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Abstract

We introduce and study a family of quantum fields, associated to δ-interactions in one
dimension. These fields are analogous to holonomic quantum fields of M. Sato, T. Miwa
and M. Jimbo. Corresponding field operators belong to an infinite-dimensional representa-
tion of the group SL(2,R) in the Fock space of ordinary harmonic oscillator. We compute
form factors of such fields and their correlation functions, which are related to the deter-
minants of Schroedinger operators with a finite number of point interactions. It is also
shown that these determinants coincide with tau functions, obtained through the trivi-
alization of the det∗-bundle over a Grassmannian associated to a family of Schroedinger
operators.
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1 Introduction

The study of holonomic quantum fields [10] has led to important advances in both integrable
quantum field theory and analytic theory of linear differential equations. In physical language,
these fields represent a particular case of the canonical Bogolyubov transformations (see, for
instance, [2]), which makes possible the exact computation of their form factors and correlation
functions.

The main physical examples of holonomic quantum fields are given by the exponential
fields of the sine-Gordon theory at the free-fermion point (SGff ) [3, 4, 11] and order/disorder
variables of the two-dimensional Ising model [5, 6]. Both models possess an underlying free-
fermion structure. However, their observables are nonlinear in terms of free fields (they are
represented by ordered exponentials of fermion bilinears) and have nontrivial braiding relations
with them. This nonlinearity leads to interesting correlation functions.
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Correlators of holonomic quantum fields are usually called tau functions. In the special case
of the SGff -theory they have the meaning of determinants of Dirac operators with branching
points on the Euclidean plane. An attempt to give a geometric definition of such tau functions
was made in [9]. It was based on the approach, developed in the article [8], where the tau
function of the Schlesinger system was related to the determinant of a singular Cauchy-Riemann
operator. The idea of [9] was to consider a family A of Dirac operators, parametrized by the
coordinates of branchpoints, and to associate to each of these operators a subspace of boundary
values of local solutions of the Dirac equation. These subspaces are then embedded into an
infinite-dimensional grassmannian. One can construct à la Segal-Wilson [12] the det∗-bundle
over this grassmannian and its canonical section σ. Next, using the Green function of the Dirac
operator, one may endow the det∗-bundle with another, trivializing section. This latter allows
to identify σ with a (tau) function on A.

The main goal of the present paper is to explain the concept of holonomic quantum fields
and the above definition of the tau function with a simple example. It appears that these two
notions naturally emerge in the calculation of the resolvent of the Schroedinger operator with
δ-interactions in one dimension. Though such operators and their resolvents have already been
extensively discussed in physical and mathematical literature (see, for example, the monograph
[1] and references therein), holonomic quantum fields allow to examine this fairly classical
subject from a new point of view.

Moreover, we believe that the ideology developed in this paper applies as well to certain
unsolved quantum mechanical problems, the most appealing one being the computation of the
fermionic vacuum quantum numbers, induced by a finite number of magnetic vortices in 2 + 1
dimensions. In practice, the latter problem reduces to the calculation of the resolvent of the
Dirac hamiltonian with point sources. At present, the answer is known only in the case of
a single vortex [13]. It seems, however, that the multivortex resolvent can be obtained from
the correlation functions and form factors of certain Bogolyubov transformations, generalizing
exponential fields of the SGff -theory.

This paper is organized as follows. After introducing basic notations and terminology in
Section 2, we turn in the next section to the calculation of the resolvent of the Schroedinger
operator with δ-interactions. It is expressed (by the formula (3.3)) through the ratio of correla-
tion functions of certain local fields in the 1D quantum field theory of free massive real bosons.
These correlation functions are computed in the lagrangian approach by an auxiliary integration
method. They comprise the fields of two types: the free ones and interacting fields, associated
to delta-sources. These latter represent the simplest prototypes of holonomic quantum fields,
since the operators, corresponding to them in the hamiltonian picture, realize certain canonical
Bogolyubov transformations of the Heisenberg algebra. In Section 4, we compute form factors
and correlation functions of the fields, which correspond to more general Bogolyubov transfor-
mations and belong to an infinite-dimensional representation of the group SL(2,R) in the Fock
space of harmonic oscillator. Section 5 is devoted to the definition and calculation of the tau
function. It is obtained through the trivialization of the det∗-bundle over a finite-dimensional
grassmannian of boundary conditions, associated to a family of Schroedinger operators with
point interactions. We conclude with a brief discussion of possible generalizations and open
questions.

Acknowledgements. The author is grateful to A. I. Bugrij, M. Z. Iorgov, V. N. Roubtsov,
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2 Schroedinger operator without point interactions

Let us first consider Schroedinger operator without point interactions,

L = − d2

dx2
,

acting on functions from the Sobolev space H2(R) as the second derivative. Its resolvent
(L− E)−1 is given by the integral operator with the kernel

GE(x, y) =
e−m|x−y|

2m
, (2.1)

which can be easily evaluated by Fourier transformation. Here we have introduced the notation
E = −m2 and assumed that Re m > 0.

Note that for real E < 0 the resolvent kernel GE(x, y) coincides by construction with the
two-point correlation function in the relativistic euclidean quantum field theory of free massive
real bosons in one dimension. In particular, if we define the action

S0[ϕ] =
1

2

∞∫

−∞

dx ϕ(x)

(
− d2

dx2
+ m2

)
ϕ(x), (2.2)

then GE(x, y) can be formally written through the ratio of two functional integrals:

GE(x, y) = 〈ϕ(x)ϕ(y)〉 =

∫ Dϕ ϕ(x)ϕ(y) e−S0[ϕ]

∫ Dϕ e−S0[ϕ]
. (2.3)

The theory, described by the action (2.2), admits two natural interpretations:

• If we interpret our single dimension as space, then the action (2.2) coincides with the
energy functional of the infinite string in a parabolic well. The integral in the denominator
of (2.3) represents string partition function, and two-point correlator 〈ϕ(x)ϕ(y)〉 is the
thermodynamic average of the product of transverse coordinates of two different points
of the string.

• On the other hand, the action (2.2) describes the dynamics of harmonic oscillator in
imaginary time. In this setting, correlation function 〈ϕ(x)ϕ(y)〉 may be interpreted as
the vacuum expectation value of the ordered product of coordinate operators at two
different times.

In order to introduce several important notations, let us briefly recall the hamiltonian
approach to oscillator dynamics. Fields ϕ(x) and π(x) = 1

i
dϕ(x)
dx

here become operators, obeying
the commutation relation [ϕ̂, π̂] = i. The hamiltonian, being expressed in terms of ϕ̂ and π̂,
has the form

Ĥ =
1

2

(
π̂2 + m2ϕ̂2

)− m

2
,
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where the constant term is subtracted for future convenience. Imaginary time evolution of an
arbitrary operator Ô is given by the equation

Ô(x) = e−ĤxÔ(0) eĤx. (2.4)

It is customary to define the creation-annihilation operators

a =

√
m

2

(
ϕ̂(0) +

i π̂(0)

m

)
, a† =

√
m

2

(
ϕ̂(0)− i π̂(0)

m

)
,

satisfying canonical commutation relation [a, a†] = 1. The hamiltonian can then be rewritten
in terms of these operators as Ĥ = ma†a. Vacuum vector |0〉 is fixed by conditions a|0〉 = 0,
〈0|0〉 = 1. The operators that we wish to consider act in the Fock space F , spanned by the
orthonormal vectors

|k〉 =

(
a†

)k

√
k!

|0〉, k = 0, 1, 2 . . . , (2.5)

constituting the set of hamiltonian eigenstates: Ĥ|k〉 = km |k〉.
The computation of correlation functions of local fields in the hamiltonian approach is

equivalent to the calculation of form factors, i. e. matrix elements of the corresponding field
operators in the orthonormal basis of eigenstates of Ĥ. For instance, form factor expansion of
the two-point correlator 〈O1(x1)O2(x2)〉 is written as

〈O1(x1)O2(x2)〉 = 〈0|Ô1(x1)Ô2(x2)|0〉 = 〈0|Ô1(0) e−Ĥ(x2−x1)Ô2(0)|0〉 =

=
∞∑

k=0

〈0| Ô1(0)|k〉 〈k|Ô2(0)|0〉 e−km(x2−x1), (2.6)

where we have assumed that x2 ≥ x1. One can obtain analogous expressions for the multipoint
correlation functions, simply using the formula (2.4), and inserting the appropriate number of

times the resolution of the identity operator, 1 =
∞∑

k=0

|k〉 〈k|, into the correlators.

Example. It is easiest to see how this scheme works on the example of the two-point correlation
function 〈ϕ(x)ϕ(y)〉. Note that since the operators ϕ̂ and π̂ are given by

ϕ̂(0) =
1√
2m

(
a† + a

)
, π̂(0) = i

√
m

2

(
a† − a

)
,

the only non-zero form factors are

〈k + 1| ϕ̂(0)|k〉 = 〈k| ϕ̂(0)|k + 1〉 =

√
k + 1

2m
,

〈k + 1| π̂(0)|k〉 = −〈k| π̂(0)|k + 1〉 = i

√
k + 1

2m
,

that is, the numbers of in- and out-particles should differ by 1. Therefore, in the expansion over
intermediate states (2.6) for 〈ϕ(x)ϕ(y)〉 only the terms with k = 1 will remain, reproducing
thus the formula (2.1).
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3 Introducing δ-interactions

Let us now see what happens if instead of L we consider Schroedinger operator with a finite
number of δ-interactions,

La,V = − d2

dx2
+ V (x), V (x) =

N∑
i=1

Vi δ(x− ai) .

The most known way of calculating the resolvent (La,V −E)−1 is to expand it formally in a series
in powers of V . Summing up this series, one obtains a compact expression for the resolvent
kernel GE, V (x, y):

GE, V (x, y) = GE(x, y)−
N∑

i,j=1

GE(x, ai) U−1
ij GE(aj, x), (3.1)

Here GE(x, y) denotes the unperturbed resolvent (2.1) and the matrix U is defined as

Uij =
1

Vi

δij + GE(ai, aj), i, j = 1, . . . , N.

An alternative simple proof of this result follows from field-theoretic considerations. Again,
for real negative E = −m2 the resolvent GE, V (x, y) coincides with the two-point correlator in
the one-dimensional quantum field theory, described by the action

SV [ϕ] =
1

2

∞∫

−∞

dx ϕ(x)

(
− d2

dx2
+ m2 + V (x)

)
ϕ(x) = S0[ϕ] + Sd[ϕ], (3.2)

where

Sd[ϕ] =
1

2

N∑
i=1

Vi ϕ
2(ai).

Thus we have

GE, V (x, y) = 〈ϕ(x)ϕ(y)〉V =

∫ Dϕ ϕ(x)ϕ(y) e−SV [ϕ]

∫ Dϕ e−SV [ϕ]
.

The action (3.2) reproduces the energy of a one-dimensional string with N masses attached to
the points a1, . . . , aN . We will assume for definiteness that these masses are all positive.

The idea is to represent the factor e−Sd[ϕ], appearing in the functional integrals, as a gaussian
integral over N auxiliary variables µ1, . . . , µN :

e−Sd[ϕ] =
1

(2π)N/2 ∏N
j=1

√
Vj

∞∫

−∞

. . .

∞∫

−∞

dµ1 . . . dµN exp

{
−

N∑
j=1

µ 2
j /Vj +

N∑
j=1

iµj ϕ(aj)

}
.

After interchanging the order of integration over ϕ’s and µ’s, the corresponding integrals can
be readily evaluated, since the quadratic form in ϕ is now given by the unperturbed action
S0[ϕ]. At the end of this calculation one finds the the formula (3.1).
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Let us consider yet another approach to the calculation of the resolvent GE,V (x, y). On the
one hand, it is equal to pair correlation function in the theory with the action (3.2). However,
it may also be expressed through the ratio of certain multipoint correlators in the theory,
described by the unperturbed action (2.2). Namely, one can write

GE,V (x, y) = 〈ϕ(x)ϕ(y)〉V =
〈OV1(a1) . . .OVN

(aN)ϕ(x)ϕ(y)〉
〈OV1(a1) . . .OVN

(aN)〉 , (3.3)

where the local fields OV (a) are defined as

OV (a) = exp

{
−1

2
V ϕ2(a)

}
. (3.4)

It should be pointed out that the correlation function 〈OV1(a1) . . .OVN
(aN)〉, standing in the

denominator of (3.3), is equal to the ratio of partition functions of the string with and without
attached point masses. It can be formally expressed through the determinants of Schroedinger
operators:

〈OV1(a1) . . .OVN
(aN)〉 =

√
det(L− E)

det(La,V − E)
. (3.5)

Repeating the above trick with auxiliary fields, one may also compute this correlator explicitly:

〈OV1(a1) . . .OVN
(aN)〉 =

(
det

∥∥∥ δij +
√

ViVj GE(ai, aj)
∥∥∥
)−1/2

, i, j = 1, . . . , N. (3.6)

Consider now the fields OV in the hamiltonian picture. The operator ÔV = exp
{−1

2
V ϕ̂ 2

}
has remarkable equal-time commutation relations with the operators ϕ̂ and π̂:

ÔV (0)ϕ̂(0)− ϕ̂(0)ÔV (0) = 0, (3.7)

ÔV (0)π̂(0)− π̂(0)ÔV (0) = −iV ϕ̂(0)ÔV (0). (3.8)

This is a manifestation of the fact that any correlator f(x) = 〈. . .OV (a)ϕ(x) . . .〉, being consid-
ered as a function of x, is a local solution of the Schroedinger equation (L−E)f = 0, satisfying
at the point a the boundary condition

f(a + 0)− f(a− 0) = 0, f ′(a + 0)− f ′(a− 0) = V f(a).

One can also rewrite the commutation relations (3.7)–(3.8) in terms of the creation-annihilation
operators:

ÔV (0)

(
a
a†

)
Ô−1

V (0) =

(
1 + V

2m
V
2m

− V
2m

1− V
2m

)(
a
a†

)
. (3.9)

Therefore, ÔV realizes a Bogolyubov transformation, i. e. linear transformation of the Heisen-
berg algebra, preserving canonical commutation relation [a, a†] = 1. The formula (3.9) deter-
mines the operator ÔV almost completely. More precisely, ÔV is fixed by (3.9) up to a constant
numerical factor.

In the next section, we will compute form factors and correlation functions of the fields,
corresponding to more general Bogolyubov transformations. It should be emphasized that
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we will use only the relations of type (3.9) and no reference will be made to the explicit
formula (3.4). The reason for doing so is that it is not always clear, which operator should
be associated to a given field and vice versa. This is the case, for instance, in the analysis
of δ′-interactions. Even more severe difficulties arise in some two-dimensional problems: the
fields, realizing relevant Bogolyubov transformations, being themselves local, are not mutually
local with the free fields. The most known example of this kind is given by the exponential
fields in the SGff -theory.

4 Form factors and correlation functions

of Bogolyubov fields

Consider a linear transformation of the creation-annihilation operators

Λ :

(
a
a†

)
7→

(
b
b†

)
=

(
α β
γ δ

)(
a
a†

)
. (4.1)

It preserves canonical commutation relation iff the real parameters α, β, γ, δ satisfy the con-
dition αδ − βγ = 1. In the following, this condition is assumed to hold. We want to represent
Λ as a similarity transformation. Namely, we are looking for the invertible operator ÔΛ, such
that

ÔΛ

(
a
a†

)
Ô−1

Λ = Λ

(
a
a†

)
. (4.2)

These operators are called Bogolyubov transformations, and the corresponding local fields will
be called Bogolyubov fields in the rest of this paper1. The operators ÔΛ are determined by
(4.2) up to a constant, realizing thus an infinite-dimensional projective representation of the
group SL(2,R) in the Fock space of our harmonic oscillator.

In order to construct ÔΛ in terms of a and a†, one should examine the properties of basic
Bogolyubov transformations:

P̂λ = e
1
2

λ(a†)
2

, R̂ν = e
1
2

ν a2

,

Q̂µ = : eµ a†a :
def
=

∞∑
n=0

µn

n!

(
a†

)n
an.

It is easy to check that induced linear transformations have the form

P̂λ

(
a
a†

)
P̂−1

λ =

(
1 −λ
0 1

)(
a
a†

)
, (4.3)

Q̂µ

(
a
a†

)
Q̂−1

µ =

(
1

1+µ
0

0 1 + µ

)(
a
a†

)
, (4.4)

R̂ν

(
a
a†

)
R̂−1

ν =

(
1 0
ν 1

)(
a
a†

)
. (4.5)

1Actually, there already exist several names for some special fields of this type, to mention only ‘holonomic
quantum fields’, ‘exponential fields’ and ‘monodromy fields’. All these names, however, do not reflect common
structure of such fields, and are related to the particularities of different two-dimensional problems. That is
why we believe that the name ‘Bogolyubov fields’ would be more appropriate.
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General Bogolyubov transformation (4.2) is then given by

Ôλ,µ,ν = P̂λQ̂µR̂ν = : exp

{
1

2
λ

(
a†

)2
+ µ a†a +

1

2
ν a2

}
: (4.6)

Parameters α, β, γ, δ of the corresponding linear map Λ = ΛRνΛQµΛPλ
are related to λ, µ and

ν by the following formulas:

α =
1

1 + µ
, β = − λ

1 + µ
, γ =

ν

1 + µ
, δ = 1 + µ− λ ν

1 + µ
. (4.7)

Note that writing ÔΛ in the form (4.6), we adopt the convention 〈OΛ〉 def
= 〈0|ÔΛ|0〉 = 1. This

normalization will be used hereafter. Together with the relation (4.2), it completely fixes the
operator ÔΛ.

Remark. One-point function of the Bogolyubov field OV , associated to a δ-interaction, is not
equal to 1. It may be determined from the formula (3.6) by setting N = 1:

〈OV 〉 =

(
1 +

V

2m

)−1/2

. (4.8)

It can also be computed in the hamiltonian approach, being rewritten as the vacuum expectation
value

〈OV 〉 = 〈0|ÔV |0〉 = 〈0|e− 1
2

V ϕ̂2|0〉 =
∞∑

n=0

1

n!

(
− V

4m

)n

〈0| (a + a†
)2n |0〉. (4.9)

Using Wick’s theorem, one obtains 〈0| (a + a†
)2n |0〉 = (2n− 1)!!. Now remark that the Taylor

expansion of the function

(1 + x)−1/2 = 1 +
∞∑

n=1

(2n− 1)!!

n!

(
−x

2

)n

(4.10)

coincides with (4.9), if we set x = V
2m

. Thus we recover the formula (4.8).
Parameters λ, µ and ν, which correspond to the field OV , are determined from the compar-

ison of (3.9) and (4.7). The result is

λ = µ = ν = − V/2m

1 + V/2m
. (4.11)

This leads to the following representation of the operator ÔV :

ÔV =

(
1 +

V

2m

)−1/2

: exp

{
−1

2

V/2m

1 + V/2m

(
a + a†

)2
}

: (4.12)

We now turn to the calculation of form factors 〈k|Ôλ,µ,ν |l〉 of the operator (4.6). It is clear
that such form factors will be non-zero only if the numbers of particles in in- and out-state are
simultaneously even or odd. It is convenient to use instead of 〈k|Ôλ,µ,ν |l〉 the auxiliary variables

Fk,l =
√

k!
√

l! 〈k|Ôλ,µ,ν |l〉 = 〈0|ak P̂λQ̂µR̂ν

(
a†

)l |0〉.
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Using the relations (4.3)–(4.5) in the last expression, one can pull the operator P̂λ through ak,

and the operators Q̂µ, R̂ν through
(
a†

)l
:

Fk,l = 〈0|P̂λ

(
a + λ a†

)k
Q̂µR̂ν

(
a†

)l |0〉 = 〈0|P̂λ

(
a + λ a†

)k
Q̂µ

(
ν a + a†

)l
R̂ν |0〉 =

= 〈0|P̂λ

(
a + λ a†

)k
(
ν(1 + µ)−1a + (1 + µ) a†

)l

Q̂µR̂ν |0〉.
Next, since we have

〈0|P̂λ = 〈0|Q̂µ = 〈0|, Q̂µ|0〉 = R̂ν |0〉 = |0〉,
the variable Fk,l may be rewritten as the vacuum expectation value of the product of certain
linear combinations of the creation-annihilation operators:

Fk,l = 〈0| (a + λ a†
)k

(
ν(1 + µ)−1a + (1 + µ) a†

)l

|0〉.

Wick’s theorem allows to express this vacuum expectation value through the sum over all
possible pairings between the linear combinations. There will be only three types of such
pairings:

〈0| (a + λ a†
)2 |0〉 = λ, (4.13)

〈0|
(
ν(1 + µ)−1a + (1 + µ) a†

)2

|0〉 = ν, (4.14)

〈0| (a + λ a†
) (

ν(1 + µ)−1a + (1 + µ) a†
)
|0〉 = 1 + µ. (4.15)

Consider, for instance, the sum corresponding to F2k,2l. If some term of this sum contains
2j pairings of type (4.15) (it is easy to understand that this number should be even and satisfy
0 ≤ j ≤ min{k, l}), then it also contains k− j pairings of type (4.13) and l− j pairings of type
(4.14). The total number of such terms is equal to

C2k
2j × C2l

2j × (2j)!× (2k − 2j)!

2k−j(k − j)!
× (2l − 2j)!

2l−j(l − j)!
.

Simplifying this combinatorial factor and taking into account the above remarks, we obtain a
general formula for the even-even form factor:

F2k,2l =

min{k,l}∑
j=0

(2k)! (2l)!

(2j)! (k − j)! (l − j)!
(λ/2)k−j (1 + µ)2j (ν/2)l−j . (4.16)

Analogously, the odd-odd form factor is given by

F2k+1,2l+1 =

min{k,l}∑
j=0

(2k + 1)! (2l + 1)!

(2j + 1)! (k − j)! (l − j)!
(λ/2)k−j (1 + µ)2j+1 (ν/2)l−j . (4.17)

One may also prove these results by induction, taking as its first step the obvious formulas

F2k,0 = 〈0|a2kP̂λ|0〉 =
(2k)!

k!

(
λ

2

)k

, F0,2l = 〈0|R̂ν

(
a†

)2l |0〉 =
(2l)!

l!

(ν

2

)l

, (4.18)
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and applying at the next steps the recursion relations

Fk+1,l =
λ

1 + µ
Fk,l+1 + l

(
1 + µ− λν

1 + µ

)
Fk,l−1 ,

Fk,l+1 =
ν

1 + µ
Fk+1,l + k

(
1 + µ− λν

1 + µ

)
Fk−1,l .

Another problem to be considered in this section is the calculation of correlation functions
of Bogolyubov fields in the hamiltonian approach. In other words, we want to compute the
vacuum expectation values of the ordered products of time-dependent operators

Ôλ,µ,ν(x) = e−ĤxÔλ,µ,ν eĤx, (4.19)

where the operator Ôλ,µ,ν is defined by (4.6). Let us start with the two-point correlation
function 〈Oλ1,µ1,ν1(a1)Oλ2,µ2,ν2(a2)〉. Assuming that a2 ≥ a1 and applying the formulas (2.6)
and (4.18), one obtains

〈Oλ1,µ1,ν1(a1)Oλ2,µ2,ν2(a2)〉 =
∞∑

k=0

〈0|Oλ1,µ1,ν1|2k〉 〈2k|Ôλ2,µ2,ν2|0〉 e−2km(a2−a1) =

=
∞∑

k=0

(2k)!

(k!)2

(
1

4
ν1λ2 e−2m(a2−a1)

)k

= 1 +
∞∑

k=1

(2k − 1)!!

k!

(
1

2
ν1λ2 e−2m(a2−a1)

)k

.

The function characterized by such series had already appeared in the computation of the one-
point function 〈OV 〉. From the comparison of the last expression with the expansion (4.10) it
follows that

〈Oλ1,µ1,ν1(a1)Oλ2,µ2,ν2(a2)〉 =
[
1− ν1λ2 e−2m(a2−a1)

]−1/2

. (4.20)

Remark. In order to obtain two-point correlation function of fields, corresponding to δ-
interactions, one should make in (4.20) the substitution

ν1 = − V1/2m

1 + V1/2m
, λ2 = − V2/2m

1 + V2/2m
,

and take into account the one-point functions (4.8). The result is then given by

〈OV1(a1)OV2(a2)〉 =

[(
1 +

V1

2m

) (
1 +

V2

2m

)
− V1V2

4m2
e−2m(a2−a1)

]−1/2

. (4.21)

One may easily check that it coincides with the formula (3.6), specialized to the case N = 2.

Though form factor series for the multipoint correlation functions of Bogolyubov fields have
a more complicated structure, compact expressions for these correlators may also be found.
Note first that the form factors of the operator Ôλ,µ,ν(x) are obtained from the form factors of

Ôλ,µ,ν by the substitution
λ → λ e−2mx, ν → ν e2mx.
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Next, the product of any two such operators is again an operator of the form (4.6), multiplied
by a constant. More precisely, one has

Ôλ1,µ1,ν1Ôλ2,µ2,ν2 = c12Ôλ3,µ3,ν3 ,

where the parameters λ3, µ3 and ν3 are determined from the comparison of induced linear
transformations,

λ3 = λ1 + λ2
(1 + µ1)

2

1− ν1λ2

, µ3 =
µ1 + µ2 + µ1µ2 + ν1λ2

(1 + µ1)(1 + µ2)
, ν3 = ν2 + ν1

(1 + µ2)
2

1− ν1λ2

,

and the coefficient c12 is given by

c12 = 〈0|Ôλ1,µ1,ν1Ôλ2,µ2,ν2|0〉 = [1− ν1λ2]
−1/2.

Successively applying the above observations, one may reduce any product of time-dependent
operators to a single operator of type (4.6), multiplied by a constant factor. This constant
clearly gives the correlation function we are looking for.

5 Tau-function of the Schroedinger operator

with point interactions

It was shown in Section 3 that the correlation function of certain Bogolyubov fields can be
formally expressed by the formula (3.5) through the (Weinstein-Aronszajn) determinant of
the Schroedinger operator with δ-interactions. Therefore, it is natural to assume that this
correlator has a geometric interpretation. In this section, we construct a geometric invariant of
the Schroedinger operator, simply related with the above correlation function.

Let us choose a collection a = (a1, . . . , aN) of N distinct points on the real line and suppose
for definiteness that a1 < a2 < . . . < aN . Schroedinger operators with δ-interactions at the
points a1, . . . , aN are rigorously defined as the elements of an N -parametric family of self-adjoint
extensions of the operator L̇a = − d2

dx2 with the domain given by

dom L̇a =
{
f ∈ H2(R) | f(aj) = 0, j = 1, . . . , N

}
.

A general element of this family, L̇a,V , is written as

L̇a,V = − d2

dx2
, dom L̇a,V = {f ∈ H1(R) ∩H2(R\a) | f ′(aj + 0)− f ′(aj − 0) = Vjf(aj), (5.1)

Vj ∈ R, j = 1, . . . , N}.

Self-adjointness of this operator implies the following important statement:

Proposition 5.1 If m2∈ C\R, then the Schroedinger equation

(L̇a,V + m2)ψ = 0 (5.2)

has no solutions in the domain of L̇a,V .
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Let us now study the spaces of boundary values of certain local solutions of the equation
(5.2). It will always be assumed that m2∈ C\R and Re m > 0. We isolate the points a1, . . . , aN

in the union S =
⋃N

j=1 Sj of N disjoint open intervals Sj = (xL
j , xR

j ), chosen so that aj ∈ Sj

for j = 1, . . . , N . The set S is fixed once and for all, while the coordinates a1, . . . , aN are
allowed to vary provided each aj stays in Sj. The whole family of operators L̇a,V that satisfy
this condition will be denoted by LS. It depends on 2N parameters, including the positions of
delta-interactions {aj}j=1,...,N and their strengths {Vj}j=1,...,N . Define an auxiliary map

π : dom L̇a,V → W = C2 ⊕ . . .⊕ C2

︸ ︷︷ ︸
2n times

,

ψ 7→ ψ(1) ⊕ . . .⊕ ψ(N), ψ(i) =

(
ψ

(i)
R,+

ψ
(i)
L,−

)
⊕

(
ψ

(i)
R,−

ψ
(i)
L,+

)
, i = 1, . . . , N,

where
ψ

(i)
L,± = ψ(xL

i )±m−1ψ′(xL
i ), ψ

(i)
R,± = ψ(xR

i )±m−1ψ′(xR
i ).

Consider now the space of functions from the domain of L̇a,V ∈ LS, which solve the equation
(5.2) in the exterior of S. We will denote by W ext the image of this space in W under the map π.
Note that the subspace W ext ⊂ W is actually independent of the choice of {aj} and {Vj}. Since
for any h ∈ W ext there exists a function ψ ∈ dom L̇a,V , such that h = π(ψ) and (L̇a,V +m2)ψ = 0
on R\S, the coordinates of h should satisfy the relations

h
(1)
L,− = h

(N)
R,+ = 0, (5.3)

h
(i+1)
L,− = wi h

(i)
R,−, h

(i)
R,+ = wi h

(i+1)
L,+ , wi = e−m(xL

i+1−xR
i ), i = 1, . . . , N − 1. (5.4)

One can define along the same lines the space W int
a,V of boundary values of functions from

the domain of L̇a,V , satisfying the equation (5.2) in the interior of S. It is straightforward to
check that the coordinates of any vector g ∈ W int

a,V verify

(
g

(i)
R,−

g
(i)
L,+

)
= Ni(Vi)

(
g

(i)
R,+

g
(i)
L,−

)
, Ni(Vi) =

(
αi(Vi) βi(Vi)
γi(Vi) δi(Vi)

)
, i = 1, . . . , N. (5.5)

where we have introduced the notation

αi(Vi) = − Vi/2m

1 + Vi/2m
e−2m(xR

i −ai), δi(Vi) = − Vi/2m

1 + Vi/2m
e−2m(ai−xL

i ), (5.6)

βi(Vi) = γi(Vi) =
e−m(xR

i −xL
i )

1 + Vi/2m
. (5.7)

Proposition 5.2 The subspaces W ext and W int
a,V are transverse in W .

¥ The subspaces W ext and W int
a,V have zero intersection. In the opposite case one would be able

to correspond to any nontrivial vector w ∈ W ext ∩W int
a,V a global solution of the equation (5.2).

However, the existence of such solutions is forbidden by the Proposition 5.1. Observing that
dim W ext = dim W int

a,V = 2N , one may now conclude that W ext ∪W int
a,V = W . ¤
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We can thus associate to any operator L̇a,V ∈ LS a point W int
a,V in the grassmannian

Gr(2N, 4N) of 2N -dimensional subspaces of W ' C 4N . Already at the present stage one could
define the tau function as an invariant of four points of this grassmannian. Such construction,
which can be thought of as a generalized cross-ratio, has been proposed in [7]:

Definition 5.3 Let W be a 2k-dimensional complex vector space, and let Gr(k, 2k) denote the
grassmannian of its k-dimensional subspaces. Given four points W1,W2,W3,W4 ∈ Gr(k, 2k) in
general position, the tau function τ(W1,W2,W3,W4) is defined as

τ(W1,W2,W3,W4) =
det

(
W1

W3−→ W2

)

det
(
W1

W4−→ W2

) ,

where W1
Wj−→ W2 denotes the projection of W1 on W2 along Wj (j = 3, 4).

We will give a more specialized definition of the tau function. First, remark that our

grassmannian has a distinguished point W int
F

def
= W int

a,0 , corresponding to Friedrichs extension

of the operator L̇a, i. e. to ordinary second derivative operator on H2(R). This point can be
used to construct the det∗-bundle over Gr(2N, 4N). Its fiber at the point U ∈ Gr(2N, 4N) is
a line λ∗(U)⊗ λ(W int

F ), where λ(U) denotes maximal exterior power of the space U .
Another distinguished point of the grassmannian is given by the subspace W ext. The split-

ting W = W ext⊕W int
F allows to introduce the projection U

W ext−→ W int
F for any U ∈ Gr(2N, 4N).

This projection induces a linear map from λ(U) to λ(W int
F ), and thus defines a canonical section

σ of the det∗-bundle:

σ : U 7→ det
(
U

W ext−→ W int
F

)
∈ λ∗(U)⊗ λ(W int

F ).

Given another map F : U → W int
F , one would be able to construct in analogous manner a

trivializing section δ : U 7→ det F , and to define the tau function

τ(U) =
σ(U)

δ(U)
=

det
(
U

W ext−→ W int
F

)

det F
. (5.8)

It is easy to see that this definition is independent of the choice of bases of U and W int
F .

Therefore, it indeed gives a function on the grassmannian and, consequently, on the family LS

of Schroedinger operators.
In order to define the map F , let us introduce the notion of auxiliary projections PSj

(j = 1, . . . , N). Suppose there are no delta-interactions at all and consider a single open
interval S ′ ∈ R. The space W (S ′) = C2⊕C2 is decomposed as above into the direct sum of two-
dimensional subspaces W int(S ′) and W ext(S ′), consisting of boundary values of H2-solutions
of Schroedinger equation without point interactions on S ′ and R\S ′, correspondingly. We will
denote by PS′ the projection of W (S ′) on W int(S ′) along W ext(S ′). The map F : U → W int

F is

now defined as the restriction to U of a direct sum of such projections: F =
(
PS1⊕ . . .⊕PSN

)∣∣∣
U
.

It is straightforward to check that for any vector ψ ∈ U we have

(Fψ)(j) = PSj
ψ(j) =

(
ψ

(j)
R,+

ψ
(j)
L,−

)
⊕Nj(0)

(
ψ

(j)
R,+

ψ
(j)
L,−

)
, j = 1, . . . , N. (5.9)
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Let us now obtain the explicit form of the map F and of the canonical projection P : U
W ext−→

W int
F , putting U = W int

a,V . First one should make some choice of coordinate bases. Remark that
abitrary vectors f ∈ W int

a,V and g ∈ W int
F can be written (as elements of W ) in the following

way:
f (j) = f̃j ⊕Nj(Vj)f̃j , g(j) = g̃j ⊕Nj(0)g̃j , j = 1, . . . , N, (5.10)

where

f̃j =

(
f

(j)
R,+

f
(j)
L,−

)
, g̃j =

(
g

(j)
R,+

g
(j)
L,−

)
,

and the matrices {Nj(Vj)}j=1,...,N are defined by the formulas (5.5)–(5.7). Hence we can repre-
sent f and g by the columns

f =
(
f̃ T

1 . . . f̃ T
N

)T
, g =

(
g̃ T
1 . . . g̃ T

N

)T
.

It follows from (5.9)–(5.10) that the map F is given in these coordinates by the identity matrix.
In order to find the representation of P in such coordinates, one should be able to decompose

any vector f ∈ W int
a,V as f = g + h, with g ∈ W int

F and h ∈ W ext. Let us obtain the relation
between f and g. Since the coordinates of h = f − g should satisfy the conditions (5.3)–(5.4),
one has

g
(1)
L,− = f

(1)
L,−, g

(N)
R,+ = f

(N)
R,+,

g
(j+1)
L,− −wj g

(j)
R,− = f

(j+1)
L,− −wj f

(j)
R,−, g

(j)
R,+−wj g

(j+1)
L,+ = f

(j)
R,+−wj f

(j+1)
L,+ , j = 1, . . . , N−1.

Using the representations (5.10), we may eliminate from these relations the extra variables f
(j)
R,−,

f
(j)
L,+, g

(j)
R,−, and g

(j)
L,+ (j = 1, . . . , N). Obtained system of linear equations has the form

(1 + Ma,V ) f = (1 + M0) g, (5.11)

where 2N × 2N matrices Ma,V and M0 are defined as

Ma,V =




0 Q1(V2) 0 . 0
T1(V1) 0 Q2(V3) . 0

0 T2(V2) 0 . .
. . . . QN−1(VN)
0 0 . TN−1(VN−1) 0




,

M0 =




0 Q1(0) 0 . 0
T1(0) 0 Q2(0) . 0

0 T2(0) 0 . .
. . . . QN−1(0)
0 0 . TN−1(0) 0




.

Auxiliary 2× 2 matrices Qj(Vj+1) and Tj(Vj), entering these formulas, are given by

Qj(Vj+1) =

( −wj γj+1(Vj+1) −wj δj+1(Vj+1)
0 0

)
, Tj(Vj) =

(
0 0

−wj αj(Vj) −wj βj(Vj)

)
.
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The system (5.11) implies that the tau function (5.8), evaluated at the point W int
a,V ∈

Gr(2N, 4N), is equal to the ratio of determinants

τ(W int
a,V ) =

det (1 + Ma,V )

det (1 + M0)
. (5.12)

However, this expression may be simplified. Since Tj(0)Qj(0) = 0, the matrix 1 + M0 can be
represented as a product of a lower triangular and an upper triangular matrix with identities
on their diagonals. Therefore, the determinant in the denominator of (5.12) is equal to 1.
Moreover, one can show2 that our tau-function does not depend on the choice of localization,

i. e. on the coordinates
{

xL,R
j

}
j=1,...,N

. In particular, we may put xL
j = xR

j = aj for j = 1, . . . , N

and obtain the following representation:

τ(W int
a,V ) = det




1 Q̃1 0 . 0

T̃1 1 Q̃2 . 0

0 T̃2 1 . .

. . . . Q̃N−1

0 0 . T̃N−1 1




, (5.13)

where

Q̃j =
e−m(aj+1−aj)

1 +
Vj+1

2m

(
−1

Vj+1

2m

0 0

)
, T̃j =

e−m(aj+1−aj)

1 +
Vj

2m

(
0 0
Vj

2m
−1

)
, j = 1, . . . , N − 1.

Finally, it is worth mentioning that the tau function τ(W int
a,V ) and the correlation functions

of Bogolyubov fields, associated to δ-interactions, are related by

τ(W int
a,V ) =

[〈OV1(a1) . . .OVN
(aN)〉

〈OV1〉 . . . 〈OVN
〉

]−2

. (5.14)

This formula may be checked explicitly for small values of N by comparison of (5.13) and (3.6).

Example. For the two-point tau function one has

τ(W int
a,V ) = det

(
1 Q̃1

T̃1 1

)
= det

(
1− T̃1 Q̃1

)
= 1− V1/2m

1 + V1/2m

V2/2m

1 + V2/2m
e−2m(a2−a1) .

Comparing this expression with the formulas (4.8) and (4.21), we may check the validity of
(5.14) for N = 2.

6 Discussion

It is well-known that in order to describe delta-interactions in two and three dimensions, one
needs to renormalize the strengths of point sources. This obstacle complicates the construction

2The proof is based on Krein’s formula for the resolvents of self-adjoint extensions of L̇a and lies beyond the
scope of this paper.
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of fields, associated to delta-interactions in higher dimensions. In particular, a naive generaliza-
tion, ÔV (t, ~x) = exp

{−1
2
V ϕ̂2(t, ~x)

}
, does not work, since even the vacuum expectation value

of such an operator is infinite. It would be interesting to understand how the renormalization
can be described (if it indeed can) in terms of Bogolyubov fields.

It would also be interesting to consider instead of the Schroedinger operator the hamiltonian
of Dirac fermions in 2 + 1 dimensions in the background of magnetic vortices. Its resolvent is
the principal ingredient in the computation of induced fermionic vacuum quantum numbers. It
also contains the information about the scattering of fermions, their bound states, etc. It seems
that this resolvent may be expressed along the lines of the present paper (at least, for some
values of self-adjoint extension parameters) through the ratio of certain correlation functions
in the two-dimensional euclidean quantum field theory, described by the Dirac action with a
parity-breaking term. Thus one needs to find form factors and correlation functions of the
Bogolyubov fields, associated to magnetic vortices. The absence of parity-breaking term means
that the resolvent is calculated at zero energy. Corresponding Bogolyubov fields reduce in this
case to the exponential fields of the SGff -theory.
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