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ABSTRACTWe sear
h for all Poisson bra
kets for the BTZ bla
k hole whi
h are 
onsistent with thegeometry of the 
ommutative solution and are of lowest order in the embedding 
oordinates.For arbitrary values for the angular momentum we obtain two two-parameter families of 
onta
tstru
tures. We obtain the symple
ti
 leaves, whi
h 
hara
terize the irredu
ible representationsof the non
ommutative theory. The requirement that they be invariant under the a
tionof the isometry group restri
ts to R � S1 symple
ti
 leaves, where R is asso
iated with theS
hwarzs
hild time. Quantization may then lead to a dis
rete spe
trum for the time operator.
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Most approa
hes to non
ommutative gravity have involved deforming the 
ommutativeEinstein equations.[1℄ -[17℄ These approa
hes range from simply repla
ing point-wise produ
tsby Moyal star produ
ts in the Einstein-Hilbert a
tion to the approa
h of As
hieri, et. al.[13℄whi
h preserves the di�eomorphism invarian
e of general relativity. Given the ambiguities ofthe di�erent s
hemes, it may be useful to look at other strategies towards non
ommutativegravity. The one we have in mind here starts with solutions to the 
ommutative Einsteinequations, with the goal of �nding their non
ommutative analogues. As a �rst step, one 
antry writing down Poisson bra
kets whi
h are 
onsistent with the geometry of some 
lassi
alsolution. The non
ommutative 
ounterpart of the solution is then obtained by `quantization'.(Here, of 
ourse, the deformation parameter is the non
ommutativity parameter � and not ~.)The Poisson bra
kets and resulting non
ommutative algebra may not be unique. In this regard,it may be desirable to impose the restri
tion that the isometry of the 
lassi
al solution survivesquantization and is implementable in any irredu
ible representation of the non
ommutativealgebra. An example of this possibility is studied here.The example is the three-dimensional (BTZ) bla
k hole solution, whi
h is 
hara
terized byits mass M and angular momentum J , and is asymptoti
ally AdS3.[18℄,[19℄ The BTZ bla
khole geometry is known to be the quotient spa
e of the universal 
overing spa
e of AdS3 bysome elements of its isometry group SO(2; 2). The quotienting breaks the isometry group toa two-dimensional subgroup GBTZ . Poisson stru
tures (or more pre
isely, 
onta
t stru
tures)
an be obtained for the BTZ bla
k hole whi
h respe
t this quotienting and are invariantunder GBTZ . (Some 
onta
t stru
tures have already been previously suggested in [20℄.) Herewe sear
h for all su
h Poisson bra
ket whi
h are of lowest order with respe
t to the four-dimensional embedding 
oordinates for AdS3. For generi
 values of the angular momentum,the allowable Poisson bra
kets form two two-parameter families, and are quadrati
 with respe
tto four-dimensional embedding 
oordinates. Depending on the values of the parameters, thesymple
ti
 leaves (surfa
es on whi
h a symple
ti
 two-form 
an be de�ned) are topologi
allyeither a) R2 , b) R � R+ or 
) R � S1. The symple
ti
 leaves 
hara
terize the irredu
iblerepresentations of the 
orresponding non
ommutative algebra. GBTZ a
ts nontrivially in the
ase of a) and b), in general indu
ing a map between di�erent symple
ti
 leaves. It thustransforms between di�erent irredu
ible representations of the non
ommutative theory, andGBTZ 
annot be implemented as inner transformations. On the other hand, GBTZ leaves 
)invariant and hen
e also the 
orresponding irredu
ible representations. So only 
ase 
) remainsif we impose the restri
tion that the isometry of the 
lassi
al solution survives quantization.Moreover, quantization of the 
ommutative algebra on R � S1, where R 
orresponds to thetime, is known to lead to a dis
rete spe
trum for the time operator. We spe
ulate that a similar
on
lusion 
an be drawn for 
).� For us, not all 
ylinders need to have a spa
e-time signature,and the 
oordinate asso
iated with R may or may not be a time-like 
oordinate. Quantumtheories on the non
ommutative spa
e-time 
ylinder have been previously studied.[21℄,[22℄Other novel results were shown in addition to the dis
rete time spe
trum, whi
h may also�The possibility of a dis
rete spe
trum for the time in this setting was �rst suggested to us by A.P.Bala
handran. 2



apply here. Among them is the result that time-independent Hamiltonians are 
onserved onlyup to modulo 2�=�.In what follows, after brie
y reviewing the geometry of the 
ommutative BTZ solution andthe quotient spa
e 
onstru
tion, we write down the two-parameter families of Poisson bra
ketsand map them to the S
hwarzs
hild-like 
oordinates and obtain the symple
ti
 leaves. There isan analogous quotient spa
e 
onstru
tion in the non
ommutative theory whi
h will be dis
ussedin a later arti
le.[23℄In terms of S
hwarzs
hild-like 
oordinates (r; t; �) the invariant measure for the BTZ bla
khole is expressed as[18℄,[19℄ds2 = �M � r2`2 � J24r2�dt2 +��M + r2`2 + J24r2��1dr2 + r2�d�� J2r2 dt�2 ; (1)0 � r <1 ; �1 < t <1 ; 0 � � < 2� ;where M and J are the mass and spin, respe
tively, and � = �1=`2 is the 
osmologi
al 
on-stant. For 0 < jJ j < M`, there are two horizons, the outer and inner horizons, 
orrespondingrespe
tively to r = r+ and r = r�, wherer2� = M`22 �1� �1�� JM`�2� 12� (2)The two horizons 
oin
ide in the extremal 
ase jJ j = M` > 0, while the inner one disappearsfor J = 0, M > 0. The metri
 is diagonal in the 
oordinates (�+; ��; r), where�� = r�̀ t� r�� ; (3)ds2 = �(r2 � r2+)d�2+ + (r2 � r2�)d�2�r2+ � r2� + `2r2dr2(r2 � r2+)(r2 � r2�) ; (4)whi
h shows that �+ is the time-like 
oordinate in the region I) r � r+, r is the time-like
oordinate in the region II) r� � r � r+ and �� is the time-like 
oordinate in the region III)and 0 � r � r�.It was shown that the manifold of the BTZ bla
k hole solution is the quotient spa
e ofthe universal 
overing spa
e of AdS3 by some elements of the group of isometries of AdS3.The 
onne
ted 
omponent of the latter is SO(2; 2). Say AdS3 is spanned by 
oordinates(t1; t2; x1; x2) parameterizing R4 , satisfying�t21 � t22 + x21 + x22 = �`2 (5)Alternatively, one 
an introdu
e 2� 2 real unimodular matri
esg = 1̀ � t1 + x1 t2 + x2�t2 + x2 t1 � x1� ; detg = 1 ; (6)belonging to the de�ning representation of SL(2; R). The isometries 
orrespond to the left andright a
tions on g, g ! hLghR ; hL; hR 2 SL(2; R) (7)3



Sin
e (hL; hR) and (�hL;�hR) give the same a
tion, the 
onne
ted 
omponent of the isometrygroup for AdS3 is SL(2; R)� SL(2; R)=Z2 � SO(2; 2).The BTZ bla
k-hole is obtained by dis
rete identi�
ation of points on the universal 
overingspa
e of AdS3. This insures periodi
ity in �, � � �+ 2�. The 
ondition isg � ~hLg~hR ; (8)where (~hL; ~hR) are 
ertain elements of SO(2; 2). ~hL and ~hR 
an be expressed as diagonalSL(2; R) matri
es~hL = � e�(r+�r�)=` e��(r+�r�)=`� ; ~hR = � e�(r++r�)=` e��(r++r�)=`� (9)For 0 < jJ j < M`, the universal 
overing spa
e of AdS3 is 
overed by three types of 
oordinatepat
hes whi
h are bounded by the two horizons at r = r+ and r = r�. For all three 
oordinatepat
hes, g 
an be de
omposed a

ording tog = � e 12` (�+���) e� 12` (�+���)� g(0)(r)� e 12` (�++��) e� 12` (�++��)� ; (10)where g(0)(r) is an SO(2) matrix whi
h only depends on r and the 
oordinate pat
h. Theperiodi
ity 
ondition for � easily follows from (8). The identi�
ation (8) breaks the SO(2; 2)group of isometries to a two-dimensional subgroup GBTZ , 
onsisting of only the diagonal ma-tri
es in fhLg and fhRg. GBTZ is the isometry group of the BTZ bla
k hole, and from (10) isasso
iated with translations in �+ and ��, or equivalently t and �, on r =
onstant surfa
es.For generi
 spin, 0 < jJ j < M` (and M > 0), we shall sear
h for Poisson bra
kets for thematrix elements of g whi
h are polynomial of lowest order. They should be 
onsistent withthe quotienting (8), as well as the unimodilarity 
ondition and, of 
ourse, the Ja
obi identity.For 
onvenien
e we write the SL(2; R) matrix asg = �� �
 Æ � ; �Æ � �
 = 1 ; (11)Under the quotienting (8): � � e 2�r+=` �� � e�2�r�=` �
 � e 2�r�=` 
Æ � e�2�r+=` Æ (12)All quadrati
 
ombinations of matrix elements s
ale di�erently, ex
ept for �Æ and �
, whi
hare invariant under (12). Lowest order polynomial expressions for the Poisson bra
kets of�; �; 
 and Æ whi
h are preserved under (12) are quadrati
 and have the formf�; �g = 
1�� f�; 
g = 
2�
 f�; Æg = f1(�Æ; �
)f�; Æg = 
3�Æ f
; Æg = 
4
Æ f�; 
g = f2(�Æ; �
) ; (13)4



where 
1�4 are 
onstants and f1;2 are fun
tions.y They are 
onstrained by
1 + 
2 = 
3 + 
4f1(�Æ; �
) = (
1 + 
2)�
f2(�Æ; �
) = (
2 � 
4)�Æ ; (14)after demanding that detg is a Casimir of the algebra. From (13) there are three independent
onstants 
1�4. Further restri
tions on the 
onstants 
ome from the Ja
obi identity, whi
hleads to the following two possibilities:A: 
2 = 
4 and B: 
2 = �
1Both 
ases de�ne two-parameter families of Poisson bra
kets. Say we 
all 
2 and 
3 the twoindependent parameters. The two 
ases are 
onne
ted by an SO(2; 2) transformation. Case Agoes to 
ase B wheng = �� �
 Æ �! g0 = �� ��Æ �
 � = gh(0)R ; h(0)R = � �11 � ; (15)along with 
3 ! 
2 
2 ! 
3 (16)In terms of the embedding 
oordinates, this 
orresponds to (t1; t2; x1; x2)! (t2;�t1; x2;�x1).There are three types of 
oordinate pat
hes in the generi
 
ase ofM > 0 and 0 < jJ j < M`,and their boundaries are the two horizons. Denote them again by: I) r � r+, II) r� � r � r+and III) 0 � r � r�. The 
orresponding maps to SL(2; R) are given by (10), withI) r � r+, g(0)(r) = g(0)I (r) = 1qr2+ � r2�  qr2 � r2� qr2 � r2+qr2 � r2+ qr2 � r2�! (17)II) r� � r � r+, g(0)(r) = g(0)II (r) = 1qr2+ � r2�  qr2 � r2� �qr2+ � r2qr2+ � r2 qr2 � r2� ! (18)III) 0 � r � r�, g(0)(r) = g(0)III(r) = 1qr2+ � r2�  qr2� � r2 �qr2+ � r2qr2+ � r2 �qr2� � r2! (19)yMore generally, if we drop the assumption that the Poisson bra
kets are polynomial of lowest order we 
anrepla
e the 
onstants 
i by fun
tions of �Æ and �
. So for example, f�; �g = p1(�Æ; �
)��, where p1 is anarbitrary fun
tion. These bra
kets, in general, will have more 
ompli
ated transformation properties under thea
tion of SO(2; 2). 5



Using the maps (17-19), we 
an write the Poisson bra
kets for the various 
ases in terms ofthe S
hwarzs
hild-like 
oordinates (r; t; �). The results are the same in all three 
oordinatepat
hes. For the two-parameter families A and B one gets:A. f�; tg = `32 
3 � 
2r2+ � r2�fr; �g = �`r+(
3 + 
2)2r r2 � r2+r2+ � r2�fr; tg = �`2r�(
3 + 
2)2r r2 � r2+r2+ � r2� ; (20)B. f�; tg = `32 
3 � 
2r2+ � r2�fr; �g = �`r�(
2 + 
3)2r r2 � r2�r2+ � r2�fr; tg = �`2r+(
2 + 
3)2r r2 � r2�r2+ � r2� (21)These Poisson bra
kets are invariant under the a
tion of the isometry group GBTZ of the BTZbla
k hole. The �rst bra
ket agrees in both 
ases. The latter two bra
kets vanish at the outerhorizon r = r+ for 
ase A, and the inner horizon r = r� for 
ase B. A 
entral element of thePoisson algebra 
an be 
onstru
ted out of the S
hwarzs
hild 
oordinates for both 
ases. It isgiven by �� = (r2 � r2�) exp��2���` � ; 
2 6= 
3 ; (22)where the upper and lower sign 
orrespond to 
ase A and B, respe
tively,� = 
3 + 
2
3 � 
2 ; (23)and �� were de�ned in (3). The �� =
onstant surfa
es de�ne symple
ti
 leaves, whi
h aretopologi
ally R2 for generi
 values of the parameters (more spe
i�
ally, 
2 6= �
3). We 
an
oordinatize them by �+ and ��. One then has a trivial Poisson algebra in the 
oordinates(�+; ��; ��): f�+; ��g = `22 (
3 � 
2) f��; �+g = f��; ��g = 0 (24)The a
tion of the GBTZ transforms one symple
ti
 leaf to another, ex
ept for the 
ase 
2 = �
3whi
h we dis
uss later.The above 
an be readily extended to the 
ase of zero angular momentum by simply settingr� = 0. The region III is then absent in this 
ase.z On the other hand, the Poisson bra
kets(20) and (21) are unde�ned in the extremum 
ase J = M`, or r+ = r�, for �nite 
oeÆ
ientszZero angular momentum also allows for Poisson bra
kets whi
h are linear with respe
t to the four dimensionalembedding 
oordinates and 
onsistent with (8). This will be dis
ussed in a later arti
le.[23℄6




i.x The bra
kets, however, may be rendered �nite by �rst 
onsidering J < M` with the
oeÆ
ients 
i proportional to r2+ � r2� and then taking the limit J !M`.In passing to the non
ommutative theory, the operator asso
iated with �� is 
entral in thequantum algebra and proportional to the identity in any irredu
ible representation. Irredu
iblerepresentations then sele
t �� =
onstant surfa
es and the isometry group GBTZ thus mapsbetween di�erent irredu
ible representations, and thus 
annot be implemented as inner trans-formations. In any irredu
ible representation the algebra is generated by the non
ommutativeanalogues of �+ and ��. The resulting non
ommutative theory di�ers from the Gr�onewald-Moyal plane sin
e �+ and �� are not 
artesian 
oordinates. After re-writing the 
ommutativemetri
 (4) in terms of 
oordinates (�+; ��; ��) and restri
ting to the �� =
onstant surfa
eone gets by ds2j�� = �(r2 � r2+)d�2+ + (r2 � r2�)d�2�r2+ � r2� + r2 � r2�r2 � r2��2d�2� (25)As a result, these metri
 
omponents will not in general be �xed by the irredu
ible represen-tation. In attempting to write down a non
ommutative �eld theory in this 
ase, one 
annotexpe
t to treat the metri
 as a ba
kground. Neither is the signature of the metri
 �xed by theirredu
ible representation, as it 
an di�er in di�erent regions on the surfa
e, whi
h is evidentfrom the determinant of the 
ommutative metri
 g for �xed ��det gj�� = �(r2 � r2�)� r2 � r2�r2+ � r2� � �2� (26)The surfa
e has a Minkowski signature for r suÆ
iently large, and spa
e-time non
ommuta-tivity results in the non
ommutative theory. On the other hand, there may be regions where(26) is positive whi
h is then asso
iated with spa
e-spa
e non
ommutativity.We next dis
uss the two ex
eptional 
ases: 
2 = 
3 and 
2 = �
3.The above results 
annot be applied when 
2 = 
3 sin
e �, and hen
e ��, are ill-de�ned.Instead, �� is 
entral in the Poisson algebra in this 
ase, where the upper and lower sign again
orrespond to 
ase A and B, respe
tively. The �� =
onstant surfa
es de�ne the symple
ti
leaves, whi
h are topologi
ally R � R+ , parametrized by r and�� = � r��r2 � r2� (27)In terms of these variables, the Poisson bra
kets arefr; ��g = `
2 f��; rg = f��; ��g = 0 (28)xIn the extremal 
ase, hL redu
es to the identity, and at �rst glan
e it appears that more general Poissonbra
kets than (13) and (14), and 
onsequently (20) and (21), are admissible. This is be
ause the produ
ts ��,�Æ, 
Æ and �
 are una�e
ted by the quotienting. Thus the quotienting 
onditions allows one to generalize (13)su
h that f�; �g, f�; Æg, f
; Æg and f�; 
g depend on those four produ
ts. But the system redu
es to (13) and(14) after demanding that detg is a Casimir of the algebra.
7



Irredu
ible representations now sele
t the �� =
onstant symple
ti
 leaves. As before, theisometry group GBTZ is a map between di�erent symple
ti
 leaves and hen
e di�erent irre-du
ible representations in the quantum theory. The �� =
onstant surfa
es are 
hara
terizedby the metri
ds2j�� = � r2 � r2�r2+ � r2��1r (r2 � r2�)d�� + 1r2 (r2 + r2�)��dr�2 + `2r2dr2(r2 � r2+)(r2 � r2�) ; (29)whose determinant is simply det gj�� = �`2 r2 � r2�r2+ � r2� (30)For 
ase A, the surfa
e has a Eu
lidean signature for r > r+ and Minkowski signature forr < r+. For 
ase B, the surfa
e has a Minkowski signature for r > r� and Eu
lidean signaturefor r < r+.The 
ase of 
2 = �
3 is the interse
tion of 
ase A and B. Here � vanishes and from (22), theradial 
oordinate is in the 
enter of, the algebra. r =
onstant de�ne R �S1 symple
ti
 leaves,and they are invariant under the a
tion of GBTZ . The 
oordinates � and t parametrizing anysu
h surfa
e are 
anoni
ally 
onjugate:f�; tg = 
3`3r2+ � r2� f��; rg = ft; rg = 0 (31)The Poisson bra
kets 
an be interpreted in terms of a twist[24℄ in the de
omposition of ggiven in (10), where the twist is with respe
t to the �rst and third matri
es. In passingto the non
ommutative theory, we need to de�ne a deformation of the 
ommutative algebragenerated by t; ei� and r. Call the 
orresponding quantum operators t̂; ei�̂ and r̂, respe
tively.Their 
ommutation relations are{[ei�̂; t̂℄ = �ei�̂ [r̂; t̂℄ = [r̂; ei�̂℄ = 0 ; (32)where from (31) the 
onstant � is linearly related to `3=(r2+ � r2�). There are now two 
entralelements in the algebra: i) r̂ and ii) e�2�it̂=�. From i), irredu
ible representations sele
t theR�S1 symple
ti
 leaves. Unlike in all the previous 
ases, the a
tion of GBTZ does not take youout of any parti
ular irredu
ible representation, and in this sense we 
an say that the isometryof the 
lassi
al solution survives quantization. The a
tion of GBTZ 
an be implemented withinner transformations. Say Xt and X� are Killing ve
tors generating translations in t and �,respe
tively. They a
t on fun
tions Â on the non
ommutative spa
e a

ording toXtÂ = �1� [�̂; Â℄ X�Â = 1� [t̂; Â℄ (33){It should be noted that there exits a quantization ambiguity asso
iated with the set of allowed 
anoni
altransformations on the 
ylinder. So for example, the 
ommutation relations are un
hanged under the rede�ni-tions t̂! t̂0 = t̂+ F1(r̂) ei�̂ ! ei�̂0 = eif�̂+F2(r̂)t̂g ;for arbitrary fun
tions F1 and F2. More physi
al input is needed to resolve this quantization ambiguity.8



The determinant of the metri
 for any symple
ti
 leaf is a fun
tion of r,det gjr = � 1̀2 (r2 � r2+)(r2 � r2�) ; (34)and thus the signature, as well as the 
ommutative metri
, are �xed by the irredu
ible rep-resentation. The 
ylinders have a Minkowski signature for regions I and III, and a Eu
lideansignature for region II. With regard to the 
entral element ii) e�2�it̂=�, one 
an identify it withei�1l in an irredu
ible representation. The spe
trum of t̂ is then dis
rete[21℄,[22℄n� � ��2� ; n 2 Z (35)In asso
iating t̂ with the S
hwarzs
hild 
oordinate t, we re
all that the latter is the time forthe exterior of the bla
k hole, but not for the interior. More pre
isely, Xt is time-like providedr > rerg, where rerg is the radius of the ergosphere (or ergo
ir
le), r2erg = r2+ + r2�.Although the Poisson bra
kets (20) and (21) are invariant under the a
tion of the isometrygroup of the bla
k hole, they are not invariant under the larger group of SO(2; 2) transforma-tions (7). On the other hand, Poisson stru
tures 
an be 
onsistently assigned to SO(2; 2) su
hthat it de�nes a Lie-Poisson group and (7) de�nes a Poisson map. The SO(2; 2) group getq-deformed upon quantization. The non
ommmutative BTZ bla
k hole 
an be obtained fromthis quantum group by quotenting in a manner analogous to (8). This, along with an attemptat �eld theory on the non
ommutative ba
kground, will be pursued in later arti
les.[23℄A
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