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Abstract

Within the framework of a manifestly gauge invariant exact renormalization group for SU(N)

Yang-Mills, we derive a simple expression for the expectation value of an arbitrary gauge invariant

operator. We illustrate the use of this formula by computing the O(g2) correction to the rectangular,

Euclidean Wilson loop with sides T ≫ L. The standard result is trivially obtained, directly in the

continuum, for the first time without fixing the gauge. We comment on possible future applications

of the formalism.
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I. INTRODUCTION

The necessity of gauge fixing in order to compute in Yang-Mills theories is, in common

lore, practically taken for granted and, for perturbative calculations, generally considered

obligatory. This point of view is lent considerable weight both by Feynman’s unitarity
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argument for the existence of Faddeev-Popov ghosts [1] and by the elegance and power of

the resulting BRST symmetries [2].

However, there is no reason in principle why gauge invariant quantities, as opposed to

Green’s functions in gauge fixed formulations, cannot be computed in a manifestly gauge

invariant manner. Indeed, in a non-perturbative context, this is routinely exploited on the

lattice, where calculations can be performed without gauge fixing. Excitingly, in a series

of works [3–20], a formalism has been developed which allows manifestly gauge invariant

computations to be performed directly in the continuum.

The benefits of this scheme are numerous. The gauge field is protected from field strength

renormalization and the Ward identities take a particularly simple form since the Wilsonian

effective action is built only from gauge invariant combinations of the covariant derivative,

even at the quantum level [5]. In the non-perturbative domain, the difficult technical issue of

Gribov copies [21] is entirely avoided. Furthermore, it should be possible to make statements

about phenomena such as confinement in a completely gauge independent manner, and it is

surely this which gives a manifestly gauge invariant scheme much of its appeal.

The framework developed in [3–20] is based on the exact renormalization group (ERG),

the continuum version of Wilson’s RG [22–24]. The essential physical idea behind this

approach is that of integrating out degrees of freedom between the bare scale of the quantum

theory and some effective scale, Λ. The effects of these modes are encoded in the Wilsonian

effective action, SΛ, which describes the physics of the theory in terms of parameters relevant

to the effective scale.

The possibility of constructing manifestly gauge invariant ERGs arises, fundamentally,

from the huge freedom inherent in the approach [25]. For any given quantum field theory,

there are an infinite number of ERGs corresponding to the infinite number of different ways

in which the high energy degrees of freedom can be averaged over (the continuum version of

blocking on the lattice) [8, 16, 25]. In Yang-Mills theory, an infinite subset of these schemes

allow the computation of the gauge invariant Wilsonian effective action, without fixing the

gauge.1

Central to the ERG methodology is the ERG equation, which determines how the Wilso-

1 In practise we further specialize to those ERGs which allow convenient renormalization to any loop

order [15–17].
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nian effective action changes under infinitesimal changes of the scale. Part of the reason for

the considerable amount of work put into adapting the ERG for Yang-Mills (see [26] for a

summary of the various approaches) is that the ERG equation, by relating physics at differ-

ent scales, provides access to the low energy dynamics of the theory. Indeed, more generally,

the ERG has proven itself to be a flexible and powerful tool for studying both perturbative

and non-perturbative problems in a range of field theories (see [27–35] for reviews). A par-

ticular advantage conferred by the ERG is that renormalization is built in: solutions to the

flow equation (in pretty much any approximation scheme), from which physics can be ex-

tracted, are naturally phrased directly in terms of renormalized parameters. It is thus clear

that a manifestly gauge invariant formalism, based on the ERG, has considerable potential.

Furthermore, an interesting link between this formalism and the AdS/CFT correspondence

has recently been made [36].

The majority of the work into the scheme employed in this paper has focused on con-

structing and testing the formalism, culminating in the successful reproduction of the SU(N)

Yang-Mills two-loop β-function [15, 17]. Subsequent to this, the powerful diagrammatic

techniques developed to facilitate this calculation have been refined and applied in the con-

text of β-function coefficients at arbitrary loop order [18–20]. These substantial works have

paved the way for more general application of the formalism; in this paper, we describe how

to compute the expectation values of gauge invariant operators, without fixing the gauge,

and illustrate the formalism with a very simple computation of the O(g2) correction to

the rectangular, Euclidean Wilson loop with sides T ≫ L. [There have been attempts to

compute the perturbative corrections to this Wilson loop in (gauge fixed) ERG studies, in

the past. In particular, using the axial gauge flow equation proposed by [38], it was found

in [39] that, whilst the O(g2) result could be correctly reproduced, the formalism failed at

O(g4). However, the flow equation of [38] is not a flow equation in the Wilsonian sense: the

implementation of the cutoff, Λ, is not sufficient to regularize the theory, and dimensional

regularization has to be employed as well. This is the reason for the negative result of [39];

as recognized in [40], properly Wilsonian axial gauge flow equations can be constructed,

which work perfectly well. In the formalism used in this paper, the above issues never arise,

since the implementation of the (gauge invariant) cutoff is sufficient to regularize the theory,

as proven in [9].]

The outline of this paper is as follows. In section II we review the setup of our mani-
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festly gauge invariant ERG. Section III is devoted to the methodology for computing the

expectation of gauge invariant operators. The basic idea, for which little prior knowledge is

required, is detailed in the short section IIIA. In the remainder of section III, the machin-

ery for performing calculations in perturbation theory is developed. This section concludes

with a fantastically compact diagrammatic expression for the perturbative corrections to

the expectation value of any gauge invariant operator. In section IV, we specialize to the

computation of the expectation values of (renormalized) Wilson loops. After covering some

general features in section IVA, in section IVB we compute the O(g2) correction to the

Euclidean, rectangular Wilson loop with sides T ≫ L and recover the standard result. We

conclude in section V.

II. REVIEW

A. Elements of SU(N |N) Gauge Theory

Throughout this paper, we work in Euclidean dimension, D. We regularize SU(N) Yang-

Mills, carried by the physical gauge field A1
µ, by embedding it in spontaneously broken

SU(N |N) Yang-Mills, which is itself regularized by covariant higher derivatives [9]. The

massive gauge fields arising from the spontaneous symmetry breaking play the role of gauge

invariant Pauli-Villars (PV) fields, furnishing the necessary extra regularization to sup-

plement the covariant higher derivatives. In order to unambiguously define contributions

which are finite only by virtue of the PV regularization, a preregulator must be used in

D = 4 [9]. We will use dimensional regularization, emphasising that this makes sense

non-perturbatively, since it is not being used to renormalize the theory, but rather as a

prescription for discarding surface terms in loop integrals [9].

The supergauge invariant Wilsonian effective action has an expansion in terms of super-

traces and products of supertraces [11]:

S =
∞
∑

n=1

1

sn

∫

dDx1· · · d
Dxn SX1···Xn

a1 ···an
(x1, · · · , xn)strXa1

1 (x1) · · ·X
an

n (xn)

+
1

2!

∞
∑

m,n=0

1

snsm

∫

dDx1· · · d
Dxn dDy1· · · d

Dym SX1···Xn,Y1···Ym

a1 ··· an , b1··· bm
(x1, · · · , xn; y1 · · · ym)

strXa1

1 (x1) · · ·X
an

n (xn) strY b1
1 (y1) · · ·Y

bm

m (ym)

+ . . . (2.1)
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where the Xai

i and Y
bj

j are embeddings of broken phase fields into supermatrices. We take

only one cyclic ordering for the lists X1 · · ·Xn, Y1 · · ·Ym in the sums over n, m. If any term

is invariant under some nontrivial cyclic permutations of its arguments, then sn (sm) is the

order of the cyclic subgroup, otherwise sn = 1 (sm = 1).

The momentum space vertices are written

SX1···Xn

a1 ··· an
(p1, · · · , pn) (2π)D δ

(

n
∑

i=1

pi

)

=
∫

dDx1· · · d
Dxn e−i

∑

i
xi·piSX1···Xn

a1 ··· an
(x1, · · · , xn),

where all momenta are taken to point into the vertex. We will employ the shorthand

SX1X2

a1 a2
(p) ≡ SX1X2

a1 a2
(p,−p).

In addition to the coupling, g, of the physical gauge field, there is a second dimensionless

coupling, g2, associated with one of the unphysical regulator fields, A2
µ [11, 15–17]. For

convenience, we work not with g2 directly but with

α ≡ g2
2/g

2. (2.2)

The coupling g (similarly α) is defined through its renormalization condition:

S[A1] =
1

2g2
tr
∫

dDx
(

F 1
µν

)2
+ · · · , (2.3)

where the ellipses stand for higher dimension operators and the ignored vacuum energy.

Equation (2.3) constrains the classical two-point vertex of the physical field, S A1A1

0µ ν (p) ≡

S 1 1
0µν (p), as follows:

S 1 1
0µν (p) = 2(p2δµν − pµpν) + O(p4) ≡ 22µν(p) + O(p4). (2.4)

B. Diagrammatics

In this section, we introduce and describe the diagrammatics necessary for this paper.

For a comprehensive description of the diagrammatics see [15, 16].

1. Diagrammatics for the Action

The vertex coefficient functions belonging to the action (2.1) have a simple diagrammatic

representation:
[

��
��
S

]{f}

≡ S (2.5)
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represents all vertex coefficient functions corresponding to all cyclically independent order-

ings of the set of broken phase fields, {f}, distributed over all possible supertrace structures.

For example,
[

��
��
S

]A1A1

(2.6)

represents the coefficient functions SA1A1

which, from (2.1), is associated with the (su-

per)trace structure trA1A1. This diagram would also represent the coefficient function

SA1,A1

, were it not for the fact that this does not exist, on account of trA1 = 0.

2. Diagrammatics for the Exact Flow Equation

The diagrammatic representation of the flow equation is shown in figure 1 [15, 16].

−Λ∂Λ

[

S
]{f}

=
1

2













•

Σg

S

− Σg

•













{f}

FIG. 1: The diagrammatic form of the flow equation.

The left-hand side just depicts the flow of all cyclically independent Wilsonian effective

action vertex coefficient functions. The objects on the right-hand side of figure 1 have

two different types of component. The lobes represent vertices of action functionals, where

Σg ≡ g2S−2Ŝ, Ŝ being the seed action [10–12, 14–17]: a functional which respects the same

symmetries as the Wilsonian effective action, S, and has the same structure. Physically, the

seed action can be thought of as (partially) parameterizing a general Kadanoff blocking in

the continuum [16, 25].

The object attaching to the various lobes, • , is the sum over vertices of the covari-

antized ERG kernels [5, 11] and, like the action vertices, can be decorated by fields belonging

to {f}. The fields of the action vertex (vertices) to which the vertices of the kernels attach

act as labels for the ERG kernels. We loosely refer to both individual and summed over

vertices of the kernels simply as a kernel.

The rule for decorating the diagrams on the right-hand side is simple: the set of fields,

{f}, are distributed in all independent ways between the component objects of each diagram.
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Following [4–6, 11, 12, 15, 16], it is technically conventient to use the freedom inherent

in Ŝ by choosing the two-point, classical seed action vertices equal to the corresponding

Wilsonian effective action vertices. The effect of this is that the kernels, integrated with

respect to ln Λ (at constant α), turn out to the the inverses of the classical, two-point vertices

in the transverse space. For example, in the A1-sector we find that

S 1 1
0µα(p)∆1 1

αν(p) = δµν −
pµpν

p2
, (2.7)

where ∆11 in the integrated A1 sector kernel. It is apparent that ∆11 is the inverse of

the corresponding classical, two-point vertex up to a remainder term which, since it is

forced to be there as a consequence of the manifest gauge invariance, we call a ‘gauge

remainder’. In recognition of the similarities of the integrated kernels to propagators, in

both form and diagrammatic role, we refer to them as effective propagators [11]. However,

we emphasise that at no point is gauge fixing required in their definition and that our

diagrams to not correspond, in any way, to conventional Feynman diagrams. Equation (2.7)

can be diagrammtically generalized to hold in all sectors:

M 0 = M − M = M − M . (2.8)

We have attached the effective propagator, denoted by a solid line, to an arbitrary structure

since it only ever appears as an internal line. The field labelled by M can be any of the

broken phase fields. The object ≡ >� is a gauge remainder. The individual compo-

nents of >� will often be loosely referred to as gauge remainders; where it is necessary

to unambiguously refer to the composite structure, we will use the terminology ‘full gauge

remainder’. Equation (2.8) is referred to as the effective propagator relation. From (2.4)

and (2.7), it follows that

∆11
ρσ(p) =

δρσ

2p2
(1 + O(p2/Λ2)), (2.9)

which we will use later.

Embedded within the diagrammatic rules is a prescription for evaluating the group theory

factors. Suppose that we wish to focus on the flow of a particular vertex coefficient function

which, necessarily, has a unique supertrace structure.

On the right-hand side of the flow equation, we must focus on the components of each

diagram with precisely the same supertrace structure as the left-hand side, noting that the

kernel, like the vertices, has multi-supertrace contributions (for more details see [15, 16]). In
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∣
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∣

direct

+
1

N









A2

−

A1 







FIG. 2: The 1/N corrections to the group theory factors.

this more explicit diagrammatic picture, the kernel is to be considered a double sided object.

Thus, whilst the dumbbell like term of figure 1 has at least one associated supertrace, the

next diagram has at least two, on a account of the loop (this is strictly true only in the case

that kernel attaches to fields on the same supertrace). If a closed circuit formed by a kernel

is devoid of fields then it contributes a factor of ±N , depending on the flavours of the fields

to which the kernel forming the loop attaches. This is most easily appreciated by defining

the projectors

σ± ≡
1

2
(1l ± σ)

and noting that strσ± = ±N . In the counterclockwise sense, either a σ+ or σ−, as appro-

priate, can always be inserted for free after any of the broken phase fields.

The above prescription for evaluating the group theory factors receives 1/N corrections in

the A1 and A2 sectors. If a kernel attaches to an A1 or A2, it comprises a direct attachment

and an indirect attachment. In the former case, one supertrace associated with some vertex

coefficient function is ‘broken open’ by an end of a kernel: the fields on this supertrace and

the single supertrace component of the kernel are on the same circuit. In the latter case,

the kernel does not break anything open and so the two sides of the kernel pinch together

at the end associated with the indirect attachment. This is illustrated in figure 2; for more

detail, see [15, 16].

We can thus consider the diagram on the left-hand side as having been unpackaged,

to give the terms on the right-hand side. The dotted lines in the diagrams with indirect

attachments serve to remind us where the loose end of the kernel attaches in the parent

diagram.

As an example, which will be of use later, consider the group theory factor of the diagram

on the left-hand side of figure 3, where we suppose that the kernel forming the loop is in the

A1 sector.

On the right-hand side, we have unpackaged the parent diagram and explicitly indicated,
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−
1

N
−

1

N
+

1

N2











FIG. 3: An example showing how to evaluate the group theory factor of a diagram in which the

kernel is taken to be in the A1 sector.

in red, how many circuits each diagram has. To evaluate the corresponding group theory

factors, we simply take each circuit to contribute strσ+ (σ+ because we are taking the kernel

to be in the A1 sector). Therefore, the overall group theory factor is

1

N

(

N2 − 2
1

N
N +

1

N2
N2
)

=
1

N
(N2 − 1) = 2C2(F ),

where C2(F ) is the quadratic Casimir operator for the fundamental representation of SU(N).

III. METHODOLOGY

A. Basics

In this section we describe the strategy for computing the renormalized expectation value

of the gauge invariant operator, O. Denoting the set of (dynamical) broken phase fields by

Φ, we aim to compute

〈O〉R =
1

Z0

∫

Λ0

DΦOΛ0
[A1] e−SΛ0

[Φ], (3.1)

where the subscript R stands for renormalized and Z0 =
∫

Λ0
DΦ e−SΛ0

[Φ]. Notice that we have

explicitly tagged the functional integral, action and O with Λ0. This is to remind us that

the expression is defined at the bare scale, Λ0. At this scale, the gauge invariant operator

is taken to be a functional of just the physical gauge field, A1. The limit Λ0 → ∞, which

essentially corresponds to the continuum limit [28], is taken at the end of a calculation.

Introducing the source, J , we rewrite (3.1) in the usual way:

〈O〉R = −
∂

∂J
ln ZJ

∣

∣

∣

∣

∣

J=0

, (3.2)

where

ZJ =
∫

Λ0

DΦ e−SΛ0
[Φ]−JOΛ0

[A1].
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−Λ∂Λ

[

O
]{f}

=













•

Π

O

−
g2

2

•

O













{f}

FIG. 4: The flow of OΛ.

The key step now is to integrate out modes between the bare scale and the effective scale,

Λ, to yield:

ZJ =
∫

Λ
DΦ e−SΛ[Φ]−OΛ[Φ,J ]. (3.3)

Since both SΛ and OΛ are gauge invariant, the division of terms between these two func-

tionals is of course arbitrary. For example, for some other definition of SΛ and OΛ, we could

have written the argument of the exponential in (3.3) as S ′
Λ[Φ, J ] − O′

Λ[Φ, J ] or even just

S ′′
Λ[Φ, J ]. However, we choose to define things such that SΛ is independent of J . Given that

the only dependence on J at the bare scale is linear, it follows from the flow equation that

the dependence at the effective scale has a Taylor expansion in J and so we can write:

OΛ[Φ, J ] =
∞
∑

i=1

J iOi
Λ[Φ]. (3.4)

The real point now is that, from (3.2), we are pulling out the O(J) part, only, when comput-

ing the expectation value. Therefore, it makes sense to work at small J , in which case we can

take the effect of introducing the gauge invariant operator at the bare scale as inducing an

infinitesimal, linear perturbation to the Wilsonian effective action at the effective scale [5]:

SΛ → SΛ + JOΛ + O(J2) (3.5)

where, since we are henceforth only interested in the O(J) part of (3.4), we have dropped

the superscript index of O1
Λ.

By performing the shift (3.5) in the flow equation, we see that the flow of the Wilsonian

effective action is still given as in figure 1 and the flow of OΛ is given in figure 4, where we

define

Π ≡ g2S − Ŝ, (3.6)

take squares to represent vertices of OΛ and have dropped the subscript Λ.

Next, consider how ZJ evolves as we integrate out all the modes i.e. as we take the

limit Λ → 0. Let us start with the behaviour of the gauge invariant operator, O. Like the
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Wilsonian effective action, O has an expansion in terms of fields. However, unlike in (2.1), it

is crucial that we retain the field-independent part (i.e. the vacuum energy-like term). As we

integrate out modes, so this term receives quantum corrections. What of the field dependent

parts? Clearly, once we have integrated out all modes, there cannot be any field dependent

terms remaining which are multiplied by a finite coefficient. There are two choices: either

the coefficients diverge, in which case e−OΛ→0 → 0, or each coefficient corresponding to a

field dependent term in the expansion of O vanishes. We assume that the latter is the case.

In the case of the Wilsonian effective action, matters are simple. The structure of (3.1)

ensures that, when computing 〈O〉, the factor of e−SΛ→0 in the numerator is cancelled out

by the Z0 in the denominator.2

Therefore, from (3.2), (3.3), (3.4) and (3.5) we deduce the beautifully simple equation

〈O〉R = OΛ=0. (3.7)

To find 〈O〉R, we can use figure 4 to compute the flow of OΛ, figure 1 to compute the flow

of S (which is buried in Π) and thereby determine OΛ=0, in some approximation. For the

remainder of this paper, we will work in the perturbative domain. Dropping the Λ, which

we now take to be implicit, we take the following weak coupling expansions. The Wilsonian

effective action is given by

S =
∞
∑

i=0

g2(i−1)Si =
1

g2
S0 + S1 + · · · , (3.8)

where S0 is the classical effective action and the Si>0 the ith-loop corrections; O is given by

O =
∞
∑

i=0

g2(i−1)Oi. (3.9)

The seed action has an expansion consistent with the fact that S appears in the flow equation

multiplied by an extra power of g2, compared to Ŝ:

Ŝ =
∞
∑

i=0

g2iŜi. (3.10)

2 In fact, there are terms in the Wilsonian effective action which do diverge as Λ → 0 [9]. This is easy to

see: in order for the regularization scheme to work, the effective propagator in the A1 sector dies off, for

p2/Λ2 ≫ 1, at least as fast as (p2/Λ2)−r (for r > 2). This means that the kinetic term must be modified

by a term which behaves as (p2/Λ2)+r for p2/Λ2 ≫ 1. Such terms in the effective action clearly diverge

as Λ → 0.
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•

n





{f}

=



























n
∑

r=1

[

2 (nr − 1)βr +
∑

i

γi
r

∂

∂αi

]

nr

+
n
∑

r=0

•

nr

Πr

−
1

2

•

n−



























{f}

FIG. 5: The weak coupling flow equations for O.

Recalling (2.2) we have:

β ≡ Λ∂Λg =
∞
∑

i=1

g2i+1βi(α) (3.11)

γ ≡ Λ∂Λα =
∞
∑

i=1

g2iγi(α). (3.12)

To obtain the weak coupling flow equation for O we substitute (3.8)–(3.12) into figure 4,

but do not preclude the possibility that, in addition to g and α, OΛ also depends on the

dimensionless, running couplings αi>1 (we identify α1 with α). This anticipates our treat-

ment of Wilson loops in section IV. The weak coupling flow equations for O are shown in

figure 5, where
•

X≡ −Λ∂Λ|αX, nr ≡ n − r, n− ≡ n − 1 and Πr ≡ Sr − Ŝr.

B. Additional Notation

In the diagrammatic flow equation—be it the exact form or the perturbative expansion—

we have considered decoration by the set of fields {f}. However, only on the right-hand

side of (2.5) have we actually converted the fields {f} into explicit decorations. Before

such decoration, we consider {f} to be implicit, or unrealized, decorations [15, 18]. Just

as it is useful to consider fields as implicit decorations, so too is it useful to construct

rules for decoration with implicit effective propagators and instances of the gauge remainder

component >.
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1. Gauge Remainders

Instances of > arise from diagrams in which the effective propagator relation (2.8) has

been applied, generating a full gauge remainder. The � part of the gauge remainder can

be processed, using the Ward identities [5, 11, 15, 16], leaving behind a >. If one of the

vertices generated by the � is a classical, two-point vertex, then in the case where this vertex

attaches to an effective propagator, a further full gauge remainder is generated. Processing

this gauge remainder using the Ward identities allows us to iteratively generate structures

containing an arbitrary number, m, of >s. We denote m implicit instances of > by

[ ]>
m··· ,

where the square brackets could enclose some diagrammatic structure, but need not. The

ellipsis represents any additional implicit decorations, so long as they are not further in-

stances of >. The superscript notation >m simply tells us that there are m instances of

>.

For the purposes of this paper, we do not require the rules for turning gauge remainders

appearing as implicit decorations into explicit structures. The details can be found in [20].

2. Effective Propagators

The rule for explicit decoration with implicit effective propagators is as follows. If we wish

to join two objects (say two vertices) together with j′ out of a total of j effective propagators,

then there are jCj′ 2j′ ways to do this. Intuitively, the first factor captures the notion that,

so long as they are implicit decorations, the effective propagators are indistinguishable.

The factor of 2j′ allows for the fact that we can interchange the two ends of an effective

propagator. If these effective propagators were instead used to form j′ loops on a single

vertex, then the factor of 2j′ would disappear, since the vertices are defined such that all

cyclically independent arrangement of their decorative fields are summed over.

3. Vertices

When analysing the perturbative flow of O, we will find that vertices (of the Wilsonian

effective action and O) always occur in a very particular way. To introduce compact notation
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for this, we start by introducing a set of vertex arguments, vj, where the upper roman index

acts as a label. Thus, the vj are integers, denoting the loop orders of some set of vertices.

In the case that a vertex argument labels a Wilsonian effective action vertex, we define

the reduction of vj, vj;R, such that a reduced vertex does not have a classical, two-point

component.

Next, we define

vj,j+ ≡ vj − vj+1,

vj,j+;R ≡ vj;R − vj+1;R.

and use this notation to construct













vj

��
��
ns, j













≡
j−1
∏

i=0

vi
∑

vi+=0

















vj

"!
# 
vi,i+;R

















, (3.13)

where ns gives the value of v0, which is the only vertex argument not summed over on the

right-hand side. Notice that the sum over all vertex arguments is trivially ns:

j−1
∑

i=0

vi,i+ + vj =
j−1
∑

i=0

(

vi − vi+1
)

+ vj = v0 = ns. (3.14)

The structure defined by (3.13) possesses a single vertex belonging to O and j (reduced)

Wilsonian effective action vertices. This allows us to usefully define (3.13) for j = 0:














vj

��
��
ns, j















j=0

≡ ns .

C. The Diagrammatic Function, Qn

We introduce the functions

Qn ≡ n − 2
n
∑

s=1

2s−1
∑

m=0

n+s−m−1
∑

j=0

Υj+s,j

m!













vj

��
��
ns, j













∆j+s>m

(3.15)

Q̄n ≡ n −Qn (3.16)
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where, for the non-negative integers a and b, we define

Υa,b =
(−1)b+1

a!b!

(

1

2

)a+1

. (3.17)

In the case that either a or b are negative, Υa,b is null. As part of the definition of Q̄, we

insist that, upon explicit decoration, all fully fleshed out diagrams must be connected.

There is a simple, intuitive explanation for the relationship between the total number

of vertices, the number of effective propagators and the sum over the vertex arguments.

This is most simply put by taking m = 0 (the following argument is easily generalized).

From (3.14), we know that the sum of the vertex arguments is n − s. Now, given j + 1

vertices, exactly j effective propagators are required to create a connected diagram. This

leaves over s effective propagators, each of which must create a loop. Therefore, the loop

order of the diagram is n − s + s = n, as must be the case.

The maximum values of the sums over m and j follow from the constraint that all fully

fleshed out diagrams are connected [20]. The maximum value of s clearly follows from the

requirement that the loop order of the diagram is ≥ 0. The minimum value of s ensures

that, in Q, we do not double count the contribution n .

D. Expectation Values in Perturbation Theory

The key to computing expectation values is to consider the flow of Qn. It can be

shown [20], by using the flow equation, that this yields3:

Λ∂ΛQn + 2
n
∑

n′=1

(n − n′ − 1)βn′Qn−n′ = 0, (3.18)

from which it follows that

Λ
d

dΛ

∞
∑

n=0

[

g2(n−1)Qn

]

= 0.

Integrating between Λ = µ and Λ = Λ0 gives

∞
∑

n=0

[

g2(n−1)
(

n − Q̄n

)]

Λ=µ
=

∞
∑

n=0

[

g2(n−1)
(

n − Q̄n

)]

Λ=Λ0

, (3.19)

where we have used (3.16) and we aim to take the limits µ → 0 and Λ0 → ∞.

3 This result, though intuitive, is far from straightforward to derive, afresh. However, the more difficult case

of deriving similar diagrammatic expressions for the perturbative β-function coefficients is comprehensively

illustrated in [20]. Given this derivation, (3.18) follows, essentially trivially.
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The crucial point to recognize now is that (in perturbation theory, at any rate)

lim
Λ→0

[

g2(n−1)Q̄n

]

= 0. (3.20)

We can argue this as follows. Consider Q̄n, which is both UV and IR finite, in the limit of

small Λ. At the level of the diagrammatic components out of which Q̄n is built, all contri-

butions for which the loop momenta ki ≫ Λ are suppressed by the UV regularization. (We

might worry that this suppression does not occur in diagrams possessing classical vertices

which diverge in this limit. However, these divergences are always overcompensated.) Thus,

in the limit Λ → 0, the loop integrals have no support and Q̄n vanishes.

To complete the argument, all that remains to be done is to show that the behaviour

of limΛ→0 g2(n−1)(Λ) is sufficiently good. It should be emphasised that we are applying this

limit to quantities computed in perturbation theory. Introducing the arbitrary scale, M , we

can write

g2(Λ) =
∞
∑

i=1

g2i(M)ai(M/Λ).

Differentiating both sides with respect to M yields the set of relationships:

0 = 2
n−1
∑

j=1

(n − j)βjan−j(M/Λ) +
dan(M/Λ)

d lnM/Λ
.

Given that a1 = 1, it follows that every ai must be a function of ln M/Λ. Therefore, in

the Λ → 0 limit, g(Λ) diverges, at worst, as powers of ln Λ. This growth is slower than the

rate at which the UV regularization kills Q̄n in the limit that Λ → 0 [9] and so we have

demonstrated (3.20).

From (3.19) and (3.20), we arrive at the central result of our perturbative treatment:

n′

∑

n=0

[

g2(n−1) n
]

Λ=0
=

n′

∑

n=0

[

g2(n−1)
(

n − Q̄n

)]

Λ=Λ0

+ O(g2n′

). (3.21)

Notice that we have replaced the upper limits of the sums over n with the finite n′. By

taking n′ to infinity, (3.21) becomes exact. However, the form given above is suitable for

the order-by-order computation of corrections to 〈O〉R.

IV. WILSON LOOPS

In this section, we will illustrate (3.21) by using it to compute perturbative corrections

to Wilson loops. Before taking the explicit case of the rectangular Wilson loop with sides

T ≫ L, we discuss some general features of Wilson loop calculations, within our framework.
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A. General Considerations

For some closed path, Γ, the path ordered phase factor, a.k.a. the Wilson loop, is defined

to be

φ(Γ) =
1

N
trP exp

[

i
∮

Γ
dxµA1

µ(x)
]

.

It is well known [37, 41, 42] that the expectation value of this object,

W (Γ) = 〈φ(Γ)〉 , (4.1)

is divergent even after renormalization of the coupling and, in the case of a gauge fixed

formulation, field strength renormalization. In our manifestly gauge invariant formulation,

where the gauge field does not suffer from field strength renormalization, (4.1) is defined

such that the renormalization of the coupling has been done.

The remaining divergences have two sources. For smooth, simple loops, there is a di-

vergence e−κΛ0l(Γ), where κ is a dimensionless parameter and l(Γ) is the length of Γ. The

linearly divergent K ≡ κΛ0 can be interpreted as a mass divergence. The other divergences

come from any (finite) number of cusps and intersections, parameterised by the angles θi

and ϑi, respectively. The renormalized expectation value of the Wilson loop with cusps but

no intersections is defined to be [42]

WR(Γθi) = Z(θi)e−m0Λ0l(Γ)W (Γθi),

where we have used powers of Λ0 to replace the bare mass, m0, with a dimensionless param-

eter, m0. The renormalized mass, m, is

m = K + m0

and the multiplicative renormalization constant factorizes:

Z(θi) = Z(θ1)Z(θ2) · · · .

(In the case that Γ includes intersections, WR(Γ) no longer renormalizes by itself, and must

be considered together with expectation values of a family of other loop functions.)

Z(θ) and m have the following expansions:

Z(θ, g) = 1 +
∞
∑

i=1

g2iZi(θ)

m(g) =
∞
∑

i=1

g2imi.
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With these points in mind, we identify the boundary value of our gauge invariant operator

with

OΛ0
=

1

N
trP exp

[

i
∮

Γ
dxµA1

µ(x)
]

e−m0Λ0l(Γ)Z(θi). (4.2)

We can use the fact that OΛ0
does not possess an O(1/g2) component to simplify the

following analysis. To this end, consider the classical flow of O:

[ •

0

]{f}

=













•

Π0

0













{f}

.

Now, for the right-hand side not to vanish, the Π0 vertex must be decorated by at least

two fields belonging to {f}. This is because both seed action and Wilsonian effective action

one-point vertices vanish at tree level [11, 16] and Π XX
0R S (k) = 0 due to our choice to set the

seed action, two-point, classical vertices equal to their Wilsonian effective action counter

parts.

From this it follows that
•

0 = 0,





•

0





X

= 0,

where X is any field. Integrating up and using the fact that all classical vertices vanish at

the boundary (see (3.9) and (4.2)) we find that

0 = 0,
[

0
]X

= 0.

But, these relationships, together with the vanishing of Π XX
0R S (k) and the boundary condition

imply that
[

0
]XX

= 0.

Iterating this argument, it is clear that, in fact,

[

0
]{f}

= 0.

Given that the O vertex of Q̄ must, therefore, have an argument of at least one, this allows

us to reduce the maximum value of j by unity [20].

In a similar fashion, we can demonstrate that

[

1
]X

= 0.
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With these points in mind, let us apply (3.21) for n′ = 1. Using the boundary condition,

we obtain the expected (trivial) result that

[

1
]

Λ=0
= 1. (4.3)

[Note that (4.3) is in fact exact, not requiring supplementation at O(g2). This follows

because, in the weak coupling expansion, the vertex 1 multiplies g0.] At the next order

we find
[

g
2 2

]

Λ=0
=



g
2



 2 − 2Υ1,0
1









Λ=Λ0

+ O(g4). (4.4)

Equation (4.4) gives the first non-trivial correction to the renormalized Wilson loop pa-

rameterized by a contour with an arbitrary (finite) number of cusps (generalization to in-

clude intersections is straightforward, as indicated earlier). To evaluate (4.4) we feed in the

boundary condition (4.2). The first term on the right-hand side possesses precisely those

contributions necessary to cancel the divergences in the second term. With these divergences

cancelled, we can safely take the continuum limit, Λ0 → ∞.

B. The Rectangular Wilson Loop with sides T ≫ L

To illustrate the application of (4.4) in a way which will allow us to compare directly with

known results, we must compute a quantity which is independent of the renormalization

prescription. To this end, we focus on the rectangular Wilson loop, Γ̄, with sides T and L,

in the limit where T ≫ L. The leading order contribution in this limit is universal, being

directly related to the lowest order Coulomb potential of the physical SU(N) Yang-Mills

theory.

At the boundary, the expression for the first term on the right-hand side of (4.4) follows,

directly, from (4.2) upon expanding the exponentials and identifying the O(g2), field inde-

pendent contribution. For the second term we must work a little harder, since we need to

relate the two-point vertex to the boundary condition. To do this, we expand the exponential

of (4.2) and focus on the coefficient of trA1
µA

1
ν at O(g0):

−
1

2N

∮

Γ̄
dxµ

∮

Γ̄
dyν = −

1

2N

∫

dDx
∫

dt
dxµ(t)

dt
δ(x − x(t))

∫

dDy
∫

ds
dyν(s)

ds
δ(y − y(s)).
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The recasting on the right-hand side allows us to directly compare this expression with the

field expansion of O, given by the analogue of (2.1) with S replaced by O. Therefore,

�
�
�
��
�
�
�µx

νy

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

Λ0

= −
1

N

∫

dt
dxµ(t)

dt
δ(x − x(t))

∫

ds
dyν(s)

ds
δ(y − y(s)).

The other components of the second diagram on the right-hand side of (4.4) are the ef-

fective propagator, ∆1 1
µν(x, y)4, the group theory factor (which can be evaluated according

to figure 3) and an integral over the undetermined coordinates, x and y.

Using (3.17), equation (4.4) becomes

lim
T/L→∞

W
(2)
R (Γ̄) = lim

T/L→∞
lim

Λ0→∞

[

g2

(

2 −
N2 − 1

2N

∮

Γ̄
dxµ

∮

Γ̄
dxν∆

1 1
µν(x, y, Λ0)

)]

, (4.5)

where we have changed notation slightly to make the path dependence of the left-hand side

explicit. Since we are taking the T/L → ∞ limit, we do not need to be too precise about

our renormalization prescription: the associated finite terms are sub-leading and so we have:

lim
T/L→∞

W
(2)
R (Γ̄) = lim

T/L→∞

[

−g2C2(F )
∮

Γ̄
dxµ

∮

Γ̄
dxν∆

1 1
µν(x, y)

∣

∣

∣

∣

finite

]

. (4.6)

Writing

∆1 1
µν(x, y) =

∫ dDp

(2π)D
eip·(x−y)∆1 1

µν(p
2/Λ2)

and recalling (2.9), it is clear that our expression corresponds to the usual one. However,

we emphasise once again that, despite obvious similarities, the object ∆1 1
µν(p

2/Λ2) is not a

(regularized) Feynman propagator and that at no stage have we fixed the gauge. Notice

that we can immediately take D → 4, since preregularization plays no role here. Indeed,

this highlights the fact that we only ever use dimensional regularization as a prescription

for removing finite surface terms present as a consequence of the Pauli-Villars regularization

provided by the SU(N |N) scheme [9]. All necessary UV regularization in (4.5) and (4.6) is

provided by the cutoff functions buried in the effective propagator.

Explicitly evaluating the contour integrals we find that

lim
T/L→∞

W
(2)
R (Γ̄) = g2C2(F )T

4πL
,

recovering the standard result.

4 The fields must be in the A1 sector at the bare scale, since this is the only sector in which the vertex to

which the effective propagator attaches has support.
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V. CONCLUSION

We have described how to compute the expectation values of renormalized gauge in-

variant operators in a manifestly gauge invariant way, within the framework of the exact

renormalization group. The methodology has been illustrated with a computation of the

O(g2) correction to the rectangular Wilson loop with sides T ≫ L.

The key elements of the methodology are as follows. Given our regularized SU(N) gauge

theory defined at the bare scale, Λ0, we add a source term JOΛ0
for the gauge invariant

operator, OΛ0
. As we integrate out modes, so the source term evolves. Although this

generates a Taylor series in J , the only term which contributes to 〈O〉R is the one linear in

J which, after specializing to the small J limit, we denote by OΛ. Figure 4 gives the flow of

this component.

We then derived equation (3.7), which states that the expectation value of our gauge

invariant operator is simply given by OΛ=0. Thus, in conjunction, figures 1 and 4 and

equation (3.7) allow us to compute the expectation value of an arbitrary gauge invariant

operator (in some approximation scheme).

The rest of the paper was devoted to exploring the formalism in the perturbative domain.

It was here that the considerable effort invested in [15, 18–20] to understand the structure of

perturbative β-function coefficients really paid off. The associated developments allowed us

to directly obtain (3.21), which gives an extremely compact diagrammatic expression for the

perturbative corrections to 〈O〉R. We note that this expression makes use of the diagram-

matic function, Q̄, given by (3.15) and (3.16). This function depends only on Wilsonian

effective action vertices, effective propagators and (components of) gauge remainders. There

is no explicit dependence on either the seed action or the covariantization of the ERG kernels.

Whilst the perturbative treatment is useful both to gain experience with the techniques

and also to demonstrate that practical calculations can be straightforwardly (and correctly)

performed, the real challenge is to apply the formalism non-perturbatively. Of course, the

key results figures 1 and 4 and equation (3.7) are defined non-perturbatively. The main

difficulty is deciding how best to approximate the flow equation where there is no obviously

small parameter in which to expand (for speculations on whether it might be possible to

perform a strong coupling expansion in the inverse of the renormalized coupling see [43]).

However, some inspiration for this may be provided by the perturbative treatment. We
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know that for operators which correspond to physical observables, the expression for OΛ=0

must be universal. Obviously, such an expression is independent of the details of the seed

action or the covariantization of the ERG kernels. Thus, it is natural speculate whether,

non-perturbatively, OΛ=0 can be written in terms of a generalization of Q̄; indeed, this

generalization has now been found [44]. Nevertheless, this generalized diagrammatic function

possesses an infinite number of vertices and so much work remains to be done to extract

useful information. However, this surely represents a desirable, direct starting point for

attacking non-perturbative problems within the ERG formalism.
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