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It is shown that the long-wavelength, zero-frequency limits of N = 2 supersymmetric Yang-Mills in
3 +1-dimensions and the quantum Hall effect in 2+ 1 dimensions have many features in common.
The phases of both these systems have a hierarchical structure which can be organised and under-
stood in terms of a specific sub-group of the modular group acting on a complex parameter. The
complex coupling has positive imaginary part which is the Yang-Mills coupling in the former case
and the Ohmic conductivity in the latter. In both case the real part of the complex parameter is

associated with a topological term in the effective action for the respective theory. The theoretical
scaling flow of SUSY Yang-Mills that follows from modular symmetry is given by a modular form
and shows a remarkable similarity to the experimental scaling flow of the quantum Hall effect
which, though not necessarily associated with modular forms, is nevertheless strongly constrained
by modular symmetry.
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1. Duality in SUSY Yang-Mills

Pure SU(2) Yang-Mills in 4-dimensional
Minkowski space with global N = 2 super-
symmetry has only 2 parameters in the ac-
tion: the gauge coupling g and the topolog-
ical susceptibility θ, all other couplings, in-
cluding the Higgs φ4 coupling and Yukawa
couplings, are determined by g and super-
symmetry. These parameters can be com-
bined into a single complex parameter

τ =
θ

2π
+ i

4π

g2
. (1)

Seiberg and Witten showed1 that the low en-
ergy physics is symmetric under the action
of a sub-group Γ(2) of the modular group
Γ(1) ∼= Sl(2, (Z)/Z2 on τ . If γ ∈ Γ(2) then

γ =
(

a b

c d

)
sends τ → aτ + b

cτ + d
, (2)

where a, b, c and d are integers, det γ = 1 and
b and c are even. The group Γ(2) is generated

by

T 2 : τ → τ + 2 and F2 : τ → τ

1 − 2τ
, (3)

where F2 = S−1T 2S.
Classically the Higgs potential is min-

imised by any constant φ in the Lie algebra of
SU(2) such that [φ†, φ] = 0, and since φ can
always be rotated by a globally well-defined
gauge transformation it can always be taken
to be φ = 1

2aσ3 with σ3 the usual Pauli ma-
trix and a a complex constant with dimen-
sions of mass. The classical vacuum is thus
highly degenerate and can be parameterised
by a, a non-zero a breaks SU(2) gauge sym-
metry down to U(1) and W± bosons (and
their superpartners) acquire a mass propor-
tional to a, leaving one U(1) gauge boson
(and its superpartners) massless. Classically,
at the special point a = 0 the gauge symme-
try is restored to the full SU(2) symmetry
of the original theory. Seiberg and Witten
then argue that supersymmetry protects this
degeneracy so that it is not lifted by quan-
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tum corrections and is still there in the full
quantum theory. At low energies, much less
than the mass a, the only relevant degrees of
freedom in the theory are the massless U(1)
gauge boson and its superpartners (except
for some special values of a).

A better, gauge invariant, parameter-
isation of the quantum vacua is given by
u = tr < φ2 >. For weak coupling (large
a) u ≈ 1

2a2, but < φ2 > �=< φ >< φ > for
strong coupling (small a). Seiberg and Wit-
ten argued1 that in the quantum theory the
strong coupling regime g2 ≈ 0 is associated
not with a = 0 but instead with two points
in the complex u-plane, u = ±Λ2 where Λ is,
by definition, the QCD mass scale at which
the gauge coupling diverges. Furthermore
they found an explicit expression for the full
low energy effective action and argued that
new massless modes appear at the singular
points u = ±Λ2, in addition to the photon
and its superpartners. These new massless
modes are dyons with the magnetic charge
associated with non-perturbative aspects of
the classical theory (solitons). Since g → ∞
when u = ±Λ2, τ is real at these points.

Seiberg and Witten’s Γ(2) symmetry
commutes with the scaling flow as u is var-
ied. Taking the logarithmic derivative of τ(u)
with respect to u, and imposing ad− bc = 1,
we see that

u
dγ(τ)
du

=
1

(cτ + d)2
u

dτ

du
. (4)

Meromorphic functions τ(u) satisfying (4)
are well studied in the mathematical litera-
ture and are called modular forms of weight
−2. For Seiberg and Witten’s expression for
τ(u) β-functions were analysed in2 and it is
shown in 3 that the unique possibility, up to a
constant, that is finite at weak coupling and
at both singular points is

−Λ2

u

(
1 − u2

Λ4

)
dτ

du
=

2
πi

1(
ϑ4

3(τ) + ϑ4
4(τ)

) .

where ϑ3 and ϑ4 are Jacobi ϑ-functions

ϑ3(τ) =
∞∑

n=−∞
eiπn2τ , ϑ4(τ) =

∞∑
n=−∞

(−1)neiπn2τ .

At weak coupling (large u) u is propor-
tional to the square of the gauge boson mass
and this flow can be interpreted as giving the
Callan-Symanzik β-function in the asymp-
totic regime. The flow generated by (5) is
shown in figure 1, there are fixed points on
the real axis at τ = q/p where the massless
dyons have electric quantum number q and
magnetic quantum number −p. Odd p cor-
responds to attractive fixed points in the IR
direction and even p to attractive fixed points
in the UV direction. There are semi-circular
trajectories linking some of the IR attractive
fixed points with odd monopole charge.

Note that, since the scaling function (5)
is symmetric under u → −u, which is equiv-
alent to τ → τ + 1, the full symmetry of the
scaling flow is slightly larger than Γ(2), it is
generated by F2 and T and corresponds to
matrices γ such that c is even but b can be
either even or odd. This group is often de-
noted by Γ0(2).

When matter in the fundamental repre-
sentation is included the picture changes in
detail, but is similar in structure.4,5

2. The Quantum Hall Effect

Modular symmetry manifests itself in the
quantum Hall effect (QHE) in a manner re-
markably similar to N = 2 supersymmetric
Yang-Mills. The conductivity tensor for an
isotropic 2-dimensional medium can be de-
scribed by a single complex conductivity

σ := σH + iσL, (5)

where σL is the longitudinal, or Ohmic, con-
ductivity and σH is the Hall conductivity
(in units with e2/h = 1). Note that Ohmic
conductivities must be positive for stability
reasons, so σ is restricted to the upper half-
complex plane.
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The response functions (i.e. the conduc-
tivities) in a low temperature 2-dimensional
system can be obtained from a 2+1-
dimensional field theory. Ohmic conductiv-
ity can be incorporated by working in Fourier
space (ω,p) and introducing a frequency de-
pendent electric permittivity. In a conduc-
tor the low frequency electric permittivity di-
verges, in the long wavelength limit p → 0,
as

ε(ω) = −i
σL

ω
, (6)

so, working in Fourier space, the effective dy-
namics of the electromagnetic field are gov-
erned by

L̃eff [A] = − ε

4
F 2 − σH

4
εµνρAµFνρ + AµJµ

≈ iσL

4ω
F 2 − σH

4
εµνρAµFνρ + AµJµ.

Note that the effective action is not real, an
indication of the dissipative nature of Ohmic
resistance, and non-local in time, again a fea-
ture of a conducting medium. A version of
the Lagrangian (7) was used in the analysis
of6 in which the following transformations

T : σ → σ + 1 and F2 : σ → σ

1 − 2σ
(7)

were derived, which generate Γ0(2) and map
between different quantum Hall phases of a
spin polarised sample. The T transforma-
tion is interpreted as being due to shifting
Landau levels by one and the F2 transfor-
mation, known as flux-attachment, was an-
ticipated in7 for σL = 0 as a mapping be-
tween ground state wave-functions. It is re-
lated to the composite fermion picture of the
QHE 8. That Γ0(2) should be a symmetry of
the complex quantum Hall conductivity ef-
fect was originally suggested, without a mi-
croscopic justification, in 9.

Of course Γ0(2) is not a symmetry of
all of the physics, after all the conductivi-
ties differ on different plateaux, nevertheless
it is a symmetry of some physical properties,
in particular it should be a symmetry of the
scaling flow11,12. Physically the scaling flow

of the QHE can be viewed as arising from
changing the electron coherence length l, e.g.
by varying the temperature T with l(T ) a
monotonic function of T .13 Define a scaling
function by

Σ(σ, σ̄) := l
dσ

dl
. (8)

Then, for any γ ∈ Γ0(2), γ(σ) = aσ+b
cσ+d with

ad − bc = 1, so

Σ
(
γ(σ), γ(σ̄)

)
=

1
(cσ + d)2

Σ(σ, σ̄). (9)

In general one expects σ to depend on various
parameters, such as the temperature T , the
external field B, the charge carrier density n

and the impurity density ni. If n and ni are
fixed then σ(B, T ) becomes a function of B

and T only.
If we further assume that the only fixed

points of the scaling flow are the fixed points
of Γ0(2) then, with a few extra reasonable
assumptions, the topology of the flow dia-
gram is completely determined and it is ex-
actly the same as the flow diagram in figure
1 for N = 2 SUSY.10 IR fixed points have
τ = σH = q/p corresponding to fermionic
charge carriers which are composite objects
consisting of bosons with p units of statisti-
cal flux attached, with p odd. Experimental
data are shown in figure 2 and the similar-
ity with the Γ0(2) in figure 1 is remarkable
(the conductivities are doubled in the figure
because of spin degeneracy, the spins in the
sample are degenerate).

A second striking consequence of Γ0(2)
symmetry of the scaling flow is a selection
rule for quantum Hall transitions 11

q1p2 − q2p1 = 1. (10)

This selection rule is well borne out by the
experimental data. In spin-split samples
any two adjacent well-formed plateaux, with
no unresolved sub-structure between them,
obey this rule.

The group Γ0(2) is the symmetry group
relevant to 2-dimensional samples in strong
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magnetic fields when the charge carriers are
fermions. When the charge carriers are
bosons, as in 2-d superconductors, a differ-
ent group emerges, but a similar hierarchy
of quantum states is predicted that differs in
essential details14 that would provide a clear
experimental signal if high mobility samples
that can sustain a large magnetic field are
ever manufactured.
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