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Abstract

We give formulations of noncommutative two dimensional gravities in terms of noncom-
mutative gauge theories. We survey their classical solutions and show that solutions of the
corresponding commutative theories continue to be solutions in the noncommutative theories
as well. We argue that the existence of “twisted” diffeomorphisms, recently introduced in [1],
is crucial for this conclusion.
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1 Introduction

Recently progress have been made in formulating gravity theories on noncommutative(NC) spaces.
In [1], a new approach has been developed to restore the action of diffeomorphisms as a symmetry
of the Groenewold-Moyal type NC spacetimes. . Using this new approach, the authors of [1] were
able to construct a noncommutative version of the Einstein-Hilbert action, which is invariant
under the deformed or “twisted” diffeomorphisms. However, due to the complicated nature of
the resulting expressions, it is not easy to extract the physical predictions of the new theory
[However, for recent progress along this line see [2]]. Thus it could be practically advantageous to
study the consequences of these developments in the less complicated setting of two dimensional
gravities. The latter are well-known in the literature and elegantly formulated as gauge theories
[3, 4, 5, 6, 7, 8, 9].

In this article, we construct “twisted” generally covariant noncommutative gauge theories de-
scribing noncommutative gravity models on two dimensional noncommutative spaces. We analyze
their classical solutions and show that they are the same as the solutions of their corresponding
commutative theories. We argue that the presence of “twisted” diffeomorphisms is essential for
the latter conclusion.

Our results for the case of the noncommutative version of the standard two dimensional gravity
theory bear strong similarities with the earlier work of Cacciatori et. al. [12], our difference being
in the class of diffemorphisms the relevant action admits and its implementation.

Our results in this article are also consistent with the results of work in progress of Bal-
achandran et. al. [10], where another approach is being developed to understand the action of
“twisted” symmetries. It has as one of its predictions that gravity theories without sources on
the Groenewold-Moyal plane have the solutions of the corresponding commutative theories.

The need for “twisted” symmteries in formulating NC two dimensional gravities have also
been recently argued in [11].

This paper is organized as follows. In section 2 we discuss NC gauge theory formulation of
two dimensional gravity with zero cosmological constant and show that it has trivial solutions.
In section 3 we formulate the NC gauge theories for two dimensional gravities with nonzero
cosmological constant. Here we give the appropriate action and demonstrate its invariances
under NC gauge transformations and “twisted” diffeomorphisms. In section 4, we study the
classical solutions of the theories formulated in section 3 and arrive at the result that they are
same as that of their corresponding commutative theories.

2 Noncommutative Gauge Theory for Two Dimensional Gravity
with Zero Cosmological Constant

Let us formulate two dimensional noncommutative gravity using the noncommutative version of
the SO(1,1) gauge group. In the commutative case, we can think of the SO(1, 1) gauge group as
generated by a single Pauli matrix, say σ2. It is well-known that gravity based on this group is
completely trivial. We will see below that the same holds for gravity based on the noncommutative
version of the SO(1, 1) gauge group. In this case, the gauge group has two commuting generators,
σ2 and the 2× 2 identity matrix I, the latter arising due to the noncommutativity of space-time.

Consider the connection one form

A = ωσ2 + fI (1)
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where ω is the spin connection and f is an additional one form. The corresponding curvature
two form is

F = dA + A ∧∗ A

= (dω + f ∧∗ ω + ω ∧∗ f) σ2 + (df + ω ∧∗ ω + f ∧∗ f) I

≡ F 1σ2 + F 2I , (2)

where ∧∗ is understood to be the ordinary wedge product, except that the components of differ-
ential forms are now being multiplied with the Groenewold-Moyal ∗-product1.

Let us also introduce a two component scalar field φ = (φ1σ2 + φ2I). Using φ and F we can
form the gauge invariant action

S =
1
2

∫
Tr (φ ∗ F )

=
1
2

∫
φ1 ∗ F 1 + φ2 ∗ F 2 . (3)

S is invariant under infinitesimal gauge transformations

F → F + i[υ , F ]∗ , φ→ φ + i[υ , φ]∗ , (4)

where υ = υ1σ2 + υ2I is the gauge transformation parameter.
Using (2) and (3) and the fact that one ∗-product can be removed under the integral sign we

see the nonlinear terms in the integrand of (3) either become zero or reduce to total derivatives.
Thus, we can rewrite S as

S =
1
2

∫
φ1 ∗ dω + φ2 ∗ df

=
1
2

∫
φ1 dω + φ2 df . (5)

From (5) we infer that dω = df = 0. They give trivial solutions for gravity.
It will become clear after the discussion in section 3 that the action (5) is indeed invariant

under “twisted” diffemorphisms.
Hereafter we focus on theories with nonzero cosmological constant.

3 Noncommutative Gauge Theories for Two Dimensional Grav-
ity with Nonzero Cosmological Constant

3.1 Generalities

Let us now direct our attention to the formulation of possible gauge theories with nonzero
cosmological constant and with or without a dilaton. They are based on the gauge group
U(1, 1) ≈ SO(2, 1) × U(1) and its contractions. The presence of the extra U(1) factor is due
to the noncommutativity of the theory.

1For two functions f , g ∈ Aθ(R2) the Groenewold-Moyal ∗-product is defined as:

f ∗ g(x) = f(x)e
i
2
←−
∂ µθµν−→∂ ν g(x) ,

where θµν = θεµν , (ε01 = 1) and θ is the noncommutativity parameter.

3



The associated Lie algebra so(2, 1) ⊕ u(1) is generated by Pa, J and I (a = 0, 1). The com-
mutation relations among these generators are given by

[Pa, Pb] = −1
2

Λ
s

εab(2J − sI) , [Pa , J ] = εa
bPb , [Pa , I] = [J , I] = 0 , (ε01 = 1) . (6)

Thus I is a central element. Here Λ is the cosmological constant and s is a dimensionless parameter
whose role will be explained below. For the generators we will sometimes use the notation

(Qa, Q2, Q3) ≡ (Pa, J, I) , a ∈ {0, 1} (7)

in the text.
For finite values of Λ and s, the commutation relations in (6) are those of the standard

so(2, 1)⊕u(1) Lie algebra as can be seen by making the substitutions Λ
s → Λ and (J − 1

2sI)→ J .
Keeping Λ finite and letting s→∞ results in what is known as the centrally extended Poincaré
algebra [9]. We also recall that the gauge theory formulation of the two dimensional gravity model
is based on so(2, 1), while the centrally extended Poincaré algebra is required for the formulation
“string-inspired” gravity [9].

Throughout the paper we work with the fundamental representation of (6). It is given by:

P0 =
1
2

√
Λ
s

iσ3 , P1 =
1
2

√
Λ
s

σ1 , J =
1
2
(σ2 + sI) , (8)

where σi , (i = 1, 2, 3) as usual denote the Pauli matrices. In this representation the following
relations hold:

J2 = sJ +
1− s2

4
I , {J, Pa} = sPa , {Pa, Pb} = − Λ

2s
habI

TrPaPb = − Λ
2s

hab , T rJ2 =
1 + s2

2
, T rI = 2 , (9)

where hab = diag(1,−1) and {., .} denote anticommutators.
Let us consider the connection one form A. It is composed of the zweibein’s ea(a = 0, 1), the

spin connection ω and the additional one form k. Expanding in the Lie algebra basis, A reads

A := AαQα = eaPa + ωJ +
Λ
2

kI , (α = 0, 1, 2, 3) . (10)

We compute the curvature associated to A in a straightforward fashion using

F = dA + A ∧∗ A . (11)

We find

F =
[
dea +

1
2
εb

a(eb ∧∗ ω − ω ∧∗ eb) +
1
2
Λ(k ∧∗ ea + ea ∧∗ k) +

s

2
(ea ∧∗ ω + ω ∧∗ ea)

]
Pa+[

dω + sω ∧∗ ω − Λ
2s

εabe
a ∧∗ eb +

Λ
2

(k ∧∗ ω + ω ∧∗ k)
]
J+[Λ

2
dk +

Λ2

4
k ∧∗ k − Λ

4s
habe

a ∧∗ eb +
Λ
4

εabe
a ∧∗ eb +

1− s2

4
ω ∧∗ ω

]
I . (12)
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Under the infinitesimal gauge transformations generated by υ = υaPa + υ2J + υ3I, we have

A −→ A′ = A + iD∗υ , D∗υ = dυ + i[υ ,A]∗
F −→ F ′ = F + i[υ , F ]∗ , (13)

while under finite gauge transformations

A −→ A′ = eiυ ∗ (A + d) ∗ (eiυ)−1
∗ ,

F −→ F ′ = eiυ ∗ F ∗ (eiυ)−1
∗ . (14)

Note that in above (eiυ)−1
∗ is the ∗-inverse of (eiυ).

3.2 The Action

We now give the gauge theory action describing NC gravity theories with nonzero cosmological
constant, in two dimensions. Generalizing from the commutative theory we write,

S =
∫

Tr(ξ ∗ F ) , (15)

Here we introduced the 4-component scalar field

ξ = −2s

Λ
ηaPa +

2
1 + s2

η2J +
1
Λ

η3I , (16)

and the trace is taken over the Lie algebra basis. We note the peculiar factors in front of the
component fields in (16); in the action S, they cancel with the factors coming from the traces.

In terms of the component fields, the action S reads

S =
∫

ηa ∗
[
dea +

1
2
εb

a(eb ∧∗ ω − ω ∧∗ eb) +
Λ
2

(k ∧∗ ea + ea ∧∗ k) +
s

2
(ea ∧∗ ω + ω ∧∗ ea)

]
+∫

η2 ∗
[
dω + sω ∧∗ ω − Λ

2s
εabe

a ∧∗ eb +
Λ
2

(k ∧∗ ω + ω ∧∗ k)
]
+∫

η3 ∗
[
dk +

Λ
2

k ∧∗ k − 1
2
habe

a ∧∗ eb +
1
2
εabe

a ∧∗ eb +
1− s2

2Λ
w ∧∗ ω

]
. (17)

Let us note that several terms in this action do in fact vanish. Recalling that one ∗-product can
be removed under the integral and removing the ∗ in the ∧∗, we find that the 3rd and 4th terms of
the first integral, the 2nd and 4th terms of the second integral and the 2nd and 3rd and 5th terms
of the third integral are zero. Thus we have

S =
∫

ηa ∗
(
dea +

1
2
εb

a(eb ∧∗ ω − ω ∧∗ eb)
)

+ η2 ∗
(
dω − Λ

2s
εabe

a ∧∗ eb
)
+

η3 ∗
(
dk +

1
2
εabe

a ∧∗ eb
)

. (18)

S is invariant under both the infinitesimal NC gauge transformations and “twisted” diffeo-
morphisms. We now explicitly demonstrate these invariances.
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3.3 Symmetries

Gauge Invariance:

The action given in (15) is gauge invariant under the infinitesimal gauge transformation given
in (13) for the curvature F and the standard infinitesimal transformation law of scalar fields in
the NC gauge theories:

ξ → ξ + i[υ , ξ]∗ (19)

Explicitly, we have

S(ξ + δξ, F + δF )

=
∫

Tr(ξ + i[υ , ξ]∗) ∗ (F + i[υ , F ]∗)

=
∫

Tr
(
ξ ∗ F + iξ ∗ [υ , F ]∗ + i[υ , ξ]∗ ∗ F +O(υ2)

)
=

∫
Tr(ξ ∗ F ) + i

∫
Tr[υ , ξ ∗ F ]∗ +O(υ2)

=
∫

Tr(ξ ∗ F ) + i

∫
υα ∗ ξβ ∗ F γ Tr[Qα , QβQγ ] + i

∫
TrQαQβQγ [υα , ξβ ∗ F γ ] +O(υ2)

=
∫

Tr(ξ ∗ F ) +O(υ2) , (20)

as was to be shown.

Twisted Diffemorphisms:

Implementation of space-time symmetries on noncommutative spaces was a long standing
problem until very recently. It is well-known that on a d-dimensional noncommutative space
Rd

θ generated by the coordinates xµ ∈ Aθ(Rd), the Poincaré and diffeomorphism symmetries are
explicitly broken due to the noncommutativity

[xµ , xν ]∗ = iθµν , (21)

if they are naively implemented. Very recently it has been reported by Chaichian et. al.[13] and
Aschieri et. al. [1] that these symmetries can be restored by twisting their coproduct (See also
the earlier work of Oeckl [15], Such a twist in a general context is due to Drinfel’d [16]). A clear
way to understand these developments is as follows [1, 14].

Let A be an algebra. A comes with a rule for multiplying its elements. For f, g ∈ A there
exists the multiplication map µ such that

µ : A⊗A → A ,

f ⊗ g → µ(f ⊗ g) . (22)

Now let G be the group of symmetries acting on A by a given representation D : g → D(g)
for g ∈ G. We can denote this action by

f −→ D(g)f . (23)
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The action of G onA⊗A is formally implemented by the coproduct ∆(g). The action is compatible
with µ only if a certain compatibility condition between ∆(g) and µ is satisfied. This action is

f ⊗ g −→ (D ⊗D)∆(g)f ⊗ g , (24)

and the compatibility condition requires that

µ ((D ⊗D)∆(g)f ⊗ g) = D(g) µ(f ⊗ g) . (25)

The latter can be expressed neatly in terms of the following commutative diagram :

f ⊗ g
∆

- (D ⊗D)∆(g)f ⊗ g

µ(f ⊗ g)

µ

?
- D(g)µ(f ⊗ g)

µ

?

If a ∆ satisfying the above compatibility condition exists, then G is an automorphism of A. If
such a ∆ cannot be found, then G does not act on A.

We can now specialize to the algebra Aθ(Rd). The multiplication law on Aθ(Rd) is nothing
but the Groenewold-Moyal ∗-product

µθ(f ⊗ g) = µθ=0 (F f ⊗ g) = f ∗ g , (26)

where µθ=0(f ⊗ g) = fg is the pointwise product and we have introduced

F = e
i
2
θµν∂µ⊗∂ν . (27)

The twisted coproduct is given by

∆θ(g) = F−1∆θ=0(g)F . (28)

∆θ(g) satisfies the compatibility condition (25) with µθ as can be easily checked.
For infinitesimal symmetries, it is sufficient to consider only the Lie algebra G of G and the

coproduct associated with its universal enveloping algebra.
Infinitesimal diffeomorphisms are generated by vector fields of the form ζ = ζµ(x)∂µ and they

form a Lie algebra. The twisted coproduct of ζ is given by

∆θ(ζ) = F−1∆0(ζ)F
= F−1(ζ ⊗ 1 + 1⊗ ζ)F . (29)

It is compatible with the multiplication map µθ on Aθ(Rd).
Variation of tensor fields under twisted diffeomorphisms can be suitably represented by defin-

ing the operator X∗
ζ acting on Aθ(Rd) as

δ̂ζf ≡ −X∗
ζ (f) := −ζα∂αf , (30)

on scalars f . Its action on tensor fields follows by the standard transformation rules of tensors.
For example, on a contravariant vector field V µ we have

δ̂ζV
µ ≡ −X∗

ζ (V µ) + X∗
(∂ρζµ)(V

ρ) := −ζρ(∂ρV
µ) + (∂ρζ

µ)V ρ . (31)

7



We observe that the Leibniz rule for the “twisted” vector fields is a deformed one. It is given by

X∗
ζ (f ∗ g) = µθ

{
F−1(X∗

ζ ⊗ 1 + 1⊗X∗
ζ )F (f ⊗ g)

}
. (32)

This deformation of the Leibniz rule ensures that the product of two tensor fields of rank n and
m transforms as a tensor field of rank n + m.

This much of information on “twisted” diffeomorphisms is sufficient for our purposes. For
further details on the subject we refer to [1].

We are now ready to demonstrate the invariance of the action S in (15) under the ”twisted”
diffemorphisms. We have ξ transforming as a scalar, and εµνFµν transforming as a tensor density
of weight −1:

δζ̂ξ = −X∗
ζ (ξ) := −ζα∂αξ

δζ̂(ε
µνFµν) = −X∗

ζ (εµνFµν)−X∗
(∂αζα)(ε

µνFµν) . (33)

Using (33) we find
δζ̂(ξ ∗ εµνFµν) = −∂α

(
ζα(ξ ∗ εµνFµν)

)
, (34)

or equivalently
δζ̂(ξ ∗ εµνFµν) = −∂α

(
X∗

ζα(ξ ∗ εµνFµν)
)
. (35)

Thus under the infinitesimal “twisted” diffemorphisms generated by δζ̂ , the Lagrangian changes
by a total derivative:

Tr(ξ ∗ εµνFµν) −→ Tr(ξ ∗ εµνFµν)− ∂α

(
X∗

ζα(Tr(ξ ∗ εµνFµν))
)
, (36)

and hence the action S is invariant.

4 Classical Solutions

4.1 Equations of Motion

Let us first examine the equations of motion following from the S in (18) when the fields ηa, η2, η3

are varied. We find

D∗ea := dea +
1
2
εa

b(ω ∧∗ eb − eb ∧∗ ω) = 0 , (37a)

dω − Λ
2s

εabe
a ∧∗ eb = 0 , (37b)

dk +
1
2
εabe

a ∧∗ eb = 0 . (37c)

The commutative limit of these classical equations can immediately be obtained by replacing
the ∗-product with the usual pointwise product. That gives the familiar equations

Dea = dea + εa
bω ∧ eb = 0 , (38a)

dω − 1
2

Λ
s

εabe
a ∧ eb = 0 , (38b)

dk +
1
2
εabe

a ∧ eb = 0 . (38c)

We now study the solutions of the equations of motion (37) for various values of the parameters
Λ and s.
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4.2 The AdS2 solution

In this case we take both Λ and s to be finite and let Λ
s → Λ.

Let us first study the commutative theory from the equations of motion given in (38). To
this end first substitute k = a − s

Λω to (38c) and use (38b) to find da = 0. Thus the 1-form
field a is closed and hence non-dynamical, and can be eliminated. Thus we set a = 0 in what
follows. The equations of motion then describe standard two dimensional gravity [4, 9]. Making
the substitution k = a − s

Λω in A as well and letting (J − 1
2sI) → J , the gauge field and the

algebra can also be put into their conventional form. Thus the connection one form A in (10)
can be rewritten as

A = eaPa + ωJ . (39)

For Λ < 0, this commutative model has the well-known AdS2 solution given by the metric

ds2 = Λr2dt2 − 1
Λr2

dr2 . (40)

It gives the connection

At =
iΛr

2

(
1 1
−1 −1

)
, Ar =

1
2r

(
0 1
1 0

)
. (41)

The zweibein’s and the spin connection can be read from (41) as

e0
t =
√

Λr , e1
t = 0 , e0

r = 0 , e1
r =

1√
Λr

ωt = −Λr , ωr = 0 . (42)

It can be easily verified that (42) satisfies the equations of motion given in (38).
It has been shown in [12] that the above AdS2 geometry is in fact a solution of the noncom-

mutative version of the standard two dimensional gravity model. Below we also reach this result
by virtue of the presence of twisted diffeomorphisms in our theory.

Let us now show that (42) is indeed also a solution for the NC equations of motion given
in (37). We reason that due to the invariance of our theory under twisted diffeomorphisms, the
commutation relation between coordinates is preserved under a general coordinate transformation.
Thus we have

[x0 , x1] = iθ
(twisted diffeos)

−→ [t , r] = iθ . (43)

We observe that the solution given in (42) is time-independent. Hence all the ∗-products in
(37) collapse to pointwise products and these equations of motion are satisfied immediately. This
indeed shows that the AdS2 geometry is a solution to our noncommutative gauge theory.

4.3 The Black Hole Solution

In this case we keep Λ finite and take s → ∞. This is the NC version of the “string inspired”
gravity model [9].

In order to discuss the solutions to the equations of motion in this case, it is useful to express
the action in terms of the light cone coordinates

x± = x0 ± x1 . (44)
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Following Verlinde [5], this task can be carried out rather easily. The action S in (18) takes the
form∫

dx+dx−
[
η+ ∗

(
de+ +

1
2
(ω ∧∗ e− − e− ∧∗ ω)

)
+ η− ∗

(
de− − 1

2
(ω ∧∗ e+ − e+ ∧∗ ω)

)
+

χ ∗ dω + η3 ∗ dk + η3 ∗ e+ ∧∗ e−
]
, (45)

where χ := η2 = eϕ and ϕ is the dilaton field.
Let us first note that the variation of (45) with respect to k gives η3 = constant. We set this

constant equal to Λ. Variations with respect to the e− and e+ give

e+ = − 1
Λ

D∗η+ = − 1
Λ
(
dη+ − 1

2
(η+ ∗ ω + ω ∗ η+)) ,

e− =
1
Λ

D∗η− =
1
Λ
(
dη− +

1
2
(η− ∗ ω + ω ∗ η−)

)
(46)

respectively, and from variation of ω we find

dχ = −1
2
{η−, e+}∗ +

1
2
{η+, e−}∗ . (47)

Let us also define
M∗ = −Λχ +

1
2
(η+ ∗ η− + η− ∗ η+) . (48)

In the commutative limit M∗ approaches the black hole mass M . Using the above equations of
motion we find

dM∗ =
1
4
[
ω , [η+ , η−]∗

]
∗ +

1
4
[η+ , [ω , η−]∗

]
∗ . (49)

We recall that in the commutative theory the conformally scaled metric is given by [5]

G̃ = hab
ea ⊗ eb

χ
≡ Dη+ ⊗Dη−

− 1
Λ(M − η+η−)

. (50)

We take the ansatz below as the natural generalization of (50) to the NC case:

G̃∗
µν =

1
8
(D∗

µη+ ∗D∗
νη

− + D∗
νη

+ ∗D∗
µη−) ∗

(
1

− 1
Λ

(
M∗ − 1

2(η+ ∗ η− + η− ∗ η+)
))+

1
8

(
1

− 1
Λ

(
M∗ − 1

2(η+ ∗ η− + η− ∗ η+)
)) ∗ (D∗

µη+ ∗D∗
νη

− + D∗
νη

+ ∗D∗
µη−) + (+←→ −) . (51)

We note that G̃µν as given above is symmetric and transforms as a second rank covariant tensor
under “twisted” diffeomorphisms. Thus according to the definition given in [1], it qualifies as a
metric. In what follows, we proceed by setting Λ = −1.

In the commutative theory, the fields η± are related to light cone coordinates u and v by

u(x) = η+(x)e−
R x ω , v(x) = η−(x)e

R x ω . (52)

In these coordinates the black hole metric and the dilaton are given by

ds2 =
dudv

1− uv
, ϕ = ln(1− uv) , (53)
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where M is set to be equal to 1. u and v are also closely related to the Schwarzchild type of
coordinates t and r by

u = sinh ret , v = − sinh re−t . (54)

The metric and the dilaton in these coordinates take the form

ds2 = dr2 − tanh2 rdt2 , ϕ = ln cosh2 r . (55)

Using the metric (55), it is easy to see that one has

e+
t e−t = − sinh2 r , e+

r e−r = cosh2 r . (56)

We see from (52) that η+η− = − sinh2 r and thus is time-independent. Let us make the gauge
choice that η+ and η− are time-independent and only functions of r. The equations of motion of
the commutative theory for e− and e+ then become

e+
t = Dtη

+ = −ωtη
+

e−t = Dtη
− = −ωtη

− . (57)

Thus
e+
t e−t = η+η−ω2

t , (58)

and hence ω2
t = 1 and

ωt = ±1 . (59)

The scalar curvature can be directly computed from the metric to be

R =
4

cosh2 r
. (60)

It can also be expressed as

R =
2

det e
εµν∂µων . (61)

Using this and (59) and (60) in (61) and the result det e = tanh r, we find

∂tωr = −2
tanh r

cosh2 r
(62)

with the obvious solution
ωr = −2

tanh r

cosh2 r
t + h(r) . (63)

Once more we reason that due to the invariance of our theory under twisted diffeomorphisms,
the canonical commutation relation between coordinates are preserved under a general coordinate
transformation. Thus we have

[x0 , x1] = iθ
(twisted diffeos)

−→ [t , r] = iθ . (64)

Now using the above developments we find, expanding in powers of θ:

D∗η+ = dη+ − ωη+ +
1
2
θ2εijεkl∂i∂kω∂j∂lη

+ + higher order terms in θ

= dη+ − ωη+ = Dη+ . (65)
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The result above is exact to all orders in θ since odd powers in θ vanish anyway due to antisym-
metry of θµν in its indices and even powers like the θ2 term above vanish after the differentiatons
on ω. Similarly we find D∗η− = Dη− to all orders in θ. Time dependent solutions of the
theory can be obtained through NC gauge transformations of η±.

Thus we conclude that the black hole solution of the commutative theory, given by the metric
in (55) is at the same time a solution to our noncommutative theory. For this conclusion the
presence of twisted diffeomorphisms is crucial as can be clearly observed from the arguments
above.

5 Concluding Remarks

In this article we have constructed noncommutative two dimensional gravities in terms of non-
commutative gauge theories. We have shown that the presence of twisted diffemorphisms ensure
that solutions of the corresponding commutative gauge theories continue to be solutions to these
noncommutative models.
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