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Abstract

We calculate the time-dependent probability of non-zero current

through a selected bond in the totally asymmetric exclusion process

with periodic boundary conditions. For specific initial conditions cor-

responding to the minimal probability of non-zero current, we derive

an explicit analytical expression which is valid for arbitrary time in-

tervals.

1 Introduction

The study of space-time correlations in stochastic models of interacting par-
ticles is a central subject of the non-equilibrium statistical mechanics [1].
Among a variety of correlations functions, the current characteristics are the
most natural and important ones for physical applications. During the past
decade, there has been considerable progress in the study of current fluctu-
ations in the asymmetric exclusion process (ASEP) which is a paradigm for
non-equilibrium many-particle systems [2, 3, 4, 5].

Two main quantities are used for the description of current, depending
on the geometry of system. For the ring geometry and the fully asymmetric
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process, an adequate quantity is the total distance Yt covered by all of the
particles between time 0 and t [6, 7, 8]. For the infinite chain, the time-
integrated current can be measured by the number of particles Qt which
have crossed a particular bond up to time t [9]. For the finite chain which
is in contact at its ends with two reservoirs, Qt is the number of particles
which have moved from the left reservoir into the system during time t [10].

Most of the known results obtained so far concern the limiting case of large
time when the generating functions 〈eαYt〉 and 〈eαQt〉 increase exponentially
with t,

〈eαYt〉 ∼ eλ(α)t

and
〈eαQt〉 ∼ eµ(α)t

where λ(α) and µ(α) are the largest eigenvalues of the properly defined
Markov matrices.

At the same time, much less is known about the finite-time behavior of Yt

and Qt. The first exact result for the probability P (x1, ..., xP ; t|a1, ..., aP ; 0)
of finding P particles on lattice sites x1, ..., xP at time t given that they were
on sites x0

1, ..., x
0
P at time 0, has been obtained in [11] (see also [12]) for the

totally ASEP on the infinite chain. Based on this result, it became possible
to find the probability distribution of the current Qt(x), i.e. the number
of particles that have crossed the lattice bond (x − 1, x) up to time t for a
specific boundary condition of the half filled infinite chain, when the sites
from −∞ to 0 are occupied and the right half is empty at t = 0 [13].

The knowledge of P (x1, ..., xP ; t|a1, ..., aP ; 0) enables calculation of many
other current properties for arbitrary time intervals. However, the infinite
geometry is not sufficient for complete description of the relaxation phenom-
ena because, in the case of an infinite lattice and a finite number of particles,
the stationary state corresponds to zero density, so that the particles are
non-interacting.

The probability P (x1, ..., xP ; t|a1, ..., aP ; 0) for the totally ASEP with P
particles on a ring has been derived in [14]. This opens the prospect for stud-
ies of finite-time current probabilities during the whole process of relaxation
from an initial configuration to a non-trivial steady state.

In this paper, we consider the current Qt(0) on the ring of L sites which
is defined as the number of particles that have crossed the bond (L − 1, 0)
up to time t. Our goal will be to compute the probability Prob[Qt(0) >
0] that at least one particle crosses the bond (L − 1, 0). In Section 2 we
obtain a general expression for this probability assuming arbitrary initial
positions of P particles on the ring. This result still contains summations of
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a determinant of a P ×P matrix over numbers of rotation of all the particles
around the ring. In Section 3, we consider particular initial conditions a1 =
0, a2 = 1, . . . , aP = P − 1 corresponding to the minimal current probability
among all initial conditions, and derive an explicit analytical expression for
Prob[Qt(0) > 0]. Section 4 gives an analysis of the obtained formula.

2 Current probabilities

Let C be a configuration of P particles on a ring of L sites, where the
positions of particles are 0 ≤ x1 < x2 < ... < xP < L. The ASEP is defined
by the master equation for the probability Pt(C) of finding the system in
configuration C at time t,

∂tPt(C) =
∑

{C′}
[M0(C,C

′) +M1(C,C
′)]Pt(C

′), (2.1)

with the initial condition that the system is in configuration C0 at time t.
Here M1(C,C

′) is the probability of going from configuration C ′ to C during
a time interval dt, and M0(C,C

′) is a diagonal matrix with diagonal elements

M0(C,C) = −
∑

{C′ 6=C}
M1(C

′, C). (2.2)

The matrix elements of M1(C,C
′) obey the exclusion rule that, during dt,

each particle jumps with probability dt to its right provided that the tar-
get site is empty. Given the initial positions of particles 0 ≤ a1 < a2 <
... < aP < L at the moment t = 0, Pt(C) is the conditional probability
P (x1, ..., xP ; t|a1, ..., aP ; 0) of finding P particles on the sites 0 ≤ x1 < ... <
xP < L at time t.

The solution of (2.1) is [14]:

Pt(C) =
∞
∑

n1=−∞
...

∞
∑

nP =−∞
(−1)(P−1)

� P
i=1 ni detM. (2.3)

Elements of the P × P matrix M are

Mij = Fsij
(ai, xj + niL|t), (2.4)

where

sij = Pni −
P
∑

k=1

nk + j − i, (2.5)
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and Fm(a, x|t) are functions introduced by Schütz [11]:

Fm(a, x|t) =
∞
∑

k=0

(

k +m− 1
m− 1

)

F0(a− k, x|t), (2.6)

if integer m > 0, and

Fm(a, x|t) =
−m
∑

k=0

(−1)k

(

−m
k

)

F0(a− k, x|t), (2.7)

if integer m < 0. For m = 0 and x ≥ a,

F0(a, x|t) =
e−ttK

K!
, (2.8)

where K = x− a. For m = 0 and x < a

F0(a, x|t) = 0. (2.9)

The derivation of (2.3) in ref.[14] contains, as an intermediate step, the
evaluation of probabilities ψn(C; t|C0; 0) to reach configuration C from C0

for time t after making n visits of the origin 0 ≡ L of the ring by each of the
particles in turn, starting with the last. Thus, the probability Pt(C) is the
sum

Pt(C) =
∞
∑

n=0

ψn(C; t|C0; 0) =
∞
∑

n=0

∑

{ni}n

(−1)(P−1) � P
i=1 ni detM. (2.10)

where summation over ni, i = 1, 2, . . . , P is restricted by the condition n1 +
n2 + · · · + nP = n.

To find Prob[Qt(0) > 0], we have to take the sum over all final con-
figurations C which can be reached from C0 after at least one visit of the
origin,

Prob[Qt(0) > 0] =
∞
∑

n=1

∑

C

ψn(C; t|C0; 0) = (2.11)

∞
∑

n=1

∑

0≤x1<x2<···<xP <L

∑

{ni}n

(−1)(P−1) � P
i=1 ni detM, (2.12)

or, in the explicit form,

Prob[Qt(0) > 0] =
∞
∑

n=1

L−1
∑

xP =P−1

xP−1
∑

xP−1=P−2

· · ·
x3−1
∑

x2=1

x2−1
∑

x1=0

∑

{ni}n

(−1)(P−1) � P
i=1 ni×
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∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11(a1, x1 + n1L) Fs12(a1, x2 + n1L) · · · Fs1P
(a1, xP + n1L)

Fs21(a2, x1 + n2L) Fs22(a2, x2 + n2L) · · · Fs2P
(a2, xP + n2L)

...
...

...
FsP1

(aP , x1 + nPL) FsP2
(aP , x2 + nPL) · · · FsPP

(aP , xP + nPL)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(2.13)

To evaluate these sums we proceed as in [15]. Using the identity

x2
∑

x=x1

Fs(a, x) = Fs+1(a, x1) − Fs+1(a, x2 + 1), (2.14)

the first column of the determinant becomes, after summation over x1,

Fs11+1(a1, n1L) − Fs11+1(a1, x2 + n1L)

Fs21+1(a2, n2L) − Fs21+1(a2, x2 + n2L)

...

FsP1+1(aP , nPL) − FsP1+1(aP , x2 + nPL).

It follows from (2.5) that
si1 + 1 = si2 (2.15)

for all i = 1, 2, ..., P , and we can reduce the first column by adding the second
to it. Continuing this process up to the sum over xP , we get the first P − 1
columns in the form

Fs1k+1(a1, k − 1 + n1L)
Fs2k+1(a2, k − 1 + n2L)

...
FsPk+1(aP , k − 1 + nPL)

(2.16)

for k = 1, . . . , P − 1, and only the last column remains nonreduced,

Fs1P +1(a1, P − 1 + n1L) − Fs1P +1(a1, L+ n1L)

Fs2P +1(a2, P − 1 + n2L) − Fs2P +1(a2, L+ n2L)

... (2.17)

FsPP +1(aP , P − 1 + nPL) − FsPP +1(aP , L+ nPL).
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Thus, the resulting determinant splits into two determinants D1 and D2 cor-
responding to two summands in the last column (2.17). The first determinant
D1 has a convenient form
∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, n1L) Fs12+1(a1, 1 + n1L) · · · Fs1P +1(a1, P − 1 + n1L)
Fs21+1(a2, n2L) Fs22+1(a2, 1 + n2L) · · · Fs2P +1(a2, P − 1 + n2L)

...
...

...
FsP1+1(aP , nPL) FsP2+1(aP , 1 + nPL) · · · FsPP +1(aP , P − 1 + nPL)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(2.18)

Consider the determinant D2. Using the property

Fm(a, x) =
∞
∑

k=0

Fm−1(a, x+ k) (2.19)

we can write the i-th element of the first column as

Fsi1+1(ai, niL) = Fsi1
(ai, niL) + Fsi1+1(ai, 1 + niL) (2.20)

for all i = 1, 2, ..., P . We now prove that the contribution from the first term
of Eq.(2.20) into the sum

∞
∑

n=1

∑

{ni}n

(−1)(P−1) � P
i=1 ni detD2 (2.21)

vanishes.
Expanding the determinant in (2.21), we select among terms containing

the first summand in (2.20) those which contain the j-th element of the last
column: Fsi1

(ai, niL) × FsjP +1(aj, L + njL). Consider the unique ”mirror”
terms which coincide with the selected terms except two factors, one from
the j-th element of the first column and the second from the i-th element
of the last column: Fsj1

(aj, n
′

jL) × FsiP +1(ai, L + n
′

iL), where n
′

i = ni − 1

and n
′

j = ni + 1. The indices sjk = sjk(n) are functions of the vector n =

(n1, n2, . . . , nP ). We denote by n
′

the vector obtained from n by replacement
ni and nj by n

′

i and n
′

j Taking into account that

sj1(n
′

) = Pn
′

j−
P
∑

k=1

n
′

k +1−j = Pnj−
P
∑

k=1

nk +P−j+1 = sjP (n)+1 (2.22)

and

siP (n
′

) = Pn
′

i −
P
∑

k=1

n
′

k + P − i = Pni −
P
∑

k=1

nk − i = si1(n) − 1, (2.23)
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we see that the two selected terms are equal and enter into (2.21) with op-
posite signs because the sum

∑

nk =
∑

n
′

k and the sign of the permutation
of indices 1 and P is always negative. Thus, the set of terms containing the
first summand in (2.20) splits into two subsets cancelling one another.

As the contribution from the first term of (2.20) vanishes, we obtain
instead of D2 a determinant where the first two columns have the same
arguments:

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, 1 + n1L) Fs12+1(a1, 1 + n1L) · · ·
Fs21+1(a2, 1 + n2L) Fs22+1(a2, 1 + n2L) · · ·

...
...

FsP1+1(aP , 1 + nPL) FsP2+1(aP , 1 + nPL) · · ·
· · · Fs1,P−1+1(a1, P − 2 + n1L) Fs1P +1(a1, L+ n1L)
· · · Fs2,P−1+1(a2, P − 2 + n2L) Fs2P +1(a2, L+ n2L)

...
...

· · · FsP,P−1+1(aP , P − 2 + nPL) FsPP +1(aP , L+ nPL)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(2.24)

Again, using (2.19)

Fsi2+1(ai, niL) = Fsi2
(ai, niL) + Fsi2+1(ai, 1 + niL) (2.25)

for all i = 1, 2, ..., P , we obtain the sum of determinants

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, 1 + n1L) Fs12(a1, 1 + n1L) Fs13+1(a1, 2 + n1L) · · ·
Fs21+1(a2, 1 + n2L) Fs22(a2, 1 + n2L) Fs23+1(a2, 2 + n2L) · · ·

...
...

...
FsP1+1(aP , 1 + nPL) FsP2

(aP , 1 + nPL) FsP3+1(aP , 2 + nPL) · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.26)

and
∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, 1 + n1L) Fs12+1(a1, 2 + n1L) Fs13+1(a1, 2 + n1L) · · ·
Fs21+1(a2, 1 + n2L) Fs22+1(a2, 2 + n2L) Fs23+1(a2, 2 + n2L) · · ·

...
...

...
FsP1+1(aP , 1 + nPL) FsP2+1(aP , 2 + nPL) FsP3+1(aP , 2 + nPL) · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(2.27)

Two columns in the first determinant coincide because si1 + 1 = si2 for
all i = 1, 2, ..., P and D2 gets reduced to the determinant (2.27) with equal
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arguments in the second and third columns. Continuing this procedure, we
obtain finally

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, 1 + n1L) · · ·
Fs21+1(a2, 1 + n2L) · · ·

...
FsP1+1(aP , 1 + nPL) · · ·
· · · Fs1(P−1)+1(a1, P − 1 + n1L) Fs1P +1(a1, L+ n1L)

· · · Fs2(P−1)+1(a2, P − 1 + n2L) Fs2P +1(a2, L+ n2L)
...

...
· · · FsP (P−1)+1(aP , P − 1 + nPL) FsPP +1(aP , L+ nPL)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.28)

We expand the determinant (2.28) by the last column and consider the sum

∞
∑

n=1

∑

{ni}n

(−1)(P−1) � nk

P
∑

i=1

(−1)i+PFsiP +1(ai, (1 + ni)L)MiP , (2.29)

where MiP is a minor of the matrix in Eq.(2.28). Given the i-th element
of the sum Eq.(2.29), we introduce a vector n

′

= (n
′

1, n
′

2, . . . , n
′

P ) with n
′

1 =
n1, . . . , n

′

i−1 = ni−1, n
′

i = ni + 1, n
′

i+1 = ni+1, . . . , n
′

P = nP , so that

P
∑

i=1

n
′

i =
P
∑

i=1

ni + 1. (2.30)

We have

siP (n) = Pni −
∑

nk + P − i = Pn
′

i −
∑

n
′

k + 1 − i = si1(n
′

) (2.31)

and

sjm(n) = Pnj−
∑

nk+m−j = Pn
′

j−
∑

n
′

k+1+m−j = sj(m+1)(n
′

) (2.32)

for j 6= i. Then the sum (2.29) becomes

∞
∑

n=2

(−1)P−1

P
∑

i=1

∑

{n′

i}n

(−1)(P−1) � n
′

k(−1)i+PFsi1+1(ai, (n
′

i)L)MiP =

∞
∑

n=2

(−1)(P−1)
∑

{n′

i}n

(−1)(P−1) � n
′

k×
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∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs12+1(a1, 1 + n
′

1L) · · · Fs1P +1(a1, P − 1 + n
′

1L) Fs11+1(a1, n
′

1L)
Fs22+1(a2, 1 + n

′

2L) · · · Fs2P +1(a2, P − 1 + n
′

2L) Fs21+1(a2, n
′

2L)
...

...
...

FsP2+1(aP , 1 + n
′

PL) · · · FsPP +1(aP , P − 1 + n
′

PL) FsPP +1(aP , n
′

PL)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(2.33)

Performing a cyclic permutation in Eq.(2.33), we see that the sum (2.33) is
similar to the sum ∞

∑

n=1

∑

{ni}n

(−1)(P−1) � nkD1, (2.34)

where D1 is given by Eq.(2.18). The only difference is in the ranges of
summation over n. Remembering that D1 and D2 have opposite signs, we
see that only terms obeying

∑

nk = 1 remain and we obtain

Prob[Qt(0) > 0] =
∑

n1+···+nP =1

(−1)P−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fs11+1(a1, n1L)
Fs21+1(a2, n2L)

...
FsP1+1(aP , nPL)

Fs12+1(a1, 1 + n1L) · · · Fs1P +1(a1, P − 1 + n1L)
Fs22+1(a2, 1 + n2L) · · · Fs2P +1(a2, P − 1 + n2L)

...
...

FsP2+1(aP , 1 + nPL) · · · FsPP +1(aP , P − 1 + nPL)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(2.35)

where sij = Pni − 1 + j − i.

3 Minimal current probability

The probability of the non-zero current through bond (L − 1, 0) depends
on the initial configuration of particles. This probability is minimal if a1 =
0, a2 = 1, . . . , aP = P−1 because the particle at site 0 has a maximal obstacle
to clear this site and the first particle which can cross the bond (L − 1, 0)
has a maximal distance to the target site 0 ≡ L.

Let P(E (P )
t ) denote minProb[Qt(0) > 0] over all possible initial configura-

tions. To simplify notations, we use the fact that functions Fm(a, x) depend
only on the difference of their arguments and write Fm(a, x) ≡ Fm(x− a). A
further simplification comes from the observation that only the terms with
n1 = n2 = · · · = ni−1 = ni+1 = · · · = nP = 0, ni = 1, i = 1, . . . , P do not
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vanish in (2.35). Indeed, assume that ni < 0 for some i, 1 ≤ i ≤ P . Then,
the i-th row in (2.35)

Fsi1+1(ai, niL), . . . , FsiP +1(ai, P − 1 + niL) (3.1)

vanishes owing to the condition F−m(a, x) = 0 if x − a < −m, m ≥ 0 and
the inequalities sik + 1 = Pni + k − i > niL+ k − 1 − ai and ai ≥ i− 1.

Inserting the initial conditions a1 = 0, a2 = 1, . . . , aP = P − 1 and the
possible values of n1, . . . , nP in (2.35) we obtain

P(E (P )
t ) =

P
∑

i=1

(−1)P−1

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F0(0) F1(1) · · · FP−1(P − 1)
F−1(−1) F0(0) · · · FP−2(P − 2)

...
...

...
FP−i+1(L− i+ 1) FP−i+2(L− i+ 2) · · · F2P−i(L+ P − i)

...
...

...
F−P+1(−P + 1) F−P+2(−P + 2) · · · F0(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.2)

Using the fact that F−p(−p) = (−1)pF0(0) and performing simple column
operations, we can write this as

P(E (P )
t ) =

P
∑

i=1

(−1)P−1∆
(i)
P , (3.3)
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where

∆
(i)
P =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F1(0) F2(1) · · ·
0 F1(0) · · ·
...

...
FP−i+2(L− i+ 1) FP−i+3(L− i+ 2) · · ·

...
...

0 0 · · ·

· · · FP−1(P − 2) FP−1(P − 1)
· · · 0 FP−2(P − 2)

...
...

· · · F2P−i(L+ P − 1 − i) F2P−i(L+ P − i)
...

...
· · · F1(0) F1(1)
· · · 0 F0(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(3.4)

This can be further simplified to

P(E (P )
t ) = (−1)P−1

[

e−t

P−1
∑

i=2

∆∗
i + ∆

(1)
P + ∆

(P )
P

]

, (3.5)

where
∆

(1)
P = e−tFP+1(L). (3.6)

We now evaluate the determinant ∆∗
i using the fact that

Fn+1(n) =
tn

n!
. (3.7)

Writing xk = FP−i+k+1(L− i+ k) we have

∆∗
i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t · · · 1
(i−2)!

ti−2 1
(i−1)!

ti−1

0 1 · · · 1
(i−3)!

ti−3 1
(i−2)!

ti−2

...
...

...
...

0 0 · · · 1 t
x1 x2 · · · xi−1 xi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.8)
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Applying row operations this can be reduced to

∆∗
i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 · · · 0 (−1)i

(i−1)!
ti−1

0 1 · · · 0 (−1)i−1

(i−2)!
ti−2

...
...

...
...

0 0 · · · 1 t
x1 x2 · · · xi−1 xi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.9)

Indeed, after the bottom rows from i−k+1 down to i−1 have been cleared,
we subtract these rows tr/r! times from the (i− k)-th row (r = 1, . . . , k− 1)
to get

tk

k!
+

k−1
∑

r=1

tr

r!

(−t)k−r

(k − r)!
= −(−t)k

k!
(3.10)

in the last column. (The sum is the coefficient of tk in the expansion of ete−t

except for the terms r = 0 and r = k.) The determinant now easily evaluates
to

∆∗
i =

i−1
∑

k=0

(−t)k

k!
FP+1−k(L− k). (3.11)

This sums to
P−1
∑

i=2

∆∗
i = (P − 2)FP+1(L) +

P−2
∑

k=1

(−t)k

k!
(P − k − 1)FP−k+1(L− k). (3.12)

The determinant ∆
(P )
P can be treated similarly. It is given by

∆
(P )
P =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 t · · · tP−2

(P−2)!
FP−1(P − 1)

...
...

...
...

0 0 · · · t F2(2)
0 0 · · · 1 F1(1)

F2(L− P + 1) · · · · · · FP (L− 1) FP (L)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.13)

The entries in the last column are given by

Fn+1(n+ 1) =
n
∑

k=0

(−1)k tn−k

(n− k)!
+ (−1)n+1e−t. (3.14)

A similar row reduction as for ∆∗
i now yields

∆
(P )
P =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 · · · 0 F1(P − 1)
...

...
...

...
0 0 · · · 0 −F1(2)
0 0 · · · 1 F1(1)

F2(L− P + 1) · · · · · · FP (L− 1) FP (L)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.15)
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Indeed, the reduction of the k-th row from the bottom leads to

Fk(k) +
k−1
∑

r=1

(−1)r tk−r

(k − r)!
F1(r) = −(−1)kF1(k). (3.16)

The result is

∆
(P )
P = FP (L) +

P−1
∑

k=1

(−1)kF1(k)FP−k+1(L− k). (3.17)

Using the relation

P−1
∑

k=r+1

(−1)kFP−k+1(L− k) = (−1)P−1F1(L− P + 1) + (−1)r−1FP−r(L− r),

(3.18)
this can be written as

∆
(P )
P = (−1)P−1F1(L− P + 1) +

−e−t

P−2
∑

r=0

tr

r!

[

(−1)P−1F1(L− P + 1) + (−1)r−1FP−r(L− r)
]

.

(3.19)

Inserting into (3.5) we obtain the following expression for the probability of

E (P )
t :

P(E (P )
t ) = F1(P − 1)F1(L− P + 1)

+(−1)P−1e−t

P−2
∑

k=0

(−t)k

k!
[(P − k − 1)FP−k+1(L− k) + FP−k(L− k)] .

(3.20)

Using the properties of functions Fp(n) and several combinatoric identities
(see Appendix ), we obtain finally

P(E (P )
t ) = F1(P − 1)F1(L− P + 1)

−e−2t

∞
∑

r=L

tr

r!

[

(P − 1)

(

L− 1

P

)

−
(

L− 1

P − 1

)

−r
(

L− 2

P − 1

)

+

(

r + 1

P

)]

.

(3.21)
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4 Analysis of the result

Figure 1 shows a plot of P(E (P )
t ) for P = 2 and a number of values of L. It is

clear that the probability increases from 0 to 1 as t increases, as it should.

0 6 12 18 24

Time

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: The probability of at least one of two particles reach-
ing the end of an interval of length L = 4, 6, 8, 10 and 12, as
a function of time.

We can rewrite (3.21) in a more symmetric way as follows:

F1(P − 1)F1(L− P + 1) = (4.1)

=

(

F1(P ) +
tP−1

(P − 1)!
e−t

)(

F1(L− P ) − tL−P

(L− P )!
e−t

)

= F1(P )F1(L− P ) +
tP−1

(P − 1)!

∞
∑

k=L−P

tk

k!
e−2t

− tL−P

(L− P )!

∞
∑

k=P

tk

k!
e−2t

= F1(P )F1(L− P ) +
∞
∑

r=L

tr

r!

[(

r

P − 1

)

−
(

r

L− P

)]

. (4.2)
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Inserting this, we get

P(E (P )
t ) = (4.3)

= F1(P )F1(L− P ) − e−2t

∞
∑

r=L

tr

r!
×

[(

P (L− P )

L
− 1 − P (L− P )

L(L− 1)
r

)(

L

P

)

+

(

r

P

)

+

(

r

L− P

)]

.

(4.4)

This formula is manifestly symmetric under exchange of particles and holes,
i.e. P ↔ L− P . As a particular case we have

P(E (L−1)
t ) = P(E (1)

t ) = F1(L). (4.5)

It is clear from (3.21) that P(E (P )
t ) is bounded by 1. In fact,

(P − 1)

(

L− 1

P

)

−
(

L− 1

P − 1

)

− r

(

L− 2

P − 1

)

+

(

r + 1

P

)

> 0 (4.6)

for r ≥ L. This is easily seen by induction, as it is zero for r = L − 1
and increases in r. The same relation is also useful to prove that P(E (P )

t ) is
increasing. Indeed, the derivative is given by

F0(L− P )F1(P − 1) + F1(L− P + 1)F0(P − 2)

+2e−2t

∞
∑

r=L

tr

r!

[

(P − 1)

(

L− 1

P

)

−
(

L− 1

P − 1

)

− r

(

L− 2

P − 1

)

+

(

r + 1

P

)]

−e−2t

∞
∑

r=L

tr−1

(r − 1)!

[

(P − 1)

(

L− 1

P

)

−
(

L− 1

P − 1

)

−r
(

L− 2

P − 1

)

+

(

r + 1

P

)]

= e−2t

∞
∑

r=L−1

tr

r!

[(

r

L− P

)

+

(

r

P − 2

)]

+e−2t

∞
∑

r=L

tr

r!

[

(P − 1)

(

L− 1

P

)

−
(

L− 1

P − 1

)

− (r − 1)

(

L− 2

P − 1

)

+

(

r + 1

P

)

−
(

r + 1

P − 1

)]

−e−2t tL−1

(L− 1)!

[

(P − 1)

(

L− 1

P

)

−
(

L− 1

P − 1

)

− L

(

L− 2

P − 1

)

+

(

L+ 1

P

)]

. (4.7)
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The term r = L− 1 in first line of the final expression compensates the last
line, and the middle line is positive because

(

r + 1

P

)

−
(

r + 1

P − 1

)

=

(

r

P

)

−
(

r

P − 2

)

, (4.8)

and the last combinatorial factor is also compensated by the expression in
the first line. It is now clear that P(E (P )

t ) must increase from 0 at t = 0 to 1
as t→ ∞.

It is natural to scale the time with L. It is not difficult to see that
at constant P , P(E (P )

Lt ) tends to a step function as L → ∞. Indeed, the
maximum term in

F1(L− P + 1, Lt) =
∞
∑

k=L−P+1

(Lt)k

k!
e−Lt (4.9)

is attained for k = L− P + 1 if t < 1 and for k ≈ Lt for t > 1 so that

lim
L→∞

F1(L− P + 1, Lt) =

{

0 if t < 1,
1 if t > 1.

(4.10)

Moreover, F1(P − 1, Lt) → 1 and the second term tends to zero.
A more interesting limit is the thermodynamic limit, where both t and P

scale with L. This can be analysed roughly as follows. We write t = Lτ and
P = ρL. Clearly, F1(P − 1) ∼ 1{τ>ρ} and F1(L− P + 1) ∼ 1{τ>1−ρ} so

F1(P − 1)F1(L− P + 1) ∼ 1{τ>ρ∨1−ρ}. (4.11)

In analysing the second term of (3.21), we may assume L−P ≥ P . We have
seen that the second term is positive and therefore bounded by

e−2t

∞
∑

r=L

tr

r!

(

r + 1

P

)

∼ e−2t

(

tP

P !
+

tP−1

(P − 1)!

) ∞
∑

r=L−P

tr

r!

∼ e−t

(

tP

P !
+

tP−1

(P − 1)!

)

→ 0 (4.12)

if τ > 1 − ρ. Otherwise, the convergence is even faster.
The next interesting question is, what happens in the neighbourhood of

τ = 1 − ρ (assuming ρ < 1
2
). The correct scaling is then presumably with√

L. The following figure shows graphs of P(EρL

(1−ρ)L+
√

Lτ
) as a function of τ

for ρ = 1/3 and a number of values of L.
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0.0
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0.4

0.6

0.8

1.0

Figure 2: The probability P(Et) for L = 6 (blue), 30 (red)
and 90 (green), as a function of τ where t = Lρ +

√
Lτ and

P = L/3.

It suggests that there exists a constant ξ (depending on ρ) such that

P(EρL

(1−ρ)L+
√

Lτ
) →

∫ τ

−∞
e−t2/2ξ dt√

2πξ
. (4.13)

Assuming ρ > 1
2
, we insert t = Lρ +

√
Lτ into F1(P − 1)F1(L − P + 1).

The second factor is very close to 1. The first factor can be approximated as
follows:

e−t

P
∑

k=0

tk

k!
≈ e−Lρ−

√
Lτ

Lρ
∑

n=0

(Lρ+
√
Lτ)Lρ−n

(Lρ− n)Lρ−ne−Lρ+n
√

2π(Lρ− n)

=

Lρ
∑

n=0

(

Lρ+
√
Lτ

Lρ− n

)Lρ−n
e−n−

√
Lτ

√
2πLρ

≈
Lρ
∑

n=0

exp

[

(Lρ− n)

(

τ

ρ
√
L

+
n

ρL
− τ 2

2ρ2L
+

n2

2ρ2L2

)]

e−n−
√

Lτ

√
2πρL

≈ 1√
2πρL

∞
∑

n=0

exp

[

− nτ√
Lρ

− n2

2Lρ
− τ 2

2ρ

]

≈
∫ ∞

τ

e−x2/2ρ dx√
2πρ

. (4.14)
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The second term in (3.21) still does not contribute in this limit, so (4.13)
holds with ξ = ρ.

Notice that there is one exception: if ρ = 1
2

the both factors behave like

(4.14), so the result for P(EρL

(1−ρ)L+
√

Lτ
) is the square of the error function.

5 Appendix

Using the general formula

Fp(n) =

p−1
∑

k=0

(−1)p−k+1 t
k

k!

(

n− k − 1

p− k − 1

)

+(−1)pe−t

n−p
∑

k=0

(

n− k − 1

p− 1

)

tk

k!
, (5.1)

valid for n ≥ p, we can rewrite the second term in (3.20) in a more convenient
form. We have

(−1)P−1

P−2
∑

k=0

(−t)k

k!
(P − k − 1)FP−k+1(L− k)

= −
P−2
∑

k=0

tk

k!
(P − k − 1)

P−k
∑

l=0

(−t)l

l!

(

L− k − l − 1

P − k − l

)

+e−t

P−2
∑

k=0

tk

k!
(P − k − 1)

L−P−1
∑

l=0

tl

l!

(

L− k − l − 1

P − k

)

= −
P
∑

r=0

tr

r!

(

L− r − 1

P − r

) r∧(P−2)
∑

k=0

(−1)r−k(P − k − 1)

(

r

k

)

+e−t

P
∑

k=0

tk

k!
(P − k − 1)

L−P−1
∑

l=0

tl

l!

(

L− k − l − 1

P − k

)

+
tP

P !

L−P−1
∑

l=0

tl

l!
.

(5.2)

In the first term we now use the simple identities

r
∑

k=0

(−1)r−k

(

r

k

)

= 0 (5.3)

if r > 0, and
r
∑

k=0

(−1)r−kk

(

r

k

)

= 0 (5.4)
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if r > 1 to write (for P ≥ 2)

(−1)P−1

P−2
∑

k=0

(−t)k

k!
(P − k − 1)FP−k+1(L− k)

= −(P − 1)

(

L− 1

P

)

+

(

L− 2

P − 1

)

t− tP

P !

+e−t(P − 1)
L−1
∑

r=0

tr

r!

P∧r
∑

k=0∨(P+r+1−L)

(

r

k

)(

L− r − 1

P − k

)

−e−t

P
∑

k=1

tk

(k − 1)!

L−P−1
∑

l=0

tl

l!

(

L− k − l − 1

P − k

)

+
tP

P !

L−P−1
∑

l=0

tl

l!
. (5.5)

Rewriting the last but one term as

L−2
∑

r=0

tr+1

r!

r∧(P−1)
∑

k′=0∨(P+r+1−L)

(

r

k′

)(

L− r − 2

P − k′ − 1

)

, (5.6)

and using the identity

r∧p
∑

k=0∨(p+r−n)

(

n− r

p− k

)(

r

k

)

=

(

n

p

)

(5.7)

we obtain

(−1)P−1

P−2
∑

k=0

(−t)k

k!
(P − k − 1)FP−k+1(L− k)

= −(P − 1)

(

L− 1

P

)

+

(

L− 2

P − 1

)

t− tP

P !

+e−t

L−1
∑

r=0

tr

r!

[

(P − 1)

(

L− 1

P

)

− r

(

L− 2

P − 1

)]

+
tP

P !

L−P−1
∑

l=0

tl

l!
.

(5.8)

A similar analysis yields

(−1)P−1

P−2
∑

k=0

(−t)k

k!
FP−k(L− k) =

(

L− 1

P − 1

)

− tP−1

(P − 1)!

−e−t

L−1
∑

r=0

tr

r!

(

L− 1

P − 1

)

+
tP−1

(P − 1)!

L−P
∑

l=0

tl

l!
.

(5.9)
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The complete result for the second term of (3.20) is

(−1)P−1e−t

P−2
∑

k=0

(−t)k

k!
[(P − k − 1)FP−k+1(L− k) + FP−k(L− k)]

= −e−t

{

(P − 1)

(

L− 1

P

)

−
(

L− 1

P − 1

)

−
(

L− 2

P − 1

)

t+
tP−1

(P − 1)!
+
tP

P !

}

+e−2t

L−1
∑

r=0

tr

r!

[

(P − 1)

(

L− 1

P

)

− r

(

L− 2

P − 1

)

−
(

L− 1

P − 1

)]

+
tP−1

(P − 1)!

L−P
∑

l=0

tl

l!
+
tP

P !

L−P−1
∑

l=0

tl

l!
. (5.10)

Next we expand the e−t term:

−e−t

{

(P − 1)

(

L− 1

P

)

−
(

L− 1

P − 1

)

−
(

L− 2

P − 1

)

t+
tP−1

(P − 1)!
+
tP

P !

}

= −e−2t

(

L−1
∑

r=0

tr

r!
+

∞
∑

r=L

tr

r!

)

[

(P − 1)

(

L− 1

P

)

−
(

L− 1

P − 1

)]

+e−2t

(

L− 2

P − 1

)

(

L−2
∑

r=0

tr+1

r!
+

∞
∑

r=L

tr

(r − 1)!

)

−e−2t t
P

P !

(

L−P−1
∑

r=0

tr

r!
+

∞
∑

r=L−P

tr

r!

)

−e−2t tP−1

(P − 1)!

(

L−P
∑

r=0

tr

r!
+

∞
∑

r=L−P+1

tr

r!

)

. (5.11)

It is clear that the terms up to order L− 1 cancel the e−2t contribution, and
we find

P(E (P )
t ) = F1(P − 1)F1(L− P + 1)

−e−2t

∞
∑

r=L

tr

r!

[

(P − 1)

(

L− 1

P

)

−
(

L− 1

P − 1

)

−r
(

L− 2

P − 1

)

+

(

r + 1

P

)]

.

(5.12)
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