6=0) defined as the symmetrized p-particle Hilbert space appropriate for bosons, whereas
H(p=0) ≡ C. One can also define a scalar product and so a norm in F∞B deduced from

∀f, h ∈ L2
(
Rd
)
, (f, h)L2(Rd) ≡

∫

Rd

f (x)h (x) dx < +∞.

For any f ∈ L2
(
Rd
)
, the action of the annihilation and creation operators is given for ψ ∈ D (f),

a dense subset of F∞B , by

(a (f)ψ)(p) (x1, ..., xp) ≡ (p+ 1)1/2
∫

Rd

dxf (x)ψ(p+1) (x, x1, ..., xp) ,

(a∗ (f)ψ)(p) (x1, ..., xp) ≡ p−1/2
p∑

i=1

f (xi)ψ
(p−1) (x1..., x̂i, ..., xp) ,

(1.2)

where x̂i means that the argument xi is omitted, and

∀f, h ∈ L2
(
Rd
)
, [a (f) , a∗ (h)] = (f, h)L2(Rd) IF∞

B
,

with IF∞
B

defined as the identity operator on F∞B .
The operator-valued distributions, i.e., the fields a (x) and a∗ (x) , are defined in the infinite
system such that formally one has

a (f) =
∫
Rd

dxf (x)a (x) ,

a∗ (f) =
∫
Rd

dxf (x) a∗ (x) .
(1.3)

Their corresponding action is formally given by

(a (x)ψ)(p) (x1, ..., xp) = (p+ 1)1/2 ψ(p+1) (x, x1, ..., xp) ,

(a∗ (x)ψ)(p) (x1, ..., xp) = p−1/2
p∑

i=1

δ (x− xi)ψ
(p−1) (x1..., x̂i, ..., xp) ,

(1.4)
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for some functions ψ ∈ F∞B . In fact the operator a (x) is a well-defined operator acting on a
dense subset D (δ) of F∞B , whereas its adjoint a∗ (x) is not. However a∗ (x) is a well-defined
quadratic form on D (δ) × D (δ). Then the two equalities in (1.3), or in (1.4), should be
understood in the sense of quadratic forms or using, instead of standard functions f , the set of
distributions: a (x) = a (δ (x)), a∗ (x) = a∗ (δ (x)).
We can also define the two (infinite volume) quadratic forms given by

(akψ)
(p) (x1, ..., xp) = (p+ 1)1/2

∫
Rd

dxe−ikxψ(p+1) (x, x1, ..., xp) ,

(a∗kψ)
(p) (x1, ..., xp) = p−1/2

p∑
i=1

eikxiψ(p−1) (x1..., x̂i, ..., xp) ,
(1.5)

for k ∈ Rd and ψ ∈ D
(
eikx
)
, a dense subset of F∞B . The quadratic form ak could be interpreted

as a densely defined operator acting on D
(
eikx
)
⊂ F∞B whereas its adjoint a∗k is at least a well-

defined quadratic form on D
(
eikx
)
×D

(
eikx
)
.

1.1.2. The finite volume boson Fock space

For any cubic box Λ0 ⊂ Rd of volume V0 ≡ |Λ0| = Ld
0, i.e., for Λ0 = Λ or Λ0 = Λ̃, the

corresponding finite volume boson Fock space F (Λ0)
B is constructed over L2 (Λ0):

F (Λ0)
B ≡

+∞⊕

p=0

H(Λ0,p) ≡
+∞⊕

p=0

L2sym. (Λ
p
0) , (1.6)

where H(Λ0,p6=0) is the symmetrized Hilbert space for p bosons enclosed in Λ0, and H(Λ0,p=0) ≡
H(p=0) ≡ C.
Notice that L2 (Λp

0) ⊂ L2
(
Rdp
)
, so by (1.1) and (1.6) we have F (Λ0)

B ⊂ F∞B . Then the projection

operator PΛ0 from F∞B to F (Λ0)
B is defined for any p > 0 by

H(p6=0) −→ H(Λ0,p6=0)

ϕ(p) (X) 7−→ ψ(p) (X) =
(
P
(p)
Λ0
ϕ(p)

)
(X) = χΛp0 (X)ϕ(p) (X)

(1.7)

with X = (x1, ..., xp) ∈ Rdp. For any set A ⊂ Rd, χAp (X) is the corresponding characteristic
function for p > 0 particles defined by

χAp (X) ≡
p∏

i=1

χA (xi) , χA (x) ≡
{

1 for x ∈ A.
0 for x ∈ Rd\A. (1.8)

Notice that for p = 0, PΛ0 is the identity of C.
We denote by a#k,Λ0 =

{
a∗k,Λ0 or ak,Λ0

}
, the standard operators defined by

a#k,Λ0 ≡ a#
(
χΛ0 (x)√

V0
eikx
)
, for k ∈ Λ∗0, (1.9)

on F∞B , see (1.2), where

Λ∗0 =

{
k ∈ Rd : α = 1, ..., d; kα =

2πnα
L0

and nα = 0,±1,±2, ......
}

(1.10)

is the ”Fourier transform” of the box Λ0 corresponding to periodic boundary conditions on Λ0.
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Remark 1.1. If the cubic box Λ is such that Λ̃ ⊂ Λ ⊂ Rd with L = nL̃, n ∈ N\ {0}, notice
that one has Λ̃∗ ⊂ Λ∗, see (1.10).

Remark 1.2. By (1.5) combining with PΛ0 (1.7)-(1.8), the operator ak,Λ0 (1.9), defined on
F∞B , is equal to

ak,Λ0 = ak
PΛ0√
V0
, for k ∈ Rd.

1.2. Particle number operators

1.2.1. The finite volume particle number operators

Using periodic boundary conditions on Λ, the finite volume particle number operator is equal
to

NΛ,p.b.c ≡
∑

k∈Λ∗

a∗k,Λak,Λ = PΛ

[
1

V

∑

k∈Λ∗

a∗kak

]
PΛ, (1.11)

with Λ∗ defined by (1.10) for Λ0 = Λ. The second part of (1.11) comes from Remark 1.2. The
operator NΛ,p.b.c is well-defined on a dense subset

N (Λ)
B ≡

{
ψ ∈ F∞B :

+∞∑

p=0

∥∥∥pP (p)Λ ψ(p)
∥∥∥
2

H(p)
< +∞

}
(1.12)

of the boson Fock space F∞B (1.1). Here P
(p)
Λ is defined by (1.7) for Λ0 = Λ.

Remark 1.3. The particle operator number in an infinite volume is formally equal to

N∞ ≡
∫

Rd

a∗ (x) a (x) dx =
1

(2π)d

∫

Rd

a∗kakdk, (1.13)

see (1.4) and (1.5). Notice that N∞ is well-defined on a dense subset

N∞
B ≡

{
ψ ∈ F∞B :

+∞∑

p=0

∥∥∥pψ(p) (X)
∥∥∥
2

H(p)
< +∞

}
(1.14)

of the boson Fock space F∞B .

1.2.2. The local particle number operators

Let Λ̃ ⊂ Λ ⊂ Rd such that Λ̃∗ ⊂ Λ∗ ⊂ Rd, cf. (1.10) and Remark 1.1. Notice that the

corresponding boson Fock spaces verify F(Λ̃)
B ⊂ F (Λ)

B ⊂ F∞B , see (1.1) and (1.6). Then, using

the projection operator PΛ̃ from F∞B to F(Λ̃)
B (1.7)-(1.8), we define the following local sequences

of operators:
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• in the ”x−space”,

NΛ̃ ≡ NΛ,p.b.cPΛ̃ =

∫

Λ̃

a∗ (x) a (x) dx, ρΛ̃ ≡
NΛ̃

Ṽ
, (1.15)

where NΛ̃ is called the (x−space) local particle number operator, whereas ρΛ̃ is the local
(x−space) particle density operator,

• in the ”k−space” or momentum space,

NΛ̃∗ ≡
∑

k∈Λ̃∗

a∗k,Λak,Λ, ρΛ̃∗ ≡
NΛ̃∗

Ṽ
, (1.16)

respectively denoted as the local (k−space or momentum space) particle number operator

and the local (k−space) particle density operator. Λ̃∗ ⊂ Λ∗ is defined by (1.10) for Λ0 = Λ̃.

The two operators NΛ̃ (1.15) and NΛ̃∗ (1.16) are respectively well-defined on

N (Λ̃)
B ≡

{
ψ ∈ F∞B :

+∞∑
p=0

∥∥∥pP (p)
Λ̃
ψ(p)

∥∥∥
2

H(p)
< +∞

}
⊇ N∞

B ,

N (Λ̃∗)
B ≡

{
ψ ∈ F∞B :

+∞∑
p=0

∥∥∥pP (p)
Λ̃∗
ψ̂
(p)
∥∥∥
2

H(p)
< +∞

}
⊇ N∞

B ,
(1.17)

where ψ̂
(p)

(K) = ψ̂
(p)

(k1, ..., kp) is the fourier transform of ψ(p) (X) = ψ(p) (x1, ..., xp) . Here P
(p)

Λ̃∗

is defined by (1.7) for Λ0 = Λ̃∗, with K = (k1, ..., kp) ∈ Rdp instead of X = (x1, ..., xp) ∈ Rdp.

1.3. Grand-canonical Boson Gibbs States

1.3.1. Finite volume Hamiltonian

We consider a system X of bosons of mass m enclosed in the cubic box Λ ⊂ Rd of volume
V ≡ |Λ| = Ld, defined by some Hamiltonian acting on a dense subset of F∞B (1.1):

HX
Λ,p.b.c ≡

∑

k∈Λ∗

εka
∗
k,Λak,Λ+

1

2V

∑

k1,k2,q∈Λ∗

v (q) a∗k1−q,Λa
∗
k2+q,Λ

ak2,Λak1,Λ ≡ TΛ,p.b.c+U
X
Λ,p.b.c, (1.18)

Here εk = ~2k2/2m ≥ 0 is the one-particle energy spectrum of free bosons whereas the function
v (q) is interpreted as the fourier transform of an integrable two-body interaction potential
ϕ ∈ L1

(
Rd
)
. All sums run over the set Λ∗, i.e., we use periodic boundary conditions on Λ.

Remark 1.4. There is conservation of the particle number in the box Λ for the Bose gas X
(1.18), i.e., [

HX
Λ,p.b.c, NΛ,p.b.c

]
=
[
UX
Λ,p.b.c, NΛ,p.b.c

]
= 0. (1.19)
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Remark 1.5. For Λ̃ ⊂ Λ such that Λ̃∗ ⊂ Λ∗, cf. (1.10) and Remark 1.1, by (1.18) combining
with Remark 1.2 we have

HX
Λ̃,p.b.c

= PΛ̃,p.b.c

(
V

Ṽ
TΛ,p.b.c +

(
V

Ṽ

)2
UX
Λ,p.b.c

)
PΛ̃,p.b.c

,

where PΛ̃,p.b.c
is the ”projection” operator from F∞B to the boson Fock space F(Λ̃)

B,p.b.c ⊂ F
(Λ̃)
B

constructed on the Hilbert space
(
L2
(
Λ̃
))

p.b.c
of periodic functions on Λ̃.

We assume that v (q) is such that UX
Λ,p.b.c is a stable interaction [5], i.e., there is B ≥ 0 such

that
UX
Λ,p.b.c ≥ −BNΛ,p.b.c, (1.20)

with NΛ,p.b.c defined by (1.11). An example is given by v (q) = 0 for q ∈ Rd, i.e., by the Perfect
Bose Gas (Perfect Bose Gas) TΛ,p.b.c.
The grand-canonical pressure

pXΛ (β, µ) ≡ 1

βV
lnTrF∞

B

(
PΛe

−β(HX
Λ,p.b.c−µNΛ,p.b.c)PΛ

)
=

1

βV
lnTr

F
(Λ)
B

(
e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)

(1.21)
exists, even in the thermodynamic limit, for (β, µ) ∈ QX with

(a) QX ≡ {β > 0} ×
{
µ < µsup < +∞

}
or (b) QX ≡ {β > 0} × {µ < +∞} , (1.22)

see (1.20). Here β > 0 is the fixed inverse temperature whereas µ is the chemical potential.

1.3.2. The (finite volume) grand-canonical Gibbs state for a fixed particle density

In the grand-canonical ensemble (β, µ), the Hamiltonian HX
Λ,p.b.c (1.18) defines a finite volume

Gibbs state

ωX
Λ,µ (−) ≡

TrF∞
B

(
(−)PΛe−β(H

X
Λ,p.b.c−µNΛ,p.b.c)PΛ

)

TrF∞
B

(
PΛe

−β(HX
Λ,p.b.c−µNΛ,p.b.c)PΛ

) =
Tr

F
(Λ)
B

(
(−) e−β(HX

Λ,p.b.c−µNΛ,p.b.c)
)

Tr
F
(Λ)
B

(
e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

) (1.23)

well-defined on the C∗-algebra A∞B of bounded operators acting on the boson Fock space F∞B
(1.6). PΛ (1.7)-(1.8) is the projection operator from F∞B to the boson Fock space F (Λ)

B ⊂ F∞B .
Then we assume also that the corresponding particle density

ρXΛ (β, µ) ≡ ωX
Λ,µ

(
NΛ,p.b.c

V

)
= ∂µp

X
Λ (β, µ) < +∞, (β, µ) ∈ QX , (1.24)

as a function of µ is strictly increasing (i.e., pXΛ (β, µ) is strictly convex) and verifies

(a) lim
µ→µsup

ρXΛ (β, µ) = +∞ or (b) lim
µ→+∞

ρXΛ (β, µ) = +∞. (1.25)

5



In fact, the assumption (1.25), combining with the strict monotonicity of ρXΛ (β, µ) , allows to
define a new Gibbs state ωX

Λ,ρ (−) corresponding to a fixed particle density ρ in the grand-
canonical ensemble:

ωX
Λ,ρ (A) ≡ ωX

Λ,µXΛ (ρ)
(A) , A ∈ A∞B , (1.26)

with µXΛ (ρ) defined as the unique solution of equation

ωX
Λ,µXΛ (ρ)

(
NΛ,p.b.c

V

)
= ρXΛ

(
β, µXΛ (ρ)

)
= ρ. (1.27)

Remark 1.6. The norm on A∞B is defined by

∀A ∈ A∞B , ‖A‖2A∞
B
= sup

ϕ∈F∞
B

{
‖Aϕ‖2F∞

B

‖ϕ‖2F∞
B

}
< +∞.

Remark 1.7. One always has
ωX
Λ,ρ

(
IF∞

B

)
= 1.

Remark 1.8. Even if NΛ̃ /∈ A∞B (or NΛ,p.b.c /∈ A∞B ), cf. (1.15), one has

ωX
Λ,ρ

(
NΛ̃

)
≤ ωX

Λ,ρ (NΛ,p.b.c) = ρV < +∞,

see (1.26)-(1.27). Note also that the unbounded operator NΛ̃ could be interpreted as the limit

of a sequence
{
N
(n)

Λ̃

}
n∈N

of bounded operators, i.e., N
(n)

Λ̃
∈ A∞B for n ∈ N, and ωX

Λ,ρ

(
NΛ̃

)
could

be seen as:
ωX
Λ,ρ

(
NΛ̃

)
= lim

n→+∞
ωX
Λ,ρ

(
N
(n)

Λ̃

)
< +∞.

1.3.3. The (infinite volume) grand-canonical Gibbs state

The equality (1.26) defines a sequence of Gibbs states
{
ωX
Λ,ρ (−)

}
Λ
over the C∗-algebra A∞B but

we don’t know, à priori, if this sequence of linear functions A∞B → C converges or does not.
First, note that

lim
Λ
ωX
Λ,ρ (N∞) =lim

Λ
ωX
Λ,ρ (NΛ,p.b.c) = +∞,

see (1.11), (1.13), and (1.23)-(1.27), whereas

lim
Λ
ωX
Λ,ρ

(
N∞
V

)
=lim

Λ
ωX
Λ,ρ

(
NΛ,p.b.c

V

)
= ρ. (1.28)

In fact the problem in the thermodynamic limit does not comes from the fact that the operator
N∞ is unbounded but from the nonlocality of the operator N∞.
For example, considering the Perfect Bose Gas, i.e., for q ∈ Rd v (q) = 0 in (1.18), one gets the
same problem if we want to analyze the following limit

lim
Λ
ωPBG
Λ,ρ (a∗kak) =lim

Λ
V ωPBG

Λ,ρ

(
a∗k,Λak,Λ

)
= +∞,
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see (1.5), (1.9) and Remark 1.2, whereas for any k ∈ Rd\ {0} one has

lim
Λ
ωPBG
Λ,ρ

(
a∗kak
V

)
=lim

Λ
ωPBG
Λ,ρ

(
a∗k,Λak,Λ

)
=

1

e
β

(
εk−lim

Λ
µPBG
Λ (ρ)

)

− 1

< +∞.

In this case, the operators {Nk ≡ a∗kak}k∈Rd are nonlocal.
Then we add two following assumptions on the convergence of the sequence

{
ωX
Λ,ρ

}
Λ
over

the C∗-algebra A∞B :

• In the thermodynamic limit we assume that the Gibbs state ωX
Λ,ρ (cf. (1.23), (1.26)-(1.27))

defines an infinite volume Gibbs state ωX
ρ acting on A∞B for a fixed particle density ρ > 0

and inverse temperature β > 0:

ωX
ρ (A) =lim

Λ
ωX
Λ,ρ (A) , for any A ∈ A∞B , (1.29)

i.e., the sequence
{
ωX
Λ,ρ

}
Λ
converges weakly to ωX

ρ .

• We assume that the Gibbs state ωX
ρ is invariant by translation.

• Moreover for any finite box Λ̃ ⊂ Λ of volume Ṽ < V, we have

lim
Λ
ωX
Λ,ρ

(
NΛ̃

)
=lim

Λ
ωX
Λ,ρ

(
N∞PΛ̃

)
= ωX

ρ

(
N∞PΛ̃

)
= ωX

ρ

(
NΛ̃

)
< +∞, (1.30)

see (1.15), i.e., if Ṽ remains finite, the Bose system X (1.18) has no collapse in some finite
area of Rd.

Remark 1.9. The limit (1.30) could be seen as

lim
Λ
ωX
Λ,ρ

(
NΛ̃

)
=lim

Λ
lim

n→+∞
ωX
Λ,ρ

(
N
(n)

Λ̃

)
= ωX

ρ

(
NΛ̃

)
< +∞, (1.31)

where the sequence
{
N
(n)

Λ̃

}
n∈N

of bounded operators converges to the unbounded operator

NΛ̃ /∈ A∞B , see Remark 1.8. Nevertheless, we don’t know, à priori, if we can exchange the two
limits in (1.31), i.e., if there is uniform convergence.

Remark 1.10. The equalities (1.19)-(1.22) and the condition (1.25) are also verified by the
Bogoliubov Weakly Imperfect Bose Gas (cf. eq. (3.81) in [6]) with µsup = 0 in the thermo-
dynamic limit, see [7–9]. In fact, assuming the three last conditions of this subsection, cf.
(1.29)-(1.30), all the proofs done below remain true for the Bogoliubov Weakly Imperfect Bose
Gas.

2. Large deviation principle of the local particle densities: x− versus
k−spaces.

Considering the two cubic boxes Λ ⊂ Rd and Λ̃ ⊂ Λ ⊂ Rd, we assume that n
(
Ṽ
)
≡ V/Ṽ →

+∞. For example we define L as a function of L̃ by

L = γ
(
L̃
)
L̃, (2.1)

7



where
lim

x→+∞
γ (x) = +∞; ∀x > 0, γ (x) ∈ N\ {0} ⇒ n

(
Ṽ
)
≡ V/Ṽ ∈ N\ {0} . (2.2)

By (2.1)-(2.2) note that Λ̃∗ ⊂ Λ∗, see (1.10) and Remark 1.1. Then, similar to the analyze done
in [2] for the Perfect Bose Gas (cf. (1.18) with UΛ,p.b.c = 0), the aim is to find a new method
to evaluate the limit

lim
Λ̃

1

βṼ
lnP

{
ρΛ̃ ∈ I

}
= lim

Λ̃

1

βṼ
lnωX

Λ,ρ

(
χI

(
ρΛ̃
))
, (2.3)

for any interval I = [a, b]. We recall that ρΛ̃ (1.15) is the particle density operator in the box

Λ̃ and χA is the characteristic function of a set A ⊂ R. In fact, for Λ̃→ Rd, our purpose is to
show the very close relations between the behavior of the local (x−space) particle density ρΛ̃
as a ”random variable” and the one of the local (k−space) particle density operator ρΛ̃∗ (1.16).
Intuitively, our arguments are the following :

1◦ The operators NΛ̃ and ρΛ̃ are defined by (1.15) where, à priori, there is no specific bound-

ary condition on Λ̃. However, using for any k ∈ Λ̃∗ (cf. (1.10) for Λ0 = Λ̃) the cre-
ation/annihilation operators

a#
k,Λ̃

= a#

(
χΛ̃ (x)√

Ṽ
eikx

)
, (2.4)

(cf. (1.9)), we could also define the following operators

NΛ̃,p.b.c ≡
∑

k∈Λ̃∗

a∗
k,Λ̃
ak,Λ̃, ρΛ̃,p.b.c ≡

NΛ̃,p.b.c

Ṽ
, (2.5)

see (1.11) with Λ̃ instead of Λ. In fact, NΛ̃,p.b.c and ρΛ̃,p.b.c are the local (x−space),
respectively particle number and particle density, operators considering periodic boundary
conditions on Λ̃.

2◦ Notice that the set {
χΛ̃ (x)√

Ṽ
eikx

}

k∈Λ̃∗

(2.6)

is an orthonormal basis of the Hilbert space
(
L2
(
Λ̃
))

p.b.c
of squared integrable functions

in Λ̃ with periodic boundary conditions on the box Λ̃. Since
(
L2
(
Λ̃
))

p.b.c
is a dense

subset of L2
(
Λ̃
)
in which there is, à priori, no periodic boundary conditions, intuitively

one should formally have

ρΛ̃ ≡
NΛ̃

Ṽ
≈ ρΛ̃,p.b.c ≡

NΛ̃,p.b.c

Ṽ
. (2.7)
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In fact, since ωX
Λ,ρ

(
ρΛ̃
)
< +∞ and ωX

Λ,ρ

(
ρΛ̃,p.b.c

)
< +∞ (Remark 1.8), the Theorem B.1

in Appendix B implies for ω = ωX
Λ,ρ (cf. (1.23), (1.26)-(1.27)) that:

ωX
Λ,ρ

(
ρΛ̃
)
= ωX

Λ,ρ

(
ρΛ̃,p.b.c

)
,

ωX
Λ,ρ

(
χI

(
ρΛ̃
))

= ωX
Λ,ρ

(
χI

(
ρΛ̃,p.b.c

))
,

(2.8)

for any interval I = [a, b] ⊂ R, which by (2.3) implies

lim
Λ̃

1

βṼ
lnP

{
ρΛ̃ ∈ I

}
=lim

Λ̃

1

βṼ
lnP

{
ρΛ̃,p.b.c ∈ I

}
. (2.9)

3◦ Then the study of the fluctuations of the x−space local density seems to be equivalent
to analyze the fluctuations of the k−space local density, except that the corresponding
plane waves eikx are, for a finite Λ̃, truncated by the function χΛ̃ (x) (one should not

worry about the term
√
Ṽ which is just a renormalization term). Therefore, since the

invariance by translation of the Gibbs state ωX
ρ , the fluctuations should remain the same

in the limit Λ̃ → Rd if you use, instead of the truncated plane wave (2.6), the full plane
wave {

χΛ (x)√
V

eikx
}

k∈Λ̃∗

defined on the full box Λ and so, instead of the operator a#
k,Λ̃

(2.4) the standard operators

a#k,Λ (1.9), i.e., instead of ρΛ̃,p.b.c (2.5) we analyze the local (k−space) particle density
operator (1.16). Consequently by (2.9) we should have:

lim
Λ̃

1

βṼ
lnP

{
ρΛ̃ ∈ I

}
=lim

Λ̃

1

βṼ
lnP

{
ρΛ̃,p.b.c ∈ I

}
=lim

Λ̃

1

βṼ
lnP

{
ρΛ̃∗ ∈ I

}
,

for any interval I = [a, b] ⊂ R. In other words, the “local” particle densities
{
ρΛ̃
}
Λ̃

,
{
ρΛ̃,p.b.c

}

Λ̃

and
{
ρΛ̃∗
}
Λ̃

are exponentially equivalent [1].

This heuristic is in fact shown to be true, see Theorem 3.7 and Remarks 3.8-3.9 in the next
section. For a direct application of all these results on the Perfect Bose Gas, see Section 3.4.

3. Rigorous results

Now, we present below the rigorous arguments and results.

3.1. Expectation value of the local particles densities

As a first stage, we analyse the expectation value of ρΛ̃ (1.15) and ρΛ̃∗ (1.16).

Theorem 3.1. There is γ0 (x) such that

lim
Λ̃
ωX
Λ,ρ

(
ρΛ̃
)
=lim

Λ̃
ωX
Λ,ρ

(
ρΛ̃∗
)
, (3.1)

for any function γ (x) in (2.1)-(2.2) verifying γ (x) ≥ γ0 (x) for x > 0.

9



Proof. From Remark 1.2 one has

ak,Λ = ak
PΛ√
V
, ak,Λ̃ = ak

PΛ̃√
Ṽ
, (3.2)

for any k ∈ Rd. Using an equivolume partition
{
Λ̃i

}n(Ṽ )

i=1
of the full box Λ (cf. (2.1)-(2.2)):

n
(
Ṽ
)
≡ V/Ṽ ∈ N\ {0} , see (2.1),

∀i ∈
{
1, ..., n

(
Ṽ
)}

,
∣∣∣Λ̃i

∣∣∣ = Ṽi = Ṽ ,

∀i, j ∈
{
1, ..., n

(
Ṽ
)}

, i 6= j, Λ̃i ∩ Λ̃j = {∅} ,
n(Ṽ )
∪
i=1

Λ̃i = Λ and notice that

n(Ṽ )∑

i=1

Ṽi = V,

(3.3)

one has

PΛ =

n(Ṽ )∑

i=1

PΛ̃i , (3.4)

which by (3.2) implies

ak,Λ =

n(Ṽ )∑

i=1

ak√
V
PΛ̃i =

n(Ṽ )∑

i=1

√
Ṽ√
V
ak,Λ̃i , for k ∈ Λ̃∗. (3.5)

Therefore, since by (1.16) and (2.5) we have

(
ϕ, ρΛ̃∗ϕ

)
F∞
B

=
1

Ṽ

∑

k∈Λ̃∗

‖ak,Λϕ‖2F∞
B
,

(
ϕ, ρΛ̃,p.b.cϕ

)
F∞
B

=
1

Ṽ

∑

k∈Λ̃∗

∥∥∥ak,Λ̃ϕ
∥∥∥
2

F∞
B

,

for any ϕ ∈ N (Λ̃)
B ∩N (Λ̃∗)

B (1.17), by (3.5) we get

(
ϕ, ρΛ̃∗ϕ

)
F∞
B

=
1

Ṽ

∑

k∈Λ̃∗

Ṽ

V

∥∥∥∥∥∥∥

n(Ṽ )∑

i=1

ak,Λ̃iϕ

∥∥∥∥∥∥∥

2

F∞
B

=
1

Ṽ

∑

k∈Λ̃∗

n(Ṽ )∑

i=1

Ṽ

V

∥∥∥ak,Λ̃iϕ
∥∥∥
2

F∞
B

=
Ṽ

V

n(Ṽ )∑

i=1





1

Ṽ

∑

k∈Λ̃∗

∥∥∥ak,Λ̃iϕ
∥∥∥
2

F∞
B



 =

Ṽ

V

n(Ṽ )∑

i=1

(
ϕ, ρΛ̃i,p.b.cϕ

)
F∞
B

. (3.6)

Since the density matrix

dXΛ,ρ ≡
PΛe

−β(HX
Λ,p.b.c−µ

X
Λ (ρ)NΛ,p.b.c)PΛ

TrF∞
B

(
e−β(H

X
Λ,p.b.c−µ

X
Λ (ρ)NΛ,p.b.c)

) (3.7)
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is a positive self-adjoint operator defined on F∞B , there is an operator D defined on F∞B such
that

dXΛ,ρ = D∗D. (3.8)

Let {ϕn}∞n=1 be an orthonormal basis for F∞B , then by (3.8) one gets

TrF∞
B

(
dXΛ,ρA

)
= TrF∞

B
(D∗DA) = TrF∞

B
(DAD∗)

=
+∞∑

n=1

(ϕn, DAD
∗ϕn)F∞

B
=
+∞∑

n=1

([D∗ϕn] , A [D∗ϕn])F∞
B
, (3.9)

for any A ∈ A∞B . Therefore, using the Gibbs state ωX
Λ,ρ (1.26) (see also (1.23)), from (3.9)

extended for the unbounded operators ρΛ̃∗ and ρΛ̃i,p.b.c the equality (3.6) implies that

ωX
Λ,ρ

(
ρΛ̃∗
)
=
Ṽ

V

n(Ṽ )∑

i=1

ωX
Λ,ρ

(
ρΛ̃i,p.b.c

)
=

1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ωX
Λ,ρ

(
ρΛ̃i,p.b.c

)
. (3.10)

Notice that the infinite volume Gibbs state ωX
ρ (1.29) is invariant by translation. So ∀i, j ∈{

1, ..., n
(
Ṽ
)}

one has

ωX
ρ

(
ρΛ̃i,p.b.c

)
=lim

Λ
ωX
Λ,ρ

(
ρΛ̃i,p.b.c

)
=lim

Λ
ωX
Λ,ρ

(
ρΛ̃j ,p.b.c

)
= ωX

ρ

(
ρΛ̃j ,p.b.c

)
,

and if V and Ṽ are here two independent parameters, one gets

lim
Λ̃
ωX
ρ

(
ρΛ̃i,p.b.c

)
=lim

Λ̃
lim
Λ
ωX
Λ,ρ

(
ρΛ̃i,p.b.c

)
=lim

Λ̃
lim
Λ
ωX
Λ,ρ

(
ρΛ̃j ,p.b.c

)
=lim

Λ̃
ωX
ρ

(
ρΛ̃j ,p.b.c

)
. (3.11)

Let us consider the function f (x, y) , defined for x > 0, y > 0 by

f

(
1

Ṽ
,
1

V

)
= ωX

Λ,ρ

(
ρΛ̃i,p.b.c

)
− ωX

Λ,ρ

(
ρΛ̃j ,p.b.c

)
. (3.12)

Then, considering V and Ṽ as two independent parameters, by (3.11) the function f (x, y)
(3.12) verifies:

lim
x→0

lim
+y→0+

f (x, y) =lim
Λ̃
lim
Λ

[
ωX
Λ,ρ

(
ρΛ̃i,p.b.c

)
− ωX

Λ,ρ

(
ρΛ̃j ,p.b.c

)]
= 0. (3.13)

Using Lemma C.1 (Appendix C), there exists a function y0 (x) > 0, i.e., Γ
(
Ṽ
)
≡
{
y0

(
1/Ṽ

)}−1
,

such that
lim
x→0+

y0 (x) = 0,

lim
x→0+

f (x, y (x)) = lim
x→0+

lim
y→0+

f (x, y) = 0,

for any |y (x)| ≤ |y0 (x)| in a neighborhood of (0, 0), i.e.,

lim
Λ̃

Γ
(
Ṽ
)
= +∞,

lim
Λ̃

[
ωX
Λ,ρ

(
ρΛ̃i,p.b.c

)
− ωX

Λ,ρ

(
ρΛ̃j ,p.b.c

)]
=lim

Λ̃

[
ωX
ρ

(
ρΛ̃i,p.b.c

)
− ωX

ρ

(
ρΛ̃j ,p.b.c

)]
= 0,

(3.14)

11



for V ≥ Γ
(
Ṽ
)

and i, j ∈
{
1, ..., n

(
Ṽ
)}

. In fact, using the invariance by translation of the

infinite volume Gibbs ωX
ρ (1.29), ∀i ∈

{
1, ..., n

(
Ṽ
)}

, by (3.14) one has

lim
Λ̃
ωX
Λ,ρ

(
ρΛ̃,p.b.c

)
=lim

Λ̃
ωX
ρ

(
ρΛ̃,p.b.c

)
=lim

Λ̃
ωX
ρ

(
ρΛ̃i,p.b.c

)
=lim

Λ̃
ωX
Λ,ρ

(
ρΛ̃i,p.b.c

)
, (3.15)

for V ≥ Γ
(
Ṽ
)

or L ≥ 3

√
Γ
(
L̃3
)
, then for γ (x) ≥ γ0 (x) ≡ x−1 3

√
Γ (x3) in (2.1)-(2.2). By

(3.10), notice that ωX
Λ,ρ

(
ρΛ̃∗
)
is similar to a sum of n

(
Ṽ
)
≡ V/Ṽ (3.3) expectation values

Xi

(
Λ̃
)
of ”random variables” ρΛ̃i,p.b.c, i.e.,

ωX
Λ,ρ

(
ρΛ̃∗
)
=

1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ωX
Λ,ρ

(
ρΛ̃i,p.b.c

)
=

1

n
(
Ṽ
)

n(Ṽ )∑

i=1

Xi

(
Λ̃
)
. (3.16)

Since by (3.15) the expectation values
{
Xi

(
Λ̃
)}n(Ṽ )

i=1
are all equal to X = ωX

ρ

(
ρΛ̃,p.b.c

)
in the

limit Λ→ Rd then by (3.15)-(3.16) we obtain

lim
Λ̃
ωX
Λ,ρ

(
ρΛ̃∗
)
=lim

Λ̃
ωX
Λ,ρ

(
ρΛ̃,p.b.c

)
, (3.17)

for γ (x) ≥ γ0 (x) which by (2.8) implies (3.1). ¥

Remark 3.2. For the Perfect Bose Gas, i.e., UX
Λ,p.b.c = 0 (1.18), the corresponding finite volume

Gibbs state ωPBG
Λ,ρ is already translation invariant inside the box Λ, i.e., ∀i ∈

{
1, ..., n

(
Ṽ
)}

(3.3) we have

ωPBG
Λ,ρ

(
ρΛ̃i,p.b.c

)
= ωPBG

Λ,ρ

(
ρΛ̃,p.b.c

)
.

Then, from (2.8) and (3.10), the equality (3.1) is already verified in finite volume:

ωPBG
Λ,ρ

(
ρΛ̃∗
)
= ωPBG

Λ,ρ

(
ρΛ̃,p.b.c

)
= ωPBG

Λ,ρ

(
ρΛ̃
)
.

3.2. The logarithmic moment generating functions

Let us consider gX
Λ̃
(λ) and gX

Λ̃∗
(λ) respectively defined by

gX
Λ̃
(λ) ≡ 1

βṼ
lnωX

Λ,ρ

(
eβλNΛ̃

)
,

gX
Λ̃∗

(λ) ≡ 1

βṼ
lnωX

Λ,ρ

(
eβλNΛ̃∗

)
.

(3.18)

Lemma 3.3. By (1.19)-(1.22) and (1.24)-(1.25), if the case (a) is verified, then for µX
Λ (ρ) <

µsup one has:

∀λ < λsup, ω
X
Λ,ρ

(
eβλNΛ̃

)
< +∞ and ωX

Λ,ρ

(
eβλNΛ̃∗

)
< +∞,

lim
λ→λ−sup

ωX
Λ,ρ

(
eβλNΛ̃

)
= +∞ and lim

λ→λ−sup

ωX
Λ,ρ

(
eβλNΛ̃∗

)
= +∞, (3.19)
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with λsup ≡ µsup − µXΛ (ρ), whereas if the Bose system satisfies (b) then ωX
Λ,ρ

(
eβλNΛ̃

)
and

ωX
Λ,ρ

(
eβλNΛ̃∗

)
exist for any λ ∈ R and

lim
λ→+∞

ωX
Λ,ρ

(
eβλNΛ̃

)
= +∞, lim

λ→+∞
ωX
Λ,ρ

(
eβλNΛ̃∗

)
= +∞. (3.20)

Proof. Let us consider the case (a), cf. (1.22) and (1.24)-(1.25), i.e., there is µsup < +∞ such
that for β > 0 one has

Tr
F
(Λ)
B

(
e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
< +∞, for µ < µsup,

lim
µ→µ−sup

Tr
F
(Λ)
B

(
e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
= +∞.

(3.21)

(i) If λ ≤ 0 and µ < µsup, i.e., e
βλN

Λ̃ ≤ IF∞
B

and eβλNΛ̃∗ ≤ IF∞
B
, then by (1.19), we find

Tr
F
(Λ)
B

(
eβλNΛ̃e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
≤ Tr

F
(Λ)
B

(
e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
,

T r
F
(Λ)
B

(
eβλNΛ̃∗e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
≤ Tr

F
(Λ)
B

(
e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
,

(3.22)

and by (1.23) and (3.21) one gets

ωX
Λ,µ

(
eβλNΛ̃

)
< +∞, ωX

Λ,µ

(
eβλNΛ̃∗

)
< +∞, if λ ≤ 0 and µ < µsup. (3.23)

(ii) If λ ≥ 0 and λ+ µ < µsup, i.e.,

I
F
(Λ)
B

≤ eβλNΛ̃ ≤ eβλNΛ,p.b.c , IF∞
B
≤ eβλNΛ̃∗ ≤ eβλNΛ,p.b.c ,

then using (1.19) one has

Tr
F
(Λ)
B

(
eβλNΛ̃e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
≤ Tr

F
(Λ)
B

(
e−β(H

X
Λ,p.b.c−(µ+λ)NΛ,p.b.c)

)
,

T r
F
(Λ)
B

(
eβλNΛ̃∗e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
≤ Tr

F
(Λ)
B

(
e−β(H

X
Λ,p.b.c−(µ+λ)NΛ,p.b.c)

)
,

and by (1.23) and (3.21) one gets

ωX
Λ,µ

(
eβλNΛ̃

)
< +∞, ωX

Λ,µ

(
eβλNΛ̃∗

)
< +∞, if λ ≥ 0 and λ+ µ < µsup. (3.24)

(iii) By Remark 1.5 combining with (2.5), F (Λ̃)
B ⊂ F (Λ)

B ⊂ F∞B implies:

Tr
F
(Λ)
B

(
eβλNΛ̃∗e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
≥ Tr

F
(Λ̃)
B

(
e
−β
[
Ṽ
V

](
T
Λ̃,p.b.c

+ Ṽ
V
UX

Λ̃,p.b.c
−(µ+λ)N

Λ̃,p.b.c

))
,

(3.25)

and for λ > 0, n
(
Ṽ
)
= V/Ṽ > 1,

T r
F
(Λ)
B

(
eβλNΛ̃e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
≥ Tr

F
(Λ̃)
B

(
e
−
[
β Ṽ
V

](
T
Λ̃,p.b.c

+ Ṽ
V
UX

Λ̃,p.b.c
−(µ+λ)N

Λ̃,p.b.c

))
.

(3.26)
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(iv) Let us consider the Bogoliubov (convexity) inequality [5,10] applied to the two Hamiltonians
HX
Λ̃

(1.18) and

H̃X
Λ̃,p.b.c

= TΛ̃,p.b.c +
Ṽ

V
UX
Λ̃,p.b.c

,

then one has

lnTr
F
(Λ̃)
B

(
e
−β

Λ̃

(
H̃X

Λ̃,p.b.c
−(µ+λ)N

Λ̃,p.b.c

))
− lnTr

F
(Λ̃)
B

(
e−βΛ̃(H

X

Λ̃
−(µ+λ)N

Λ̃,p.b.c)
)
≥ βΛ̃

(
1− Ṽ

V

)
×

×ωX
Λ̃,µ+λ

(
UX
Λ̃,p.b.c

)
,

(3.27)

with βΛ̃ = βṼ /V ≥ 0. Here ωX
Λ̃,µ+λ

(−) (1.23) represents the grand-canonical Gibbs state for

the Hamiltonian HX
Λ̃

with chemical potential (µ+ λ), an inverse temperature β Λ̃ and using

periodic boundary conditions on Λ̃. Then by (1.20) and (3.27)

lnTr
F
(Λ̃)
B

(
e
−β

Λ̃

(
H̃X

Λ̃,p.b.c
−(µ+λ)N

Λ̃,p.b.c

))
≥ Ṽ βΛ̃

[
pX
Λ̃

(
βΛ̃, (µ+ λ)

)
−B

(
1− Ṽ

V

)
ρX
Λ̃

(
βΛ̃, (µ+ λ)

)
]
,

(3.28)
where the pressure pX

Λ̃

(
βΛ̃, α

)
and the particle density ρX

Λ̃

(
βΛ̃, α

)
are respectively defined for

a box Λ̃ by (1.21) and (1.24). Since

ρX
Λ̃

(
βΛ̃, α

)
= ∂αp

X
Λ̃

(
βΛ̃, α

)
,

by (1.22) one gets

lim
λ→[µsup−µ]

[
pX
Λ̃

(
βΛ̃, (µ+ λ)

)
−B

(
1− Ṽ

V

)
ρX
Λ̃

(
βΛ̃, (µ+ λ)

)
]
= +∞, (3.29)

which by (3.25) and (3.28) implies

lim
λ→[µsup−µ]

Tr
F
(Λ)
B

(
eβλNΛ̃∗e−β(H

X
Λ,p.b.c−µNΛ,p.b.c)

)
= +∞,

i.e., by (1.23)-(1.27) one has

lim
λ→[µsup−µXΛ (ρ)]

ωX
Λ,ρ

(
eβλNΛ̃∗

)
= +∞. (3.30)

Moreover by (3.26) combining with (3.28) and (3.29) we find also

lim
λ→[µsup−µXΛ (ρ)]

ωX
Λ,ρ

(
eβλNΛ̃

)
= +∞. (3.31)

(v) If one has the case (b) then ωX
Λ,ρ

(
eβλNΛ̃

)
and ωX

Λ,ρ

(
eβλNΛ̃∗

)
exist for any λ ∈ R and verify

(3.20), see arguments in (i)-(iv) with µsup → +∞. ¥
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Remark 3.4. If the case (a), cf. (1.22) and (1.24)-(1.25), is verified, the functions gX
Λ̃
(λ) and

gX
Λ̃∗

(λ) (3.18) are strictly convex for λ < λsup ≡ µsup − µXΛ (ρ) and verifies

lim
λ→λsup

gX
Λ̃
(λ) = lim

λ→λsup
gX
Λ̃∗

(λ) = +∞, (3.32)

see Lemma 3.3. If one has the case (b) , then gX
Λ̃
(λ) and gX

Λ̃∗
(λ) (3.18) are strictly convex for

λ ∈ R and
lim

λ→+∞
gX
Λ̃
(λ) = lim

λ→+∞
gX
Λ̃∗

(λ) = +∞. (3.33)

Theorem 3.5. In the domain of existence of gX
Λ̃
(λ) (3.18) (or of gX

Λ̃∗
(λ)), there exists γ̃0 (x)

such that
gX (λ) =lim

Λ̃
gX
Λ̃
(λ) =lim

Λ̃
gX
Λ̃∗

(λ) , (3.34)

for γ (x) ≥ γ̃0 (x) (2.1)-(2.2).

Proof. (i) If the case (a) is verified then for µXΛ (ρ) < µsup, λ ≥ 0 and λ < λsup ≡ µsup− µXΛ (ρ),
by (1.19) and (1.26)-(1.27) one gets

ωX
Λ,ρ

(
ρΛ̃e

βλN
Λ̃

)
≤ V

Ṽ
ωX
Λ,ρ

(
ρΛ,p.b.ce

βλNΛ,p.b.c
)
=
V

Ṽ
ρXΛ
(
β, µXΛ (ρ) + λ

)
< +∞,

ωX
Λ,ρ

(
ρΛ̃e

βλN
Λ̃∗
)
≤ V

Ṽ
ρXΛ
(
β, µXΛ (ρ) + λ

)
< +∞,

ωX
Λ,ρ

(
ρΛ̃∗e

βλN
Λ̃

)
≤ V

Ṽ
ρXΛ
(
β, µXΛ (ρ) + λ

)
< +∞,

ωX
Λ,ρ

(
ρΛ̃∗e

βλN
Λ̃∗
)
≤ V

Ṽ
ρXΛ
(
β, µXΛ (ρ) + λ

)
< +∞.

(3.35)

with ρΛ̃ = NΛ̃/Ṽ (1.15), ρΛ̃∗ = NΛ̃∗/Ṽ (1.16) and ρΛ,p.b.c = NΛ,p.b.c/V (1.11). If λ ≤ 0, by
(1.26)-(1.27) one has

ωX
Λ,ρ

(
ρΛ̃e

βλN
Λ̃

)
≤ V

Ṽ
ωX
Λ,ρ

(
ρΛ,p.b.c

)
=
V

Ṽ
ρ < +∞,

ωX
Λ,ρ

(
ρΛ̃e

βλN
Λ̃∗
)
≤ V

Ṽ
ρ < +∞,

ωX
Λ,ρ

(
ρΛ̃∗e

βλN
Λ̃

)
≤ V

Ṽ
ρ < +∞,

ωX
Λ,ρ

(
ρΛ̃∗e

βλN
Λ̃∗
)
≤ V

Ṽ
ρ < +∞.

(3.36)

Therefore using (3.18), (3.35), (3.36) and Remark 3.4, one gets

∣∣∣∣∣
ωX
Λ,ρ

([
ρΛ̃ − ρΛ̃∗

]
eβλNΛ̃

)

ωX
Λ,ρ

(
eβλNΛ̃

)
∣∣∣∣∣ < +∞,

∣∣∣∣∣
ωX
Λ,ρ

([
ρΛ̃ − ρΛ̃∗

]
eβλNΛ̃∗

)

ωX
Λ,ρ

(
eβλNΛ̃∗

)
∣∣∣∣∣ < +∞, (3.37)

for λ < λsup ≡ µsup − µXΛ (ρ).
If the case (b) is verified then, using the same arguments with µsup → +∞, (3.37) is also
satisfied for λ ∈ R.
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(ii) Using the Bogoliubov inequality (A.17) (Appendix A), one gets

gX
Λ̃∗

(λ)− gX
Λ̃
(λ) ≤ λζX

λ,Λ̃∗

(
ρΛ̃ − ρΛ̃∗

)
. (3.38)

Here we define the new state ζX
λ,Λ̃∗

for A ∈ A∞B by

ζX
λ,Λ̃∗

(A) = TrF∞
B

(
σX
λ,Λ̃∗

A
)
, σX

λ,Λ̃∗
=
[
ZX
λ,Λ̃∗

]−1
dXΛ,ρe

βλN
Λ̃∗ , (3.39)

with
ZX
λ,Λ̃∗

= ωX
Λ,ρ

(
eβλNΛ̃∗

)
= TrF∞

B

(
dXΛ,ρe

βλN
Λ̃∗
)
< +∞, (3.40)

and the density matrix dXΛ,ρ defined by (3.7).

(iii) Since σX
λ,Λ̃∗

(3.39) is a density matrix, notice that the state ζX
λ,Λ̃∗

(3.39) is a normal state

which converges to a quasi-normal state ζXλ on A∞B (see discussion p. 26 in [11]). In fact we
conjecture that

ζXλ (A) =lim
Λ̃
ωX
Λ,λ+lim

Λ
µXΛ (ρ)

(A) , for any A ∈ A∞B , (3.41)

see (1.23) and (1.26). Note that this last conjecture (3.41) is just a remark and is not necessary
for the rest of this proof.
Following the arguments using for the proof of Theorem 3.1 for the state ζX

λ,Λ̃∗
instead of ωX

Λ,ρ

one has

ζX
λ,Λ̃∗

(
ρΛ̃∗
)
=

1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃∗

(
ρΛ̃i,p.b.c

)
, n
(
Ṽ
)
= V/Ṽ ∈ N\ {0} (2.1)-(2.2), (3.42)

where we use an equivolume partition
{
Λ̃i

}n(Ṽ )

i=1
(3.3) of the full box Λ. Then, using the

invariance by translation of ζX
λ,Λ̃∗

(3.39) in the limit Λ→ Rd, there is γ1 (x) such that

lim
Λ̃
ζX
λ,Λ̃∗

(
ρΛ̃∗
)
=lim

Λ̃
ζX
λ,Λ̃∗

(
ρΛ̃,p.b.c

)
, (3.43)

for γ (x) ≥ γ1 (x) (2.1)-(2.2) which, by Theorem B.1 in Appendix B for ω = ζX
λ,Λ̃∗

and (3.38),
implies

lim
Λ̃

[
gX
Λ̃∗

(λ)− gX
Λ̃
(λ)
]
≤ 0. (3.44)

(iv) Using again an equivolume partition
{
Λ̃i

}n(Ṽ )

i=1
(3.3) of the full box Λ and the operator

NΛ̃,p.b.c (2.5), by the Bogoliubov inequality (A.17) (Appendix A) for i ∈
{
1, ..., n

(
Ṽ
)}

one has

1

βV
lnωX

Λ,ρ

(
eβλNΛ̃∗

)
− 1

βV
lnωX

Λ,ρ

(
e
βλN

Λ̃i,p.b.c

)
≥ λ

V
ζX
λ,Λ̃i,p.b.c

(
NΛ̃i,p.b.c

−NΛ̃∗

)
, (3.45)

where ∀i ∈
{
1, ..., n

(
Ṽ
)}

we define the new states ζX
λ,Λ̃i,p.b.c

for A ∈ A∞B by

ζX
λ,Λ̃i,p.b.c

(A) = TrF∞
B

(
σX
λ,Λ̃i,p.b.c

A
)
, σX

λ,Λ̃i,p.b.c
=
[
ZX
λ,Λ̃i,p.b.c

]−1
dXΛ,ρe

βλN
Λ̃i,p.b.c , (3.46)
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with
ZX
λ,Λ̃i,p.b.c

= ωX
Λ,ρ

(
e
βλN

Λ̃i,p.b.c

)
= TrF∞

B

(
dXΛ,ρe

βλN
Λ̃i,p.b.c

)
< +∞, (3.47)

see also (3.7) for the definition of dXΛ,ρ. Therefore by (3.45) we obtain

n(Ṽ )∑

i=1

{
1

βV
lnωX

Λ,ρ

(
eβλNΛ̃∗

)
− 1

βV
lnωX

Λ,ρ

(
e
βλN

Λ̃i,p.b.c

)}
≥ λ

V

n(Ṽ )∑

i=1

ζX
λ,Λ̃i,p.b.c

(
NΛ̃i,p.b.c

−NΛ̃∗

)
,

which implies

1

βṼ
lnωX

Λ,ρ

(
eβλNΛ̃∗

)
− 1

n
(
Ṽ
)

n(Ṽ )∑

i=1

1

βṼ
lnωX

Λ,ρ

(
e
βλN

Λ̃i,p.b.c

)
≥ λ

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃i,p.b.c

(
ρΛ̃i,p.b.c − ρΛ̃∗

)
.

(3.48)
Following the arguments done from (3.2) to (3.10) for the states ζX

λ,Λ̃j ,p.b.c
(3.46) instead of ωX

Λ,ρ

one has

∀j ∈
{
1, ..., n

(
Ṽ
)}

, ζX
λ,Λ̃j ,p.b.c

(
ρΛ̃∗
)
=

1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃j ,p.b.c

(
ρΛ̃i,p.b.c

)
. (3.49)

If λ ≥ 0, then

∀i, j ∈
{
1, ..., n

(
Ṽ
)}

, i 6= j, ζX
λ,Λ̃j ,p.b.c

(
ρΛ̃i,p.b.c

)
≤ ζX

λ,Λ̃j ,p.b.c

(
ρΛ̃j ,p.b.c

)
,

and by (3.49) we obtain

λ





1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃i,p.b.c

(
ρΛ̃i,p.b.c

)
− ζX

λ,Λ̃j ,p.b.c

(
ρΛ̃∗
)



≥ 0, for λ ≥ 0. (3.50)

If λ ≤ 0, then

∀i, j ∈
{
1, ..., n

(
Ṽ
)}

, i 6= j, ζX
λ,Λ̃j ,p.b.c

(
ρΛ̃i,p.b.c

)
≥ ζX

λ,Λ̃j ,p.b.c

(
ρΛ̃j ,p.b.c

)
,

and by (3.49) we obtain

λ





1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃i,p.b.c

(
ρΛ̃i,p.b.c

)
− ζX

λ,Λ̃j ,p.b.c

(
ρΛ̃∗
)



≥ 0, for λ ≤ 0. (3.51)

Since

1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃i,p.b.c

(
ρΛ̃i,p.b.c − ρΛ̃∗

)
≤ 1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃i,p.b.c

(
ρΛ̃i,p.b.c

)
− ζX

λ,Λ̃imin ,p.b.c

(
ρΛ̃∗
)
,

1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃i,p.b.c

(
ρΛ̃i,p.b.c − ρΛ̃∗

)
≥ 1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃i,p.b.c

(
ρΛ̃i,p.b.c

)
− ζX

λ,Λ̃imax ,p.b.c

(
ρΛ̃∗
)
,
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with imin, imax ∈
{
1, ..., n

(
Ṽ
)}

such that

∀i ∈
{
1, ..., n

(
Ṽ
)}

, ζX
λ,Λ̃imin ,p.b.c

(
ρΛ̃∗
)
≤ ζX

λ,Λ̃i,p.b.c

(
ρΛ̃∗
)
≤ ζX

λ,Λ̃imax ,p.b.c

(
ρΛ̃∗
)
,

then from (3.50) and (3.51)

λ

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃i,p.b.c

(
ρΛ̃i,p.b.c − ρΛ̃∗

)
≥ λ





1

n
(
Ṽ
)

n(Ṽ )∑

i=1

ζX
λ,Λ̃i,p.b.c

(
ρΛ̃i,p.b.c

)
− ζX

λ,Λ̃l,p.b.c

(
ρΛ̃∗
)



≥ 0,

(3.52)
with

l =

{
imax if λ ≥ 0.
imin if λ ≤ 0.

Moreover using the same arguments than for the proof of the Theorem 3.1 (invariance by
translation of ωX

ρ (1.29)), there is γ2 (x) such that

lim
Λ̃

1

n
(
Ṽ
)

n(Ṽ )∑

i=1

1

βṼ
lnωX

Λ,ρ

(
e
βλN

Λ̃i,p.b.c

)
=lim

Λ̃

1

βṼ
lnωX

Λ,ρ

(
eβλNΛ̃,p.b.c

)
, (3.53)

for γ (x) ≥ γ2 (x) (2.1)-(2.2), and so, by (3.18) and (3.48) combining with (3.52), we get

lim
Λ̃
gX
Λ̃∗

(λ) ≥ lim
Λ̃

1

βṼ
lnωX

Λ,ρ

(
eβλNΛ̃,p.b.c

)
. (3.54)

(v) Again by the Bogoliubov inequality (A.17) (Appendix A) one has

λζX
λ,Λ̃

(
ρΛ̃ − ρΛ̃,p.b.c

)
≤ 1

βṼ
lnωX

Λ,ρ

(
eβλNΛ̃,p.b.c

)
− gX

Λ̃
(λ) ≤ λζX

λ,Λ̃,p.b.c

(
ρΛ̃ − ρΛ̃,p.b.c

)
. (3.55)

where we define the new state ζX
λ,Λ̃

for A ∈ A∞B by

ζX
λ,Λ̃

(A) = TrF∞
B

(
σX
λ,Λ̃
A
)
, σX

λ,Λ̃
=
[
ZX
λ,Λ̃

]−1
dXΛ,ρe

βλN
Λ̃ , (3.56)

with
ZX
λ,Λ̃

= ωX
Λ,ρ

(
eβλNΛ̃

)
= TrF∞

B

(
dXΛ,ρe

βλN
Λ̃

)
< +∞. (3.57)

Using the Theorem B.1 in Appendix B for ω = ζX
λ,Λ̃,p.b.c

(3.46) and ω = ζX
λ,Λ̃

(3.56) one gets

ζX
λ,Λ̃,p.b.c

(
ρΛ̃ − ρΛ̃,p.b.c

)
= ζX

λ,Λ̃

(
ρΛ̃ − ρΛ̃,p.b.c

)
= 0,

which by (3.55) implies

gX
Λ̃
(λ) =

1

βṼ
lnωX

Λ,ρ

(
eβλNΛ̃,p.b.c

)
. (3.58)

Consequently, combining (3.44) with (3.54), by (3.58) we find (3.34) for γ (x) ≥ γ̃0 (x) ≡
sup {γ1 (x) , γ2 (x)} (2.1)-(2.2). ¥
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Remark 3.6. For the Perfect Bose Gas, i.e., UPBG
Λ,p.b.c = 0 (1.18), the corresponding finite volume

Gibbs state ωPBG
Λ,ρ is already translation invariant inside the box Λ. Then we have





ζPBG
λ,Λ̃∗

(
ρΛ̃∗
)
= ζPBG

λ,Λ̃∗

(
ρΛ̃,p.b.c

)
= ζPBG

λ,Λ̃∗

(
ρΛ̃
)
cf. (3.42)-(3.43) and Theorem B.1 (Appendix B),

1

n
(
Ṽ
)

n(Ṽ )∑

i=1

1

βṼ
lnωPBG

Λ,ρ

(
e
βλN

Λ̃i,p.b.c

)
=

1

βṼ
lnωPBG

Λ,ρ

(
eβλNΛ̃,p.b.c

)
, cf. (3.53),





which, by (3.38) and by (3.48) combining with (3.52) and (3.58), implies

gPBG
Λ̃∗

(λ) = gPBG
Λ̃

(λ) ,

in the domain of existence of gPBG
Λ̃

(λ) or gPBG
Λ̃∗

(λ) , i.e. for λ < µPBG
Λ (ρ) (µsup = 0 for the

Perfect Bose Gas).

3.3. Main results

Notice that we restrict our analysis on a domain of (β, µ) in which

lim
Λ̃
ωX
Λ,ρ

(
ρΛ̃
)
< +∞, lim

Λ̃
ωX
Λ,ρ

(
ρΛ̃∗
)
< +∞.

We choose also γ (x) in (2.1)-(2.2) which diverges to∞ sufficiently quickly (cf. (2.2)) such that
Theorems 3.1 and 3.5 are verified. Note that{

gX
Λ̃
(λ) =

1

βṼ
lnωX

Λ

(
eβλNΛ̃

)}

Λ̃

,

{
gX
Λ̃∗

(λ) =
1

βṼ
lnωX

Λ

(
eβλNΛ̃∗

)}

Λ̃

are two sequences of convex functions (cf. Remark 3.4) which verify (3.32) or (3.33) and also

∂λg
X
Λ̃
(λ) = ζX

λ,Λ̃

(
NΛ̃

Ṽ

)
, ∂λg

X
Λ̃∗

(λ) = ζX
λ,Λ̃∗

(
NΛ̃∗

Ṽ

)
,

with ζX
λ,Λ̃∗

and ζX
λ,Λ̃

respectively defined by (3.39)-(3.40) and (3.56)-(3.57). So, for any a > 0

there are two sequences
{
λΛ̃,a

}
Λ̃
and

{
λΛ̃∗,a

}
Λ̃
such that

∂λg
X
Λ̃

(
λΛ̃,a

)
= a, ∂λg

X
Λ̃∗

(
λΛ̃∗,a

)
= a. (3.59)

From Theorem 3.5, note that
λa =lim

Λ̃
λΛ̃∗,a =lim

Λ̃
λΛ̃,a. (3.60)

Then we can express the main statement of this section:

Theorem 3.7. If for any a > 0,

lim
Λ̃
ζX
λ
Λ̃∗,a

,Λ̃∗

(
χ[a,a+ 1

Ṽ
]
(
ρΛ̃∗
))

=lim
Λ̃
ζX
λ
Λ̃,a

,Λ̃

(
χ[a,a+ 1

Ṽ
]
(
ρΛ̃
))

= 0, (3.61)

then for any interval I = [a, b] one has

lim
Λ̃

1

βṼ
lnP

{
ρΛ̃ ∈ I

}
=lim

Λ̃

1

βṼ
lnP

{
ρΛ̃∗ ∈ I

}
. (3.62)

The states ζX
λ,Λ̃∗

and ζX
λ,Λ̃

are defined by (3.39)-(3.40) and (3.56)-(3.57) respectively.
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Proof. (The proof is just an application of the one done in [2]). We recall that

QΛ̃ = P
{
ρΛ̃ ∈ I

}
= ωX

Λ,ρ

(
χI

(
ρΛ̃
))
, (3.63)

see (2.3), and
QΛ̃∗ = P

{
ρΛ̃∗ ∈ I

}
= ωX

Λ,ρ

(
χI

(
ρΛ̃∗
))
, (3.64)

where χA is the characteristic function of A ⊆ R.
Let us consider the case (a), cf. (1.19)-(1.22) and (1.24)-(1.25). Let a > ρ. Since ρXΛ (β, µ) is
strictly increasing in µ, we have 0 < λΛ̃,a < λsup ≡ µsup − µXΛ (ρ), cf. Remark 3.4 and (3.59).

(i) Using the state ζX
λ,Λ̃

(3.56)-(3.57), (3.63) is equal to

QΛ̃ = ZX
λ,Λ̃
ζX
λ,Λ̃

(
e−βλNΛ̃χI

(
ρΛ̃
))
, (3.65)

with the partition function ZX
λ,Λ̃

defined by (3.57). Using the exponential Chebychev inequality

we find a first upper bound for QΛ̃:

QΛ̃ ≤ ωX
λ,Λ̃

(
eβλ(NΛ̃−aṼ )

)
= ZX

λ,Λ̃
e−βλaṼ , (3.66)

for any 0 < λ < λsup.
Therefore using (3.61) for c ∈ (a, b) one gets

QΛ̃ ≥ ZX
λ
Λ̃,a

,Λ̃
ζX
λ
Λ̃,a

,Λ̃

(
e−βλΛ̃,aNΛ̃χ[a,c]

(
ρΛ̃
))

≥ ZX
λ
Λ̃,a

,Λ̃
e−βcṼ λ

Λ̃,aζX
λ
Λ̃,a

,Λ̃

(
χ[a,c]

(
ρΛ̃
))

≥ αZX
λ
Λ̃,a

,Λ̃
e−βṼ cλ

Λ̃,a , α ∈ (0, 1) . (3.67)

Therefore combining (3.66) with (3.67) we find

gX
Λ̃

(
λΛ̃,a

)
− cλΛ̃,a + o (1) ≤ 1

βṼ
lnQΛ̃ ≤ gX

Λ̃

(
λΛ̃,a

)
− aλΛ̃,a + o (1) ,

for any c ∈ (a, b), which implies

lim
Λ̃

1

βṼ
lnQΛ̃ = gX (λa)− aλa, (3.68)

with λa defined by (3.60) and gX (λa) defined by (3.34).
(ii) Using exactly the same argument for QΛ̃∗ (3.64), by (3.61) we find

gX
Λ̃∗

(
λΛ̃∗,a

)
− cλΛ̃∗,a + o (1) ≤ 1

βṼ
lnQΛ̃∗ ≤ gX

Λ̃∗

(
λΛ̃∗,a

)
− aλΛ̃∗,a + o (1) , (3.69)

with λΛ̃∗,a solution of (3.59). By (3.60), (3.68) and (3.69) one gets

lim
Λ̃

1

βṼ
lnQΛ̃∗ = gX (λa)− aλa =lim

Λ̃

1

βṼ
lnQΛ̃∗ ,

i.e., (3.62) (see (3.63) and (3.64)).
Using exactly the same kinds of argument for a < ρ, i.e., for λ < 0, one gets the same result.
If the case (b) is verified then, following the same arguments with µsup → +∞, (3.62) is also
satisfied. ¥
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Remark 3.8. In fact, the condition (3.61) is necessary to prove Theorem 3.7 only if there is
a conventional Bose-Einstein condensation for the fixed particle density ρ and/or a fixed local
particle density a in the Bose gas X (1.18), see for example (III.2)-(III.14) in [2].

Remark 3.9. Moreover, it is not clear if the first two limits in (3.61) are correlated to each
other and if this technical assumption can be deleted in the general setting. Actually, this
condition (3.61) appears to be only sufficient in order to imply the existence of a large deviation

principle for ρΛ̃∗ and ρΛ̃ respectively, with the correct constant
{∣∣∣Λ̃

∣∣∣ = Ṽ
}
.

3.4. A direct application to the Perfect Bose Gas

(i) Using periodic boundary conditions, the Perfect Bose Gas is of course defined by (1.18) with
UX
Λ,p.b.c = 0, i.e. HX

Λ,p.b.c = TΛ,p.b.c. As we have already seen that the proofs are really simpler
in this case, see for example Remarks 3.2 and 3.6.

(ii) Moreover, we can directly compute the logarithmic moment generating function gPBG
Λ̃∗

(λ)
(3.18) associated with the local particles density ρΛ̃∗ (1.16):

gPBG
Λ̃∗

(λ) = pPBG
Λ̃

(
β, µPBG

Λ (ρ) + λ
)
− pPBG

Λ̃

(
β, µPBG

Λ (ρ)
)
,

where pPBG
Λ̃

(β, µ) is the Perfect Bose Gas pressure for a finite box Λ̃. Therefore, by Theorem
3.5 (more precisely, see Remark 3.6), we directly get

gPBG
Λ̃,p.b.c

(λ) = gPBG
Λ̃

(λ) = gPBG
Λ̃∗

(λ) = pPBG
Λ̃

(
β, µPBG

Λ (ρ) + λ
)
− pPBG

Λ̃

(
β, µPBG

Λ (ρ)
)
. (3.70)

The computation of the logarithmic moment generating function gPBG
Λ̃

(λ) was already found
in [2] with completely different arguments, which use the high specificity of TΛ,p.b.c. In partic-
ular, these arguments [2] could not have been extended to a quartic Hamiltonian in term of
creation/annihilation operators.

(iii) Let

ρPBG
c ≡ lim

µ→0−
ρPBG
c (β, µ) ≡ lim

µ→0−
lim
Λ
ωPBG
Λ,µ (ρΛ) ≡ lim

µ→0−
lim
Λ
ωPBG
Λ,µ

(
NΛ,p.b.c

V

)

be the critical density of the Perfect Bose Gas, see (1.23) for HX
Λ,p.b.c = TΛ,p.b.c (µsup = 0).

Then, if for any a > 0,

lim
Λ̃

inf
1

Ṽ
ln ζPBG

λ
Λ̃∗,a

,Λ̃∗

(
χ[a,a+ 1

Ṽ
]
(
ρΛ̃∗
))

=lim
Λ̃

inf
1

Ṽ
ln ζPBG

λ
Λ̃,a

,Λ̃

(
χ[a,a+ 1

Ṽ
]
(
ρΛ̃
))

= 0, (3.71)

(which is proven in [2] only for ρ < ρPBG
c and which may be false for ρ > ρPBG

c ) then for any
interval I = [a, b] one has

lim
Λ̃

1

βṼ
lnP

{
ρΛ̃ ∈ I

}
=lim

Λ̃

1

βṼ
lnP

{
ρΛ̃,p.b.c ∈ I

}
=lim

Λ̃

1

βṼ
lnP

{
ρΛ̃∗ ∈ I

}
,
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(as in [2] we assume that the infinite volume Gibbs state ωPBG
ρ of the Perfect Bose Gas makes

sense, see Section 1.3.3).

(iv) By (3.70) one directly finds

lim
Λ̃

1

βṼ
lnP

{
ρΛ̃ ∈ I

}
= sup

x∈[a,b]

fPBG
µPBG(ρ),β (x) ,

as soon as (3.71) is verified. Here

µPBG (ρ) =lim
Λ̃
µPBG
Λ̃

(ρ) ≤ µsup = 0,

see (1.27) for HX
Λ,p.b.c = TΛ,p.b.c, and the rate function fPBG

µ,β (x) is defined as the Fenchel-
Legendre transform of gPBG

µ,β (λ), i.e.

fPBG
µ,β (x) = inf

λ∈(−∞,−µ]

{
gPBG
µ,β (λ)− λx

}
= gPBG

µ,β (λx)− xλx. (3.72)

The kth cumulant of ξΛ̃ =
(
NΛ̃ − ωPBG

Λ,ρ

(
NΛ̃

))
/
√
Ṽ is given by

CΛ (k) =
1

βkṼ k/2

[
dk

dλk
lnωX

Λ,ρ

(
eβλNΛ̃

)]

λ=0

, k ≥ 2,

Then, as in [2], by (3.70), one gets:

• for ρ < ρPBG
c , ξΛ̃ converge, as Λ̃↗ Rd, to a gaussien variable with variance

σ =lim
Λ̃
β−1

(
∂2µp

PBG
Λ̃

(
β, µPBG

Λ̃
(ρ)
))
< +∞;

• for ρ > ρPBG
c , the variable ξΛ̃ does not converge, as Λ̃↗ Rd, to those of a gaussien since

lim
Λ̃
β−1

(
∂2µp

PBG
Λ̃

(
β, µPBG

Λ̃
(ρ)
))

= +∞.

Appendix A. .

The aim of this appendix is to prove the Bogoliubov convexity inequality [5,12–16] for the two
logarithmic moment generating functions

gX1 (λ) =
1

βṼ
lnωX

Λ,ρ

(
eβλN1

)
, gX2 (λ) =

1

βṼ
lnωX

Λ,ρ

(
eβλN1

)
, (A.1)

where the operators N1 and N2 are two local self-adjoint operators acting on F∞B satisfying

N1 = PΛN1PΛ, N2 = PΛN2PΛ, i.e., the restrictions of N1 and N2 on F (Λ)
B are also self-adjoint

and
ωX
Λ,ρ

(
eβλN1

)
< +∞, ωX

Λ,ρ

(
eβλN2

)
< +∞,
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for a domain of λ. Here PΛ (1.7)-(1.8) is the projection operator from F∞B to the boson Fock

space F (Λ)
B ⊂ F∞B . First we recall that ωX

Λ,ρ (cf. (1.23)-(1.27) and (1.29)) is normal [17] which
means the existence of a density matrix dXΛ,ρ (3.7), i.e., a positive trass-class operator dXΛ,ρ on
F∞B with

TrF∞
B

(
dXΛ,ρ

)
= 1, (A.2)

such that
ωX
Λ,ρ (A) = TrF∞

B

(
dXΛ,ρA

)
, A ∈ A∞B , (A.3)

see (B.2), (B.3) and Theorem 2.4.21 in [17]. Let us define for any A ∈ A∞B the two states ζXλ,1
and ζXλ,2:

ζXλ,1 (A) = TrF∞
B

(
σXλ,1A

)
, σXλ,1 =

[
ZX
λ,1

]−1
dXΛ,ρe

βλN1 ,

ζXλ,2 (A) = TrF∞
B

(
σXλ,2A

)
, σXλ,2 =

[
ZX
λ,2

]−1
dXΛ,ρe

βλN2 ,
(A.4)

with
ZX
λ,1 = ωX

Λ,ρ

(
eβλN1

)
= TrF∞

B

(
dXΛ,ρe

βλN1
)
< +∞,

ZX
λ,2 = ωX

Λ,ρ

(
eβλN2

)
= TrF∞

B

(
dXΛ,ρe

βλN2
)
< +∞.

(A.5)

Since the restriction of N1 and N2 are self-adjoint in F (Λ)
B , there are, in F (Λ)

B , two orthonormal

basis
{
ϕ1,n

}+∞
n=1

and
{
ϕ2,n

}+∞
n=1

, respectively two sets of eigenvectors for N1 and N2 with real

eigenvalues {E1,n}+∞n=1 and {E2,n}
+∞
n=1, i.e.,

N1ϕ1,n = E1,nϕ1,n, N2ϕ2,n = E2,nϕ2,n,
eβλN1ϕ1,n = eβλE1,nϕ1,n, e

βλN2ϕ2,n = eβλE2,nϕ2,n,

with ϕ1,n, ϕ2,n ∈ F (Λ)
B for n ≥ 1. The family

{
eβλN1

}
β>0

(or
{
eβλN2

}
β>0

) got the name Gibbs

semigroup generated by N1 (or N2), see [14].

Lemma A.1. (Jensen inequality) Let ξ be a real random variable with expectation E (|ξ|) <
∞. For any real convex function g on R1 one has

E (g (ξ)) ≥ g (E (ξ)) . (A.6)

Proof. By convexity of g there are two numbers x0 ∈ R1 and λ (x0) such that

g (x) ≥ g (x0) + λ (x0) (x− x0) . (A.7)

Let x = ξ and x0 = E (ξ). Then by (A.7)

E (g (ξ)) ≥ g (E (ξ)) ,

which proves (A.6). ¥

Lemma A.2. (Peierls-Bogoliubov inequality) Let
{
eβλH

}
β>0

be a Gibbs semigroup generated

by the self-adjoint operator H. Then for any orthonormal basis {ηn}+∞n=1 in F
(Λ)
B one gets:

TrF∞
B

(
eβλHdXΛ,ρ

)
= Tr

F
(Λ)
B

(
eβλHdXΛ,ρ

)
≥
+∞∑

n=1

(
ηn, d

X
Λ,ρηn

)
F∞
B

exp
{
βλ
(
η̃n, d

X
Λ,ρHη̃n

)
F∞
B

}
, (A.8)

with
η̃n =

ηn√(
ηn, d

X
Λ,ρηn

)
F∞
B

, for n ≥ 1.
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Proof. Let u ∈ F∞B be a vector such that
(
u, dXΛ,ρu

)
F∞
B

= 1. If {ϕn}+∞n=1 is an orthonormal basis

of eigenvectors of H associated with the eigenvalues {En}∞n=1, then u =
+∞∑
n=1

unϕn and

(
u, dXΛ,ρe

βλHu
)
F∞
B

=
+∞∑

n=1

eβλEnun
(
u, dXΛ,ρϕn

)
F∞
B

. (A.9)

Since
(
u, dXΛ,ρu

)
F∞
B

=
+∞∑
n=1

un
(
u, dXΛ,ρϕn

)
F∞
B

= 1, we could consider (A.9) as an expectation of the

convex function of the random variable {En}+∞n=1 with respect to the probability distribution

defined by
{
un
(
u, dXΛ,ρϕn

)
F∞
B

}+∞
n=1

. Then by the Jensen inequality (A.6) one gets

(
u, eβλHu

)
F∞
B

≥ e
βλ

+∞∑
n=1

Enun(u,dXΛ,ρϕn)F∞
B = e

βλ(u,dXΛ,ρHu)
F∞
B . (A.10)

By definition (3.7) of the density matrix dXΛ,ρ, note that

TrF∞
B

(
eβλHdXΛ,ρ

)
= Tr

F
(Λ)
B

(
eβλHdXΛ,ρ

)
,

and dXΛ,ρ is a strictly positive operator in F (Λ)
B whereas for any ϕ ∈ F∞B \F (Λ)

B , dXΛ,ρϕ = 0. Then

for any orthonormal basis {ηn}+∞n=1 in F
(Λ)
B one has

TrF∞
B

(
eβλHdXΛ,ρ

)
= TrF∞

B

(
dXΛ,ρe

βλH
)
= Tr

F
(Λ)
B

(
dXΛ,ρe

βλH
)
=
+∞∑

n=1

(
ηn, d

X
Λ,ρe

βλHηn
)
F∞
B

,

Therefore, by the strictly positivity of dXΛ,ρ (3.7) in F (Λ)
B , we find

Tr
F
(Λ)
B

(
eβλHdXΛ,ρ

)
=
+∞∑

n=1

(
ηn, d

X
Λ,ρηn

)
F∞
B

(
η̃n, d

X
Λ,ρe

βλH η̃n
)
F∞
B

,

with
η̃n =

ηn√(
ηn, d

X
Λ,ρηn

)
F∞
B

, n ≥ 1.

Since
(
η̃n, d

X
Λ,ρη̃n

)
F∞
B

= 1, by (A.10) one gets

Tr
F
(Λ)
B

(
eβλHdXΛ,ρ

)
=

+∞∑

n=1

(
ηn, d

X
Λ,ρηn

)
F∞
B

(
η̃n, d

X
Λ,ρe

βλH η̃n
)
F∞
B

≥
+∞∑

n=1

(
ηn, d

X
Λ,ρηn

)
F∞
B

exp
{
βλ
(
η̃n, d

X
Λ,ρHη̃n

)
F∞
B

}
,

(A.11)

which proves (A.8). The rest is a consequence of invariance of the Tr
F
(Λ)
B

(.) with respect to

the choice of an orthonormal basis in F (Λ)
B . ¥
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Remark A.3. The right side of the last inequality (A.8) could also be considered as an expec-

tation of the convex function exp of the random variable
{(
η̃n, d

X
Λ,ρHη̃n

)
F∞
B

}+∞
n=1

with respect

to the probability distribution defined by
{(
ηn, d

X
Λ,ρηn

)
F∞
B

}+∞
n=1

using the fact that

TrF∞
B

(
dXΛ,ρ

)
= Tr

F
(Λ)
B

(
dXΛ,ρ

)
=
+∞∑

n=1

(
ηn, d

X
Λ,ρηn

)
F∞
B

=
+∞∑

n=1

(
ηn, d

X
Λ,ρηn

)
F∞
B

= 1.

Then by the Jensen inequality (A.6) one gets

TrF∞
B

(
eβλHdXΛ,ρ

)
= Tr

F
(Λ)
B

(
eβλHdXΛ,ρ

)
≥ exp

{
+∞∑

n=1

(
ηn, d

X
Λ,ρηn

)
F∞
B

βλ
(
η̃n, d

X
Λ,ρHη̃n

)
F∞
B

}
=

= exp

{
+∞∑

n=1

βλ
(
ηn, d

X
Λ,ρHηn

)
F∞
B

}
= exp

{
βλTr

F
(Λ)
B

(
dXΛ,ρH

)}
=

= exp
{
βλTrF∞

B

(
dXΛ,ρH

)}
,

i.e.,
ωX
Λ,ρ

(
eβλH

)
≥ exp

{
βλωX

Λ,ρ (H)
}
.

Theorem A.4. (Bogoliubov convexity inequality) LetN1 andN2 be two self-adjoint generators
of Gibbs semigroups. Suppose that TrF∞

B

[
eβλN2 (N1 −N2)

]
and TrF∞

B

[
eβλN1 (N1 −N2)

]
are

bounded with N1 = PΛN1PΛ, N2 = PΛN2PΛ, cf. (1.7)-(1.8). Then

βλζXλ,1 (N1 −N2) ≤ lnTrF∞
B

(
dXΛ,ρe

βλN2
)
− lnTrF∞

B

(
dXΛ,ρe

βλN1
)
≤ βλζXλ,2 (N1 −N2) , (A.12)

where ζXλ,1 and ζ
X
λ,2 are defined by (A.4)-(A.5).

Proof. Since N1 = PΛN1PΛ, let
{
ϕ1,n

}+∞
n=1

be an orthonormal basis of eigenvectors of N1 in

F (Λ)
B . Now by (A.8) one gets

TrF∞
B

(
dXΛ,ρe

βλN2
)

TrF∞
B

(
dXΛ,ρe

βλN1
) =

Tr
F
(Λ)
B

(
dXΛ,ρe

βλN2
)

Tr
F
(Λ)
B

(
dXΛ,ρe

βλN1
) =

Tr
F
(Λ)
B

(
dXΛ,ρe

βλ(N1+N2−N1)
)

Tr
F
(Λ)
B

(
dXΛ,ρe

βλN1
) =

=

+∞∑
n=1

(
ϕ1,n, d

X
Λ,ρe

βλ(N1+N2−N1)ϕ1,n
)
F∞
B

Tr
F
(Λ)
B

(
dXΛ,ρe

βλN1
)

≥

+∞∑
n=1

eβλE1,n
(
ϕ1,n, d

X
Λ,ρϕ1,n

)
F∞
B

e

{
βλ(ϕ̃1,n,dXΛ,ρ(N2−N1)ϕ̃1,n)F∞

B

}

+∞∑
n=1

eβλE1,n
(
ϕ1,n, d

X
Λ,ρϕ1,n

)
F∞
B

,

(A.13)

with
ϕ̃1,n =

ϕ1,n√(
ϕ1,n, d

X
Λ,ρϕ1,n

)
F∞
B

, n ≥ 1. (A.14)
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Therefore using now (A.6), from the inequality (A.13) one obtains

TrF∞
B

(
dXΛ,ρe

βλN2
)

TrF∞
B

(
dXΛ,ρe

βλN1
) ≥ exp




βλ



+∞∑

n=1

eβλE1,n
(
ϕ1,n, d

X
Λ,ρϕ1,n

)
F∞
B

(
ϕ̃1,n, d

X
Λ,ρ (N2 −N1) ϕ̃1,n

)
F∞
B

+∞∑
n=1

eβλE1,n
(
ϕ1,n, d

X
Λ,ρϕ1,n

)
F∞
B







,

which, by (A.4) and (A.14), implies

TrF∞
B

(
dXΛ,ρe

βλN2
)

TrF∞
B

(
dXΛ,ρe

βλN1
) ≥ exp




βλ



+∞∑

n=1

eβλE1,n
(
ϕ1,n, d

X
Λ,ρ (N2 −N1)ϕ1,n

)
F∞
B

+∞∑
n=1

eβλE1,n
(
ϕ1,n, d

X
Λ,ρϕ1,n

)
F∞
B








=

= exp
{
βλζXλ,1 (N2 −N1)

}
. (A.15)

If we rename N2 and N1, then (A.15) reads as

TrF∞
B

(
dXΛ,ρe

βλN1
)

TrF∞
B

(
dXΛ,ρe

βλN2
) ≥ exp

{
βλζXλ,2 (N1 −N2)

}
. (A.16)

The inequalities (A.15) and (A.16) imply (A.12). ¥

Corollary A.5. For the functions gX1 (λ) and gX2 (λ) (cf. (A.1)), one gets the Bogoliubov
inequality:

λζXλ,1

(
N1

Ṽ
− N2

Ṽ

)
≤ gX2 (λ)− gX1 (λ) ≤ λζXλ,2

(
N1

Ṽ
− N2

Ṽ

)
. (A.17)

Appendix B. .

First we recall the definition of ρΛ̃ = NΛ̃/Ṽ (1.15) and ρΛ̃,p.b.c = NΛ̃,p.b.c/Ṽ (2.5):

ρΛ̃ =
NΛ̃

Ṽ
=

1

Ṽ

∫

Λ̃

a∗ (x) a (x) dx,

ρΛ̃,p.b.c =
NΛ̃,p.b.c

Ṽ
=

1

Ṽ

∑

k∈Λ̃∗

a∗
k,Λ̃
ak,Λ̃,

(B.1)

Now let us consider a normal state ω defined on A∞B [17], i.e., a state defined by a density
matrix ρω (a positive trace-class operator ρω on F∞B ) with

TrF∞
B
(ρω) = 1, (B.2)

such that
∀A ∈ A∞B , ω (A) = TrF∞

B
(ρωA) . (B.3)

Then we have the following result:

26



Theorem B.1. If
ω
(
ρΛ̃
)
< +∞, ω

(
ρΛ̃,p.b.c

)
< +∞, (B.4)

then one gets:
(i)

ω
(
ρΛ̃
)
= ω

(
ρΛ̃,p.b.c

)
; (B.5)

(ii) for any continuous function h (x) vanishing at ∞,

ω
(
h
(
ρΛ̃
))

= ω
(
h
(
ρΛ̃,p.b.c

))
; (B.6)

(iii) for any interval I = [a, b] ⊂ R,

ω
(
χI

(
ρΛ̃
))

= ω
(
χI

(
ρΛ̃,p.b.c

))
. (B.7)

Here χA is the characteristic function of a set A ⊂ R whereas ρΛ̃ = NΛ̃/Ṽ and ρΛ̃,p.b.c
=

NΛ̃,p.b.c
/Ṽ are respectively defined by (1.15) and (2.5) (or see (B.1)).

Proof. (i) Since the set {
χΛ̃ (x)√

Ṽ
eikx

}

k∈Λ̃∗

is an orthonormal basis of the Hilbert space
(
L2
(
Λ̃
))

p.b.c
of squared integrable functions in Λ̃

with periodic boundary conditions on the box Λ̃, one has

(
ρΛ̃ ± iIF∞

B

)−1
ϕΛ̃,p.b.c. =

(
ρΛ̃,p.b.c ± iIF∞

B

)−1
ϕΛ̃,p.b.c., (B.8)

for any periodic function ϕΛ̃,p.b.c. ∈ F
(Λ̃)
B . Now a function ϕ ∈ F∞B could be written as

ϕ = PΛ̃ϕ+
(
1− PΛ̃

)
ϕ = ϕΛ̃ + ϕRd\Λ̃, (B.9)

with the projection operator PΛ̃ defined by (1.7)-(1.8) and

(
ρΛ̃ ± iIF∞

B

)−1
ϕ = ϕRd\Λ̃ +

(
ρΛ̃ ± iIF∞

B

)−1
ϕΛ̃,(

ρΛ̃,p.b.c ± iIF∞
B

)−1
ϕ = ϕRd\Λ̃ +

(
ρΛ̃,p.b.c ± iIF∞

B

)−1
ϕΛ̃.

(B.10)

Note that ϕΛ̃ ∈ F
(Λ̃)
B may be not periodic on Λ̃. However from ϕΛ̃ one can arbitrary change

the value of ϕΛ̃ (x) for x ∈ ∂Λ̃ and define a periodic function ϕΛ̃,p.b.c. ∈ F
(Λ̃)
B with

ϕΛ̃,p.b.c. (x) = ϕΛ̃ (x) for x ∈ Λ̃\∂Λ̃.

Therefore
ϕΛ̃ = ϕΛ̃,p.b.c. +

(
ϕΛ̃ − ϕΛ̃,p.b.c.

)
≡ ϕΛ̃,p.b.c. + ϕ∂Λ̃. (B.11)
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So, from (B.8)-(B.11) one gets

∥∥∥∥
[(
ρΛ̃ ± iIF∞

B

)−1 −
(
ρΛ̃,p.b.c ± iIF∞

B

)−1]
ϕ

∥∥∥∥
2

F∞
B

≤
∥∥∥
(
ρΛ̃ ± iIF∞

B

)−1
ϕ∂Λ̃

∥∥∥
2

F∞
B

+

+

∥∥∥∥
[(
ρΛ̃,p.b.c ± iIF∞

B

)−1]
ϕ∂Λ̃

∥∥∥∥
2

F∞
B

≤ 2
∥∥ϕ∂Λ̃

∥∥2
F∞
B

= 0,

which implies ∥∥∥∥
[(
ρΛ̃ ± iIF∞

B

)−1 −
(
ρΛ̃,p.b.c ± iIF∞

B

)−1]
ϕ

∥∥∥∥
2

F∞
B

= 0. (B.12)

Since
(
ρΛ̃,p.b.c ± iIF∞

B

)−1
−
(
ρΛ̃ ± iIF∞

B

)−1
=
(
ρΛ̃,p.b.c ± iIF∞

B

)−1 (
ρΛ̃,p.b.c − ρΛ̃

) (
ρΛ̃ ± iIF∞

B

)−1
,

notice that the equality (B.12) implies also

∥∥∥
(
ρΛ̃,p.b.c − ρΛ̃

)
ϕ
∥∥∥
2

F∞
B

= 0, (B.13)

for any ϕ in the domain of definition of ρΛ̃ and ρΛ̃,p.b.c.
Now, since ω is a normal state defined by (B.3), if (B.4) is satisfied, using an orthonormal basis
{ϕn}+∞n=1 of F∞B in the definition domain of ρΛ̃ and ρΛ̃,p.b.c, one gets

ω
(
ρΛ̃,p.b.c

)
= TrF∞

B

(
ρωρΛ̃,p.b.c

)
=
+∞∑

n=1

(
ρ∗ωϕn, ρΛ̃,p.b.cϕn

)
F∞
B

. (B.14)

The equality (B.13) implies
(
ψ1,
(
ρΛ̃,p.b.c − ρΛ̃

)
ψ2

)
F∞
B

= 0, (B.15)

for any ψ1, ψ2 in the domain of definition of ρΛ̃ and ρΛ̃,p.b.c then with ψ1 = ρ∗ωϕn and ψ2 = ϕn,
by (B.14) we obtain

ω
(
ρΛ̃,p.b.c

)
=

+∞∑

n=1

(
ρ∗ωϕn, ρΛ̃,p.b.cϕn

)
F∞
B

=
+∞∑

n=1

(
ρ∗ωϕn, ρΛ̃ϕn

)
F∞
B

= TrF∞
B

(
ρωρΛ̃

)
= ω

(
ρΛ̃
)
, (B.16)

i.e., (B.5).
(ii) Let us consider a continuous function h (x) vanishing at ∞. Since the polynomials in
(x± i)−1 are dense (using the norm ‖−‖∞) in the set of continuous functions vanishing at ∞,
for a given ε > 0, there exists a polynomial P (s, t) such that

∥∥∥∥h (x)− P

(
1

x+ i
,

1

x− i

)∥∥∥∥
∞

= sup
x∈R

∣∣∣∣h (x)− P

(
1

x+ i
,

1

x− i

)∣∣∣∣ <
ε

2
. (B.17)
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Therefore ∥∥∥h
(
ρΛ̃
)
− P

((
ρΛ̃ + iIF∞

B

)−1
,
(
ρΛ̃ − iIF∞

B

)−1)∥∥∥
2

A∞
B

<
ε

2
, (B.18)

and ∥∥∥∥h
(
ρΛ̃,p.b.c

)
− P

((
ρΛ̃,p.b.c + iIF∞

B

)−1
,
(
ρΛ̃,p.b.c − iIF∞

B

)−1)∥∥∥∥
2

A∞
B

<
ε

2
. (B.19)

Here we recall that the norm on A∞B is defined in Remark 1.6. Moreover, by extending (B.12)
we find
∥∥∥∥P
((
ρΛ̃ + iIF∞

B

)−1
,
(
ρΛ̃ − iIF∞

B

)−1)− P

((
ρΛ̃,p.b.c + iIF∞

B

)−1
,
(
ρΛ̃,p.b.c − iIF∞

B

)−1)∥∥∥∥
2

A∞
B

= 0.

(B.20)
Then for any ε > 0, by (B.18)-(B.20) we get

∥∥∥h
(
ρΛ̃
)
− h

(
ρΛ̃,p.b.c

)∥∥∥
2

A∞
B

< ε,

which implies that ∥∥∥h
(
ρΛ̃
)
− h

(
ρΛ̃,p.b.c

)∥∥∥
2

A∞
B

= 0. (B.21)

Consequently for any ϕ ∈ F∞B we have
∥∥∥
[
h
(
ρΛ̃
)
− h

(
ρΛ̃,p.b.c

)]
ϕ
∥∥∥
2

F∞
B

= 0. (B.22)

Therefore using the same arguments than for (i), cf. (B.13)-(B.16) one gets (B.6).
(iii) Notice that the last result (B.21) is true only for a continuous function vanishing at ∞
but we are interested in evaluating the limit (B.21) for the characteristic function χI (x), i.e.,
for a continuous function only for x ∈ R\ {a, b} with compact support I = [a, b] . Therefore for
a given ε > 0, and any compact [c, d] ⊂ R\ {a− δ, b+ δ} , δ > 0, there exists a polynomial
P (s, t) such that

sup
x∈[c,d]

∣∣∣∣χIδ
(x)− P

(
1

x+ i
,

1

x− i

)∣∣∣∣ <
ε

2
, (B.23)

with Iδ = [a− δ, b+ δ]. Using Pa,b and P̂a,b defined as the projections on the eigenspaces
associated with all the eigenvalues ρ ∈ R\ {(a− δ − 1, a) ∪ (b, b+ δ + 1)} of respectively ρΛ̃
and ρΛ̃,p.b.c (δ > 0), (B.12) remains true even if we use, instead of ρΛ̃ and ρΛ̃,p.b.c, the operators

Pa,bρΛ̃Pa,b and P̂a,bρΛ̃,p.b.cP̂a,b. Then by (B.23) we get:

lim
Λ̃

∥∥∥χIδ

(
Pa,bρΛ̃Pa,b

)
− χIδ

(
P̂a,bρΛ̃,p.b.cP̂a,b

)∥∥∥
A∞
B

= 0, (B.24)

Consequently, since

χI

(
ρΛ̃
)
= χIδ

(
Pa,bρΛ̃Pa,b

)
, χI

(
ρΛ̃,p.b.c

)
= χIδ

(
P̂a,bρΛ̃,p.b.cP̂a,b

)
,

by (B.24) one obtains

lim
Λ̃

∥∥∥χI

(
ρΛ̃
)
− χI

(
ρΛ̃,p.b.c

)∥∥∥
A∞
B

= 0, (B.25)

which implies (B.7). ¥
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Corollary B.2. If

ω
(
ρΛ̃
)
< +∞, ω

(
ρΛ̃,p.b.c

)
< +∞,

then one gets:

ω
(
χ[a,a+ 1

Ṽ
]
(
ρΛ̃
))

= ω
(
χ[a,a+ 1

Ṽ
]

(
ρΛ̃,p.b.c

))
,

with ρΛ̃ and ρΛ̃,p.b.c
respectively defined by (1.15) and (2.5) (or see (B.1)).

Appendix C. .

Lemma C.1. Let us consider a real function f (x, y) defined in a neighborhood of (0, 0). If

lim
x→0

lim
y→0

f (x, y) = 0, (C.1)

then there is a function y0 (x) such that

lim
x→0

y0 (x) = 0,

lim
x→0

f (x, y (x)) =lim
x→0

lim
y→0

f (x, y) = 0,
(C.2)

for any |y (x)| ≤ |y0 (x)| in a neighborhood of (0, 0).

Proof. From (C.1), ∀ε > 0,∃η > 0 such that ∀x, |x| < η, one has

∣∣∣∣limy→0
f (x, y)− lim

x→0
lim
y→0

f (x, y)

∣∣∣∣ <
ε

2
, (C.3)

and

∃η̃ (x) > 0 : ∀y, |y| < η̃ (x) ,

∣∣∣∣f (x, y)− lim
y→0

f (x, y)

∣∣∣∣ <
ε

2
. (C.4)

So, there is a function y0 (x) such that

∀ε > 0,∃η > 0,∀x, |x| < η, |y0 (x)| < min {η̃ (x) , ε} ≤ ε, (C.5)

i.e.,
lim
x→0

y0 (x) = 0.

Therefore, ∀ε > 0,∃η > 0 such that ∀x, |x| < η, one has

∣∣∣∣f (x, y (x))− lim
x→0

lim
y→0

f (x, y)

∣∣∣∣ <
∣∣∣∣f (x, y (x))− lim

y→0
f (x, y)

∣∣∣∣+
∣∣∣∣limy→0

f (x, y)− lim
x→0

lim
y→0

f (x, y)

∣∣∣∣ ,

for any |y (x)| ≤ |y0 (x)| in a neighborhood of (0, 0) , which by (C.3) and (C.4) combining with
(C.5), implies ∣∣∣∣f (x, y (x))− lim

x→0
lim
y→0

f (x, y)

∣∣∣∣ < ε,

i.e., (C.2). ¥
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