
Zero is not a four letter word : Studies in the

evolution of language.

M. Nicolau1, C. Ryan1, and Christopher R. Stephens2,3

1 Department of Computer Science and Information Systems
University of Limerick, Limerick, Ireland
2 Dublin Institute for Advanced Studies
10 Burlington Road, Dublin 4, Ireland

3 Instituto de Ciencias Nucleares, UNAM
Circuito Exterior, A. Postal 70-543

México D.F. 04510

Abstract. We examine a model genetic system that has features of
both genetic programming and genetic regulatory networks, to show how
various forms of degeneracy in the genotype-phenotype map can induce
complex and subtle behaviour in the dynamics that lead to enhanced
evolutionary robustness and can be fruitfully described in terms of an
elementary algorithmic “language”.

DIAS preprint DIAS-STP-04-19

To be published in EUROGP2005

1 Introduction

Evolutionary algorithms (EAs) have been applied with a remarkable degree of
success to a large variety of problems. However, this is often done with little or
no understanding of the dynamics of the system, and practitioners often find
themselves unable to explain why a particular tweak has apparently improved
their system. Features such as degeneracy and neutral evolution are generally
accepted to aid evolution, but little detailed work, particularly in Genetic Pro-
gramming (GP), though see [1] for a notable exception, has been carried out
to investigate how GP exploits these features. This paper presents a study in
evolutionary dynamics, demonstrating how a detailed analysis detects complex
and subtle structure formation. Phenomena such as competing conventions, ro-
bustness and redundancy are examined and we demonstrate how it is natural to
describe these phenomena in the framework of natural language.

In section 2 we describe the representation of our system, showing how it has
all the salient features of GP systems, as well as a Genotype-Phenotype map
(GPM) inspired by genetic regulatory networks. We also describe the different
types of degeneracy inherent in the system. Section 3 takes an in depth look at a
representative run, illustrating some surprising strategies that are being adopted
by the system. The paper concludes with a summary and discusses areas in which

2 M. Nicolau et al

10 2 7 7 6

0 1 2 7

4 0 0 77 2 1 04 3

Fig. 1. An example of the switchboard gene in operation. Each codon in the switch-
board gene (in the current version, always located in the first position) acts as an index
into the entire genome. Notice how this particular switchboard gene indexes itself.

our system can be used to develop a deeper understanding of bloat, degeneracy
and neutrality, all of which are crucial to the development of better and more
robust EAs.

2 Representation

The representation we use is based on two existing systems; Grammatical Evo-
lution (GE) [2] and that of [3], where a GPM inspired by gene expression models
and the phenomenon of cellular division was used. Both exhibit genetic redun-
dancy: GE via a degenerate mapping scheme, where many codons map to the
same item, while in [3] the redundancy was at the gene expression level, in that
only a certain proportion of genes from an individual needed to be expressed to
produce a fully specified phenotype.

The underlying representation is similar to GE in that we employ a binary
string representation. However, in our case, we use a fixed length string and,
typically, shorter codons. The genotype consists of Ng genes, with each gene
consisting of Nc codons, where each codon takes a symbolic value taken from
an alphabet of size Na. In the experiments described in this paper we consider
Nc = 4 and Ng = Na = 8, so each codon is described by three bits.

The first step is to transcribe the genome from the binary representation to
eight genes of four codons each. We use a gene expression approach where each
codon is indexed with a value from 0 to 7, and these values can subsequently be
used to inhibit or promote the genes. This inhibition/promotion is controlled by
the first gene, which is known as the switchboard gene, and is always expressed
initially. Each of the four codons that appear in the switchboard is used to in-
dex a gene which is then activated as indicated in Figure 1. Then, in a manner
not entirely dissimilar to cellular growth, the initial structure is replaced with a
new one, consisting of four genes. Notice that a gene can be activated more than
once, and the switchboard can also activate itself. Notice also that this can be an
iterative process, that is, the four genes can be looked upon as containing a list of
indices into another sixteen genes, which can, in turn, be used to index another
64 genes, and so on. Figure 2 shows how the example from Figure 1 is remapped.
In this paper, we only examine individuals produced in a single growth iteration.

Once the activated genes have been identified, the system reverts to a stan-
dard GE type mapping, with each codon being used to make a choice in a

Studies in the Evolution of Language 3

7

0 2 7 7 7 2 1 0 4 0 0 7 4 0 0 7

0 2 7

Fig. 2. An example of remapping using the genome from Figure 1. The system starts
with the switchboard gene, before replacing it with the genes it indexes. In this case,
it indexes itself initially.

grammar. Consider the grammar below, with each production rule numbered.
As the codons are represented by three bits, each decodes to a value from 0 to 7.

<e> :: = tanh(<e>) (0)

tanh(<e>) (1)

tanh(<e>) (2)

tanh(<e>) (3)

add(<e>,<e>) (4)

add(<e>,<e>) (5)

X (6)

0 (7)

This is referred to as a closed grammar [2], that is, there is only one non-terminal
and, hence, just a single context.

Consider the following individual, which has already been reduced to its
activated genes:

4567 1623 0021 4401

Each codon will always make the same choice. Thus, codon 0 will always perform
the mapping e -> tanh(e), while codon 7 will always perform the mapping e

-> X. The mapping steps are as follows:

4 -> add(e,e)

5 -> add(add(e,e),e)

6 -> add(add(X,e),e)

7 -> add(add(X,0),e)

1 -> add(add(X,0),tanh(e))

6 -> add(add(X,0),tanh(X))

Notice that only six codons are required for the mapping, and that the re-
maining codons are ignored. In the case where an individual has used all of its
codons and still has a non-terminal remaining, it is given a fitness of zero. This
straightforward mapping scheme permits us to use a more convenient notational
representation to facilitate human interpretation of codons. That is, a shorthand
for each codon value can be inserted as follows: 0, 1, 2, 3 → h; 4, 5 → +; 6 → X

and 7 → 0. Thus, the individual above can be rewritten as:

++X0 hXhh hhhh ++hh

4 M. Nicolau et al

This shorthand notation is a more coarse description than one would get when
using the codon values themselves, however, as will be seen later, we are inter-
ested in the choices made, rather than the actual codon values. We refer to genes
described in this way as words.

One can fruitfully think of the GE mapping [4] as identifying three cate-
gories of production rules : Producers, Consumers and Neutrals. Producers are
those rules which increase the number of non-terminals in the expression being
mapped, e.g. <e> ::= add(<e>,<e>), while Consumers reduce the number of
non-terminals, e.g. <e> ::= X, and Neutrals leave the number unchanged, e.g.
<e> ::= tanh(<e>).

2.1 Degeneracy

A key feature of our model is the hierarchy of levels at which degeneracy occurs.
The most primitive level is that in which the codons are mapped. Codons are
required to have a value between 0 and 7 because there are eight production rules
in the grammar. At the bit level, there are three bits per codon, which map into
this range. However, if there were more bits per codon, the range would be larger,
and the values produced would have to be transformed to the meaningful range.
This type of degeneracy is common to all GE type systems [7] [8].

Degeneracy at the mapping level occurs when there is more than one way to
select a particular production rule. In the grammar used here, degeneracy exists
for tanh(e) and add(e,e). This type of degeneracy is present in most systems
that employ grammars, which include the GE-like systems referenced above, but
also systems such as [9] [10].

A further level of degeneracy exists due to the manner in which “words” are
generated by activating only a subset of genes, this subset ranging from one to
four, as the switchboard gene could, in theory, point to itself four times. It is
quite possible, as is demonstrated in section 3.1, that a gene or a subset of its
codons will be identical, but only one of them will be activated. This type of
degeneracy is particular to the gene expression inspired GPM we used here.

Further degeneracy still can occur via the fact that not all activated genes/words
will necessarily be expressed when mapping an individual. In our example, only
the first two were expressed, which means the latter two can be replaced with
any other words from that individual without affecting the output. Thus, using
schema notation, one could describe the above “sentence” as

++X0 hX** **** ****

Notice that the second word is not made up of four distinct codons/letters. More
generally, the last word used can vary in length from one to four letters.

The final type of degeneracy that can occur is present at the expression level.
This is where different expressions evaluate to the same thing. For example, each
of the following will all produce the same value.

– add(add(X, 0), add(X, 0))
– add(add(0, X), add(X, 0))

Studies in the Evolution of Language 5

– add(add(X, 0), add(0, X))
– add(add(0, X), add(0, X))

All automatic programming systems experience this type of degeneracy. In this
work we differentiate between genes that actually contribute to the mapping and
those that were activated but don’t contribute as expressed genes.

2.2 Neutrality

Degeneracy leads to the existence of neutral networks [5], where individuals from
different areas in the search space have the same fitness. Whether such individu-
als are connected by the genetic operators used depends on what these operators
are. Operators are neutral when the individual they produce is genetically differ-
ent to the individual that they operated on, but phenotypically the same. Point
mutation can be neutral at several of the levels above, e.g. changing a codon
value such that it still selects the same rule as before, changing a value on the
switchboard gene so that it generates the same word as before, but from a dif-
ferent gene, etc. It is also possible to perform neutral crossover. Again, each of
the above types of degeneracy can be exploited with this operator. For example,
crossover might only effect non-activated genes, both parents might have a copy
of a required gene etc.

2.3 Gene expression as a language

The kinds of words that one would expect to be produced by this grammar
depends on the fitness function, and it is likely that certain letters and words
will be selected against, or that certain combinations of letters, or amounts of
letters will be selected for or against.

Consider the function f(X) = 4X . This can be described by using a number
of different sentences, and the fitness function provides a measure of how well an
arbitrary sentence describes the target function. One possible solution (showing
only the expressed genes) is :

+++X XXX*

Recall that ∗ is a don’t-care symbol, and indicates that the mapping has finished
before that codon is needed. This particular sentence maps to a minimal solution
of (+(+XX)(+XX)). Another solution, which maps to the same phenotype is :

+X+X +XX*

Notice how these sentences are fundamentally different because their first words
differ. This does not suggest a lack of robustness, however, as one would not
expect a single evolving population to balance two such different solutions at the
same time for very long, although, as described below, it is possible for a number
of distinct optimal solutions to appear throughout a run, often competing with
each other for dominance of the population, until one becomes extinct.

6 M. Nicolau et al

The role of modularity in most complex problem solving systems, including
nature, cannot be over estimated. Difficult problems are often best solved by
decomposing them into a set of smaller ones, each of which can be solved more
easily than the whole. Similarly, simple modules or strategies which can be reused
several times, either on different problems or while solving a single problem are
likely to be preferred over more complex ones. Consider the individual:

+++X +++X X000 X000

This maps to (+(+X(+(XX))(+00))(+0X)), using 13 codons, and can be re-
duced to 4X .

3 Results

We applied the system to the problem of performing symbolic regression on
the function f(X) = 4X . By normal GP standards, this is a trivial problem
which one would expect to appear in a reasonably sized population with a good
initialisation scheme. However, we are concerned with making a detailed analysis
of the dynamics, and a simple function like this keeps the analysis tractable.

In total 30 runs were conducted, all of which discovered an optimal solution.
Typically, the solutions initially consisted of three or four expressed genes, but
shorter solutions almost always appeared, reducing the length to usually two or
sometimes three genes. Repeated activation of the same gene was ubiquitous.
There are several ways in which an optimal solution can be represented, and,
typically, each run discovered several of these. A population of 100 individuals
was used with a mutation rate, implemented at the bit level, of 0.01. One-
point recombination was used with probability 0.9 and restricted to occur only
at the boundaries between genes. For selection, a rank-based method was used,
where the ranking was applied only to individuals that successfully mapped onto
syntactically correct expressions.

3.1 Description of Algorithmic Language

In this section we consider a detailed description of a particular run in order
to show the complexity of the dynamics associated with the GPM, even in the
case of our very simple search problem. With the production rules specified in
section 2, starting off with a random population one finds, as expected, that the
initial codon frequencies are approximately: h = 50%, + = 25%, X = 12.5% and
0 = 12.5%. Additionally, these are the approximate frequencies for any genetic
locus. Later on however, one sees structure begin to emerge - for instance, usage
of codon h is significantly less than one might expect over the majority of the
run, while usage of codon X is significantly greater, as it is more likely to play a
useful role in fit solutions. With codon 0 there is a greatly increased usage over
the middle part of the run, for a reason that will become apparent shortly.

As on the switchboard gene the distribution of codons is random, one also
finds initially a random distribution of activated genes, i.e. that any gene is active

Studies in the Evolution of Language 7

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

U
sa

ge

Generation

’4x’ - 8 blocks of size 4 - Pop 0100
Activation of Genes per Generation

gene 0
gene 1
gene 2
gene 3
gene 4
gene 5
gene 6
gene 7

Fig. 3. Gene activity per generation. The graph plots the percentage of individuals per
generation that have a particular gene activated.

on average in 50% of the population. Once again, later on however, gene activity
patterns emerge with a great deal more structure, as can be seen in figure 3.
One immediately sees that very early on in the evolution an ordering convention
is arrived at whereby the content of the switchboard gene is largely fixed, with
more than 90% of the population using codons 5 and 1, which activate genes
5 and 1 respectively. Interestingly, there is a redundant usage, whereby these
codons are very frequently repeated in the switchboard. As we shall see this
leads to enhanced robustness. At generation 25 more than 95% of switchboard
genes in the population are of the form 5 ∗ ∗∗ while over 60% are of the form
55 ∗ ∗. Similarly, 92% possess ∗ ∗ 1∗ and 83% possess ∗ ∗ 11.

Checking then the contents of genes 5 and 1: In figure 4 we show the different
codon frequencies in gene 5 as a function of time. Before an optimal solution is
found gene 5 consists of almost 50% of codons of type +, i.e. producers. This
is about double what would be expected with a random distribution. Similarly,
block 1 contained nearly 90% more codons of type X than would be expected by
chance. Gene 5 is clearly the most important, or “core”, gene as its codon content
is so stable that there must be strong selection pressure in order to maintain
this stability. Gene 1 by contrast showed more variation, though the important
role played by codons X and 0 was evident. Note that when expressed, gene 5
precedes (i.e. is to the left of) gene 1 hence, as expected, we see the system puts
more producers to the left and more terminals to the right, a conclusion that is
completely consistent with the different codon frequencies seen in these genes. It
is interesting to note that optimal solutions are detected from time to time but it
is not until after generation 200 that they become established in the population.

8 M. Nicolau et al

It is also noteworthy that the fitter solutions tend to use only two different active
genes - 5 and 1 - and three expressed ones - 551∗ - the final non-coding tail not
being expressed. The most common phenotype is f(X) = 2X + 2 tanh(X), that
results from a combination of a repeated producing gene 5 = + + hX and a
consuming gene 1 = XX00.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

C
od

on
 fr

eq
ue

nc
ie

s

Generation

’4x’ - 8 blocks of size 4 - Pop 0100
Grammar choices for gene 5

h
+
x
0

Fig. 4. Grammar choices for gene 5 per generation.

At generation 213 optimal solutions begin to be found that finally successfully
propagate through the population. At this point the number of + codons in gene
5 increases by 50% while the number of terminal 0 codons in gene 1 doubles.
The first solution found is of the form below. Notice that the switchboard block
appears twice, once in decimal form to facilitate reading, and once in the normal
form, + + hh in this case.

5533.++hh.XX00.0+h+.X000.++hX.+++X.++Xh.+Xhh

(+(+(+X(+(+(+X X) 0) 0)) 0)) X) = 4X

which consists of 4 expressed genes but uses only 2 activated ones. Note that
this founder does not activate gene 1 as the vast majority of the population
do. It is based on the same switchboard template 55 ∗ ∗ of previous common
suboptimal solutions but is achieved through a single point mutation of the 5
gene ++hX → +++X which, repeated, combines with a totally consuming gene
3 = X000 to give 4X . 5533 however, is not the dominant switchboard gene, that
role being kept by 5512, and therefore the dominant optimal solution had 5512
as a founder switchboard rather than 5533. Moreover, with this switchboard, in

Studies in the Evolution of Language 9

general all four genes 5, 5, 1 and 2 are expressed, as can be seen in the huge
increase in use of gene 2 after generation 200 in figure 3.

Given that all these solutions are optimal one might expect that, on aver-
age, evolution preserves their structure, apart from the effect of neutral drift.
However, this is not the case. For the next 500 generations this solution spreads
and evolves. Early on, among the optimal solutions, in gene 1 over 60% of the
individuals have a + codon. Later on this percentage has dropped to zero! It
is important to emphasize that there is no direct selection pressure for this, as
we are talking about the structure of this gene only for optimal individuals. In
terms of effective fitness [6] however, there is a clear explanation: any + in gene
1 means that in order to maintain an optimal solution more codons from gene
2 must be expressed. As these are subject to mutational damage there is an
effective selection pressure to make the solution more robust within the context
of a repeated “core” gene, + + +X , that needs a minimum of 5 more terminal
codons. The elimination of the + codon reduces the total number of codons that
are expressed in the optimal solutions and therefore increases robustness against
mutational damage.

At generation 704 a new optimal solution appears - still based on the switch-
board gene 5512 but with a mutated core gene 5 of the form +X + X . An
immediate advantage of this solution is that it uses fewer expressed codons and
therefore will be more mutationally robust. However, another complementary
and more subtle effect appears: 55 ∗ ∗ in the switchboard gene requires a final
terminating 0 codon in the first position of the following gene (or some other
codon combination, such as hh0∗, that evaluates to zero) in order to provide an
optimal solution. In the initial population, when the +X + X solution is first
found, this is provided by gene 1, associated with the switchboard 551∗, as more
than 50% of the individuals that used the + + +X core gene already had a 0
codon in the first position there. However, of the 67 optimal individuals at gen-
eration 704 only 5 had a zero first position codon. Three hundred generations
later, an examination of genes 4, 6 and 7, which are neither activated by the
switchboard nor expressed, show that, from the 246 such genes associated with
the 82 optimal individuals, 101, i.e. 41% have a 0 in the first position. This is
almost three times the percentage (15%) one would expect if the distribution
were random! What is the reason for this extraordinary self-organization - the
origin of our somewhat tongue-in-cheek title? The answer is that this evolution-
ary strategy opens the road to a more stable switchboard gene as from 551∗ a
mutation on the switchboard of the third codon to activate any gene that has a
0 codon in first position would result in an optimal string. In this sense many of
the non-activated or expressed genes are acting as a genetic “reserve” to protect
against potentially deleterious mutations of the switchboard gene.

As in [6] one can summarize the algorithmic “language” that has emerged. It
is extremely interesting that this language evolves, in the sense that the system
is continually finding “fitter” genes (the “words” of the language) and “fitter”
ways of expressing them through the switchboard gene (the “syntax” of the lan-
guage), where “fitter” means an effective fitness that also measures evolutionary

10 M. Nicolau et al

robustness. In Table 1 we give a description of the algorithmic language that has
emerged after 1000 generations.

Table 1. Description of the algorithmic language that has emerged by generation 1000

Words of the Language

Gene Codon content Logic

Gene 5 +X + X Gives possibility of at least 2X when expressed
once and 4x when expressed twice

Gene 1 0 ∗ ∗∗ Terminates the twice expressed 00 ∗ ∗ 5 gene with
0 codons that do not affect the 4X expression

Genes 4,6,7 0 ∗ ∗∗ Genetic Reserve - predominantly not expressed
but backup in case of mutation in third switch-
board codon

Genes 2,3 ∗ ∗ ∗∗ “Non-coding” regions - either do not form part of
the language or have unknown functionality

Syntax of the Language

Switchboard gene 551∗ Puts producing gene 5, expressed twice, before
consuming gene 1 to given optimal ordering

The perspicacious reader might wonder as to why the system based itself
on the optimal solution (+X(+X(+X(+X 0)))), which actually uses more ex-
pressed codons - 9 - than the minimal solution (+X(+X(+X X))), which uses
only 7 and therefore might be surmised to be more evolutionarily robust. The
answer is, of course, that because the first solution uses a repeated building
block - +X + X - this block may be expressed twice by activating the same
genetic locus twice. In this case the effective number of codons that are subject
to mutational damage of (+X(+X(+X(+X 0)))) is only 5 compared to the 7
used by (+X(+X(+X X))).

We have discussed at length the evolution of robustness and believe that the
above description of the results of the experiment offers unequivocal evidence for
it. However, one can determine more rigorous and quantitative, but also some-
what less revealing, measures. If one can think of one optimal solution as being
more robust than another then this should imply that the more robust state’s
“neighbours” are on average fitter, where the notion of neighbour depends on
the application of the operator we are thinking of robustness with respect to.
For mutation, it is natural to use Hamming distance as a measure of neighbour-
hood. To this end, for every optimal solution we consider the average fitness
of its 96 one-mutant neighbours. In figure 5 we see a graph of this quantity
as a function of time. The key observation is: upon discovery of the solution
(+X(+X(+X(+X 0)))) at generation 704, the system now has a solution that
uses in the genotype only five distinct codons, other than the switchboard gene,
whereas the previous solution, based on + + +X , used 9 distinct codons. This
implies that, all else being equal, as the + + +X solution has (32 − 13) = 19

Studies in the Evolution of Language 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 fi
tn

es
s

Generation

’4x’ - 8 blocks of size 4 - Pop 0100
Average Fitness of 1point Mutants of Perfect Solutions per Generation

Total string mutants
Switchboard mutants

Fig. 5. Average fitness of 1-point mutants of perfect individuals, and of 1-point mutants
of each perfect individual’s switchboard.

non-expressed codons, the +X +X-based solution, which uses 4 less should have
4/19 ∼ 20% more optimal one-mutant neighbours which is roughly the increase
seen in figure 5.

The evolution of robustness is even more pronounced if we examine the fit-
ness of the one-mutant neigbours of optimal solutions where we consider only the
switchboard gene, i.e. only 12 neighbours. In figure 5 we also see the temporal
evolution of the average fitness of the one-mutant neighbours of the switchboard.
We have also examined the evolution of the ratio of one-point mutants of both
the entire genotype and the switchboard that generate optimal and valid solu-
tions respectively. The behaviour is similar to that for fitness, showing marked
increases when a more robust solution is found. Naturally, in the case of the
switchboard, due to the important role this gene plays in generating the syntax,
and the lack of neutral mutations due to the fact that all four codons are used
to activate other genes, one notes that the average fitness of the one-mutant
neighbours is small. This is a sign that the switchboard is more brittle than
many of the other genes. However, it is noteworthy that even in the case where
the optimal solution uses 4 expressed genes (before generation 704) there is still
some degree of robustness. As the average number of optimal mutants can be
as high as 13% this means that up to 2 switchboard codons could be mutated
and still leave an optimal individual. This clearly argues for some degree of self-
organization. After generation 704 the new class of optimal solution uses only
three activated genes hence the fourth codon on the switchboard loses its impor-
tance as it is associated with a non-expressed gene. One immediately concludes
that a minimum of 25% of the one-mutant neighbours should be optimal. How-

12 M. Nicolau et al

ever, it was observed that 27− 28% is the norm and hence, that once again, the
system had evolved robustness above and beyond just finding a solution that
uses fewer expressed codons.

While our conclusions thus far have been gleaned from an examination of a
single (though representative) run, all our experiences with other runs suggested
that the phenomena we observed are common across a large number of runs.
Furthermore, we believe that the structures we have described are sufficiently
complex and subtle that the probability that they occurred by chance is negligi-
ble. It is however legitimate to ask what happens over many runs. The problem
with this is that many of the observed phenomena are contingent. Of course, fit
genes in one run will tend to have a similarity with fit genes in another (one
can’t code 4X using a maximum of 12 production rules in too many different
ways). However, the switchboard structure, and subtleties such as genetic re-
serve, will look quite different in different runs. Two basic related phenomena
associated with robustness that can be seen over many runs are: the tendency
to activate more than once the same gene - especially the core gene - and a
tendency to evolve towards solutions that use fewer expressed genes, as can be
appreciated in figure 6. There we see that solutions that use two expressed genes
occur much more frequently than three-gene solutions, while four-gene solutions
are rare indeed. This tendency towards solutions that use fewer expressed genes
is the equivalent in this representation of the more familiar phenomena of bloat
in standard GP. In both case there is a tendency for the system to evolve to a
state where the ratio of coding material to non-coding material is minimized. In
GP this is achieved principally by increasing the amount of non-coding material
while here is it by minimizing the amount of coding material. Obviously, the
payoff is enhanced evolutionary robustness via resistance to mutational damage.

4 Conclusions

In this paper we have investigated how the existence of a degenerate GPM in the
form of a simple gene expression network, coupled with a GE-style grammar-
based genetic interpreter, can lead to the evolution of robustness and the emer-
gence of an algorithmic language as a result of the self-organization of the GPM.

For the sake of clarity we concentrated on a very simple fitness function
and closed grammar. In distinction to previous work, we concentrated on an in
depth analysis of a single run as we wished to give an idea of the tremendous
subtlety and complexity of the phenomena that can occur, even in this simple
situation. We saw that the manner in which an evolutionary system can build
robustness can be very varied, from simply developing solutions that require
fewer expressed genes, to influencing the content of non-coding parts of the
genome and the pattern of gene expression, as was seen, for example, in the
creation of genetic reserves. We saw and quantified a tendency to reduce the size
of the effective coding region relative to the non-coding region - a phenomena
that, in this sense, is analogous to bloat in GP. We saw that robustness can

Studies in the Evolution of Language 13

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000

N
um

be
r

of
 P

er
fe

ct
 S

ol
ut

io
ns

 o
f e

ac
h

si
ze

Generations

’4x’ - 8 blocks of size 4 - Pop 0100
Mean # of Perfect Solutions of Each Size (30 runs)

size 1
size 2
size 3
size 4

Fig. 6. Average size of perfect solutions per generation (30 runs).

evolve both continuously and in a more punctuated manner, as when passing
between solutions with different numbers of expressed genes.

Our study was motivated by a desire to offer a phenomenological predic-
tive framework and description, based on sound principles, of the evolution of
robustness in the context of a genetic model that has some language-like fea-
tures. There exists a formal mathematical framework in which to describe these
phenomena - induced symmetry breaking of the genotype-phenotype map and
effective fitness as a quantitative measure of this fitness [6]. We will return to a
description within this framework at a later date. We believe that further studies
of our model and framework will lead to a much deeper understanding of the
phenomena of bloat, as well as help in the design of better genetic operators and
therefore more competent EAs as advocated by [1]. A further motivation is that
of [3] - to understand the origins and evolution of language.

Acknowledgements

CRS is grateful for financial support and hospitality from DIAS and the Univer-
sity of Limerick, a DGAPA sabatical fellowship and Conacyt grant 30422-E.

References

1. Soule, T.: Operator Choice and the Evolution of Robust Solutions. Genetic Pro-
gramming Theory and Practice I, Kluwer Academic Publishers. (2003) 257-269

2. O’Neill, M. and Ryan, C.: Grammatical Evolution - Evolving programs in an arbi-
trary language. Kluwer Academic Publishers. (2003)

14 M. Nicolau et al

3. Angeles, O., Stephens, C.R., Waelbroeck, H.: Emergence of Algorithmic Language
in Genetic Systems. BioSystems 47. (1998) 129-147

4. Ryan, C., Keijzer, M., and Nicolau. M.: On the Avoidance of Fruitless Wraps in
Grammatical Evolution. In: Cantu-Paz et al., (eds.): Genetic and Evolutionary Com-
putation - GECCO 2003. Springer. (July 2003) 1752-1763

5. Van Nimwegen, E., Crutchfield, J.P., and Huynen, M.: Neutral Evolution of Muta-
tional Robustness. Proc. Natl. Acad. Sci. USA 96. (1996) 9716-9720

6. Stephens, C.R. and Mora, J.: Effective Fitness as an Alternative Paradigm for Evo-
lutionary Computation. Gen. Prog. Evol. Hardware 2. (2000) 7-32.

7. Paterson, N. and Livesy, M.: Evolving caching algorithms in C by genetic program-
ming. In: Genetic Programming 1997: Proceedings of the Second Annual Conference.
Morgan Kaufmann. (1997)

8. Keller, R. and Banzhaf, W. : Genetic Programming using Genotype-Phenotype
Mapping from Linear Genomes into Linear Phenotypes. In: Genetic Programming
1996: Proceedings of the First Annual Conference. MIT Press. (1996)

9. Whigham, P. : Search Bias, Language Bias, and Genetic Programming In : Genetic
Programming 1996. M.I.T. Press. (1996)

10. Wong, M. and Leung, K. Inductive Logic Programming Using Genetic Algorithms.
I.I.A.S. (1994)

