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Abstract

We find using Monte Carlo simulation the phase structure of noncommutative U(1)

gauge theory in two dimensions with the fuzzy sphere S
2
N as a non-perturbative regulator.

There are three phases of the model. i) A matrix phase where the theory is essentially

SU(N) Yang-Mills reduced to zero dimension . ii) A weak coupling fuzzy sphere phase

with constant specific heat and iii) A strong coupling fuzzy sphere phase with non-constant

specific heat. The order parameter distinguishing the matrix phase from the sphere phase

is the radius of the fuzzy sphere. The three phases meet at a triple point. We also give

the theoretical one-loop and 1
N expansion predictions for the transition lines which are in

good agreement with the numerical data. A Monte Carlo measurement of the triple point

is also given.

Contents

1 Introduction 2

2 Phase diagram 4

3 The one-loop calculation 7

∗Current Address : Institut fur Physik, Mathematisch-Naturwissenschaftliche Fakultat I, Humboldt-

universitat zu Berlin, D-12489 Berlin-Germany.

1



4 Monte Carlo simulation 13

4.1 Zero mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Non-zero mass : the S2
N−to-matrix phase transition . . . . . . . . . . . . . . . . 14

4.3 Specific heat: the one-plaquette phase transition . . . . . . . . . . . . . . . . . . 19

5 The one-plaquette model and 1/N expansion 23

5.1 The one-plaquette variable W . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 The one-plaquette path integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Saddle point solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusion 29

A The order parameters and probability distribution 30

A.1 Order parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.2 Geometric interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.3 Probability distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1 Introduction

Quantum noncommutative ( NC ) gauge theory is essentially unknown beyond one-loop

[1]. In the one-loop approximation of the quantum theory we know for example that gauge

models on the Moyal-Weyl spaces are renormalizable [2]. These models were also shown to

behave in a variety of novel ways as compared with their commutative counterparts. There

are potential problems with unitarity and causality when time is noncommuting, and most

notably we mention the notorious UV-IR mixing phenomena which is a generic property of all

quantum field theories on Moyal-Weyl spaces and on noncommutative spaces in general [1, 3].

However a non-perturbative study of pure two dimensional noncommutative gauge theory was

then performed in [5]. For scalar field theory on the Moyal-Weyl space some interesting non-

perturbative results using theoretical and Monte Carlo methods were obtained for example in

[6]. An extensive list of references on these issues can be found in [1] and also in [4]

The fuzzy sphere ( and any fuzzy space in general ) provides a regularized field theory in the

non-perturbative regime ideal for Monte-Carlo simulations. This is the point of view advocated

in [7]. See also [8, 9, 10] for quantum gravity, string theory or other different motivations. These

fuzzy spaces consist in replacing continuos manifolds by matrix algebras and as a consequence

the resulting field theory will only have a finite number of degrees of freedom. The claim is that

this method has the advantage -in contrast with lattice- of preserving all continous symmetries

of the original action at least at the classical level. This proposal was applied to the scalar

φ4 model in [11]. Quantum field theory on fuzzy spaces was also studied perturbatively quite

extensively. See for example [13, 14, 15]. For some other non-perturbative ( theoretical or

Monte Carlo ) treatement of these field theories see [16].
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Another motivation for using the fuzzy sphere is the following. The Moyal-Weyl NC space

is an infinite dimensional matrix model and not a continuum manifold and as a consequence it

should be regularized by a finite dimensional matrix model. In 2 dimensions the most natural

candidate is the fuzzy sphere S2
N which is a finite dimensional matrix model which reduces

to the NC plane in some appropriate large N flattening limit. This limit was investigated

perturbatively in [14, 17] for scalar and Yang-Mills field theories respectively. In 4−dimensions

we should instead consider Cartesian products of the fuzzy sphere S2
N [15], fuzzy CP2

N [18] or

fuzzy S4 [19]. An alternative way of regularizing gauge theories on the Moyal-Weyl NC space

is based on the matrix model formulation of the twisted Eguchi-Kawai model. See for example

[20, 21, 30].

The goal of this article and others [12, 22] is to find the phase structure ( i.e map the different

regions of the phase diagram ) of noncommutative U(1) gauge theories in 2 dimensions on the

fuzzy sphere S2
N . There are reasons to believe that the phase diagram of NC U(N) models

will be the same as that of their U(1) counterparts thus we will only concentrate on the U(1)

models. Furthermore it seems that the nature of the underlying NC space is irrelevant. In other

words U(1) gauge models on the NC Moyal-Weyl plane R2
θ , on the fuzzy sphere S2

N and on

the NC torus T2
θ will fall into the same universality class. Hence we consider solely the fuzzy

sphere since it is the most convenient two dimensional space for numerical simulation.

There seems to exist three different phases of U(1) gauge theory on S2
N . In the matrix phase

the fuzzy sphere vacuum collapses under quantum fluctuations and there is no underlying sphere

in the continuum large N limit. Rather we have a U(N) YM theory dimensionally reduced to

a point. In this phase the model should be described by a pure ( possibly a one-)matrix model

without any spacetime or gauge theory interpretation. This phenomena was first observed in

Monte Carlo simulation in [23] for m = 0. In [22] it was shown that the fuzzy sphere vacuum

becomes more stable as the mass m of the scalar normal component of the gauge field increases.

Hence this vacuum becomes completely stable when this normal scalar field is projected out

from the model. This is what we observe in our Monte Carlo simulation in the limit m−→∞.

The principal new discovery of this paper is that the fuzzy sphere phase splits into two

distinct regions corresponding to the weak and strong coupling phases of the gauge field. These

are separated by a third order phase transition. This transition is consistent with that of a

one-plaquette model [25]. Our results indicate that non-perturbative effects play a significant

role than expected from the 1/N study of [24]. In particular these results indicate that quantum

noncommutative gauge theory is essentially equivalent to ( some ) quantum commutative gauge

theory not necessarily of the same rank. This prediction goes also in line with the powerful

classical concept of Morita equivalence between NC and commutative gauge theories on the

torus [1, 21].

This article is organized as follows. In section 2 we will describe the phase diagram of the NC

U(1) gauge model in 2D. In section 3 we will review the one-loop theory of the model. In section

4 we will discuss our Monte Carlo results with some more detail. In section 5 we will introduce

the one-plaquette approximation of the model and then we will give a theoretical derivation of

the one-plaquette line. We conclude in section 6 with a summary and some general remarks.
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In the appendix we discuss ( among other things ) the measurement of order parameters and

probability distribution.

2 Phase diagram

The basic action is written in terms of three N×N matrices Xa as follows

S = N
[

− 1

4
Tr[Xa, Xb]

2 +
2iα

3
ǫabcTrXaXbXc

]

− Nm2α2TrX2
a +

Nm2

2c2

Tr(X2
a)2. (1)

The basic parameters of the model are α̃ = α
√

N and m. The gauge coupling constant is

g2 = 1
α̃4 . We will also need α̂ = α̃

√

1 − 2
N

, ᾱ = α̃
√

N and m̄ = m
N

. The one-loop critical

values of α̃ , α̂ and ᾱ are α̃∗, α̂∗ and ᾱ∗ respectively. Clearly in the large N limit α̃∗ = α̂∗
and ᾱ∗ = α̃∗

√
N . For reasons which will become clear in the text the measured critical values

are denoted as follows. The measurement of α̃∗ is denoted by αs. There are two physically

distinct measurements of α̂∗ denoted by αma and αmi. In terms of α̃ these are given by αma =

α̃ma

√

1 − 2
N

and αmi = α̃mi

√

1 − 2
N

. There are two physically different measurements of ᾱ∗

denoted by αp = α̃ma

√
N and ᾱs = αs

√
N .

The phase diagram of the model (1) is given in figure (1). This is the central result of this

article. In this section we will briefly explain the main properties of the different phases of the

model. More detail will be given in the rest of the article.

We measure the average value of the action < S > as a function of α̃ and we measure the

specific heat Cv =< S2 > − < S >2 as a function of α̂ for different values of N . We consider

N = 4, 6, 8, 10, 12, 16. In the first step of the simulation the mass parameter m is taken to

be some fixed number. Then we vary the mass parameter and repeat the same experiment.

The choice of α̂ for the specific heat is only due to finite size effects and has no other physical

significance since in the large N limit α̂ = α̃.

We observe that different actions < S > which correspond to different values N ( for some

fixed value of m ) intersect at some value of the coupling constant α̃ which we denote αs. In

the limit of small masses, viz m−→0, this intersection point marks a discontinuity in the action

and it occurs around the value αs = 2.2. In figure 2 we plot the action < S > versus α̃ for

N = 10, 12, 16 and m2 = 0.25, 3, 100. For large masses we observe that the intersection point

becomes smoother. It is also clear that the critical point αs decreases as we increase m and it

will reach 0 in the limit m−→∞.

For the specific heat the situation is more involved. We observe in the limit m−→0 a peak

around αs = 2.2 which marks a sharp discontinuity in Cv. See the first graph in figure 3 or

figure 7. Above this critical value the specific heat is given by Cv = N2 while below this critical

value it is given by Cv = 0.75N2. The regime α̃≥αs is the fuzzy sphere phase whereas α̃≤αs

corresponds to the so-called matrix phase.

As m increases things get more complicated and they only simplify again when we reach

large values of m. αma and αmi are precisely the values of α̂ at the maximum and minimum

4
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Figure 1: The phase diagram of the model (1). The two fits (6) and (5) are expected to coincide

very well with the data only for very large masses. The fits (5) and (4) are identical for large

masses ( or equivalently past the triple point ). Above the upper critical line we have a fuzzy

sphere in the weak regime of the gauge theory. Between the two lines we have a fuzzy sphere in

the strong regime of the gauge theory. Thus the upper critical line is the one-plaquette critical

line (6). Below the lower critical line we have the matrix phase. This last line agrees very well

with the one-loop prediction (5). The one-plaquette line approaches in the limit m−→∞ a

constant value given by log αp = log(3.35) = 1.21. The triple point is also seen to exist within

the estimated range. Before we reach the triple point the critical line agrees as well with the

one-loop prediction (4). Recall that log m̄2 = log m2 − 2 log N , log αp = log α̃ma +0.5 log N and

log αs + 0.5 logN = log ᾱs.
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values of the specific heat. Thus α̃ma and α̃mi are the values of α̃ at the maximum and minimum

values of the specific heat. The peak of the specific heat moves slowly to smaller values of α̃

as we increase m. The agreement between α̃ma and αs for small masses is good whereas the

values α̃mi at the minimum of Cv for small masses are significantly different from αs. Thus in

this regime of small masses α̃ma is still detecting the S2
N−to-matrix phase transition. Similarly

to the case m = 0 the specific heat Cv as a function of α̃ is equal to N2 in the fuzzy sphere

phase for values of α̃ such that α̃≥α̃ma .

The physics is drastically different for large masses since the roles of α̃ma and α̃mi are

completely reversed. There is a shallow valley in the specific heat starting to appear for values

of α̃ inside the matrix phase as m slowly increases. Furthermore as m keeps increasing we

observe that the peak flattens slowly and disappears altogether when the mass becomes of the

order of m2∼10. At this stage the well in the specific heat becomes on the other hand deeper

and more pronounced and its minimum α̃mi is moving slowly to smaller values of the coupling

constant α̃. By inspection of the data we can see that α̃mi and αs starts to agree for larger

masses and thus α̃mi captures exactly the S2
N -to-matrix phase transition in this regime. The

physical meaning of the the critical point α̃ma becomes also different for large masses where it

becomes significantly different from αs. Since there is no peak the definition of α̃ma becomes

different1. α̃ma is now the value of α̃ at which the specific heat jumps and becomes equal

to N2. This is where the one-plaquette phase transition between weak and strong regimes of

gauge theory on the fuzzy sphere occurs. In figure 3 we plot the specific heat versus α̂ for

N = 10, 12, 16 and m2 = 0.25, 3, 100. In particular remark how the shape of the specific heat

changes with m.

As it turns out we can predict the S2
N -to-matrix phase transition from the one-loop theory of

the model (1). To this end we consider the following background matrices Da = αφLa where φ

is the radius of the sphere and La are the generators of SU(2) in the irreducible representation
N−1

2
. Then we compute the one-loop effective potential in the background field method [22] or

by using an RG method [12]. One finds the result

V1−loop =
N2α̃4

2

[

1 + m2

4
φ4 − 1

3
φ3 − m2

2
φ2
]

+ N2 log φ + O(N). (2)

It is not difficult to check that the corresponding equation of motion of the potential (2) admits

two real solutions where we can identify the one with the least energy with the actual radius

of the sphere. This however is only true up to a certain value α̃∗ of the coupling constant α̃

where the quartic equation ceases to have any real solution and as a consequence the fuzzy

sphere solution Da = αφLa ceases to exist. In other words the potential below the value α̃∗ of

the coupling constant becomes unbounded and the fuzzy sphere collapses. The critical values

can be easily computed and one finds in the limit m−→0 the values φ∗ = 0.75 and α̃∗ = 2.09.

1It is not difficult to see that this new definition is consistent with the previous definition of α̃ma.
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Extrapolating to large masses we obtain the scaling behaviour

φ∗ =
1√
2

(3)

and

α̃∗ = [
8

m2 +
√

2 − 1
]
1

4 . (4)

In other words the phase transition happens each time at a smaller value of the coupling

constant α̃ and thus the fuzzy sphere is more stable. This one-loop result is compared to the

non-perturbative results αs and αmi coming from the Monte Carlo simulation of the model (1)

in figure 4. As one can immediately see there is an excellent agreement between the three values

in the regime of large masses as discussed above. α̃∗ and αs agree as well for small masses. See

also the phase diagram (1).

For large values of m the scaling of the coupling constant α̃ as well as of the mass parameter

m is found to differ considerably from the m = 0 case. It is now given by ᾱ = α̃
√

N , m̄ = m
N

The above theoretical fit (4) will read in terms of ᾱ and m̄ as follows

ᾱ∗ = [
8

m̄2
]
1

4 . (5)

This is the fit used for the lower critical line in the phase diagram (1). The critical value

ᾱs = αs

√
N falls nicely on the top of this fit for all values of the mass.

The fit of the critical value α̃ma for m small is given by equation (4). Thus we expect

agreement between α̃∗ and αs from one hand and α̃ma from the other hand in the range of

small masses. For m large we find that we can fit the data α̃ma to ( recall that αp = α̃ma

√
N )

αp = 3.35±0.25 + [
0.04

m̄2
]
1

2 . (6)

In other words in the limit m−→∞ we can fit the data to the line αp = 3.35. This is what we

call the one-plaquette critical line. See figure 5. This is the fit used for the upper critical line

in the phase diagram (1).

3 The one-loop calculation

In this section we will follow [22].

We are interested in the most general gauge theory up to quartic power in the gauge field

on the fuzzy sphere S2
L+1. This is obtained as follows. Let Xa , a = 1, 2, 3, be three N×N

hermitian matrices and let us consider the action

S = N
[

− 1

4
Tr[Xa, Xb]

2 +
2iα

3
ǫabcTrXaXbXc

]

+ βTrX2
a + MTr(X2

a)2. (7)
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This action is invariant under the unitary transformations Xa−→UXaU
+. This model is also

invariant under SU(2) rotational symmetries Xa−→gXag
+ = Rab(g)Xb where the group ele-

ment g is given explicitly by g = exp(iωaLa) for some constant vector ~ω and R(g) is the spin one

irreducible representation of g. La are the generators of SU(2) in the irreducible representation
L
2
. They satisfy [La, Lb] = iǫabcLc, L2

a = c2 = L
2
(L

2
+ 1) and they are of size (L + 1)×(L + 1).

This action is bounded from below for all positive values of M and the trace is normalized such

that Tr1 = N = L + 1.

The α, β and M are the parameters of the model. We are interested in the particular case

where β = −2Mc2α
2. In this case the potential becomes

V = βTrX2
a + MTr(X2

a)2 = MTr(X2
a − c2α

2)2 − MNα4c2
2. (8)

In most of this article we will discuss U(1) gauge theory on the fuzzy sphere. We start with the

values M = β = 0. This corresponds to the Alekseev, Recknagel, Schomerus action obtained in

effective string theory describing the dynamics of open strings moving in a curved background

with S3 metric in the presence of a Neveu-Schwarz B-field. We notice that with M = β = 0 the

trace part of Xa simply decouples. As a consequence we can take Xa to be traceless without

any loss of generality. The classical absolute minimum of the model is given by

Xa = αLa (9)

where La are the generators of SU(2) in the irreducible representation L
2
≡N−1

2
.The quantum

minimum is found by considering the configuration Xa = αφLa where the order parameter αφ

plays the role of the radius of the sphere with a classical value equal α.The complete one-loop

effective potential in this configuration is given in the large N limit by the formula ( with

α̃ =
√

Nα )

Veff(φ) = 2c2α̃
4
[

1

4
φ4 − 1

3
φ3
]

+ 4c2 log φ + subleading terms. (10)

It is not difficult to check that the equations of motion admits two real solutions where we can

identify the one with the least energy with the actual radius of the sphere. However this is only

true up to a certain value α̃∗ of the coupling constant α̃ where the quartic equation ceases to

have any real solution and as a consequence the fuzzy sphere solution (9) ceases to exist. In

other words the potential Veff below the value α̃∗ of the coupling constant becomes unbounded

and the fuzzy sphere collapses. The critical value can be easily computed and one finds

φ∗ =
3

4
, α̃∗ = 2.08677944. (11)

Now we add the potential term (8) with mass parameter 2M = Nm2/c2. In this case the

matrices Xa can not be taken traceless. The effective potential becomes

Veff = 2c2α̃
4
[

1

4
φ4 − 1

3
φ3 +

1

4
m2(φ2 − 1)2

]

+ 4c2 log φ +
1

2
Tr3TRlog∆. (12)
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TR is the trace over 4 indices corresponding to the left and right actions of operators on matrices

of size L + 1 while Tr3 is the trace associated with the action of 3−dimensional rotations. The

Laplacian ∆ in the gauge ξ−1 = 1 + m2

c2
is given by

∆ = L2 + (
1

φ
− 1)(J2 −L2 − 2) + 2m2(1 − 1

φ2
). (13)

The eigenvalues of L2 ( which is the Laplacian on the sphere ) and ~J2 ( which is the total angular

momentum on the sphere ) are given respectively by l(l +1) and j(j +1) where l = 1, ..., L and

j = l + 1, l, l− 1. The corresponding eigentensors are the vector spherical harmonics operators.

Let us also notice that from the requirement that the spectrum of ∆ must be positive we can

derive a lower and upper bounds on the possible values which the field φ can take. For example

for m2 = 0 we can find that 2/3 < φ < 3.

We can show ( at least ) for small values of the mass m that the logarithm of ∆ is subleading

in the large N limit compared to the other terms and thus the potential reduces to the simpler

form

Veff = 2c2α̃
4
[

1

4
φ4 − 1

3
φ3 +

1

4
m2(φ2 − 1)2

]

+ 4c2 log φ. (14)

Solving for the critical value using the same method outlined previously yields the results

φ∗ =
3

8(1 + m2)

[

1 +

√

1 +
32m2(1 + m2)

9

]

. (15)

1

α̃4
∗

= −1

2
(1 + m2)φ4

∗ +
1

2
φ3
∗ +

m2

2
φ2
∗. (16)

Extrapolating to large masses (m−→∞) we obtain the scaling behaviour

α̃∗ = [
8

m2 +
√

2 − 1
]
1

4 . (17)

In other words the phase transition happens each time at a smaller value of the coupling

constant α̃ and thus the fuzzy sphere is more stable.

It is therefore sensible to expand the action (7) around the fuzzy sphere solution (9) by

introducing a U(1) gauge field Aa on the fuzzy sphere S2
N as follows Xa = α(La + Aa). The

action becomes

SN =
1

4g2N
Tr

[

F
(0)
ab + i[Aa, Ab]

]2 − 1

2g2N
ǫabcTr

[

1

2
F

(0)
ab Ac +

i

3
[Aa, Ab]Ac

]

+
2m2

g2N
TrΦ2

− 1

6
α̃4c2 −

1

2
α̃4c2m

2. (18)

Φ is the normal covariant scalar component of the gauge field on the fuzzy sphere defined by√
4c2Φ = LaAa + AaLa + A2

a . Fab = F
(0)
ab + i[Aa, Ab] is the U(1) covariant curvature where

12



F
(0)
ab = i[La, Ab]− i[Lb, Aa] + ǫabcAc and g is the gauge coupling constant defined by 1

g2 = α̃4. In

the continuum limit L−→∞ all commutators vanish and we get a U(1) gauge field coupled to

a scalar mode Φ = ~n. ~A with curvature F
(0)
ab = iLaAb − iLbAa + ǫabcAc where La = −iǫabcnb

∂
∂nc

.

We find ( by also neglecting the constant term )

S∞ =
1

4g2

∫

S2

dΩ

4π
(F

(0)
ab )2 − 1

4g2
ǫabc

∫

S2

dΩ

4π
F

(0)
ab Ac +

2m2

g2

∫

S2

dΩ

4π
Φ2. (19)

The quantization of the fuzzy action SN yields a non-trivial effective action Γ∞ in the continuum

limit which for generic values of the mass parameter m is different from S∞. For example we

have established by explicit calculation of the quadratic effective action the existence of a gauge-

invariant UV-IR mixing problem in U(1) gauge theory on the fuzzy sphere for the value m = 0.

We find

Γ(2)
∞ =

1

4g2

∫

S2

dΩ

4π
F

(0)
ab (1 + 2g2∆3)F

(0)
ab − 1

4g2
ǫabc

∫

S2

dΩ

4π
F

(0)
ab (1 + 2g2∆3)Ac + 4

√
c2

∫

S2

dΩ

4π
Φ

+ other non local quadratic terms. (20)

The operator ∆3 is a function of the Laplacian L2 with eigenvalues ∆3(k) given by k(k +

1)∆3(k) =
∑k

p=2
1
p
. Clearly Γ(2)

∞ 6=S∞ which is the signature of the UV-IR mixing in this model.It

is expected that the same result will also hold for generic values of the mass parameter m.

The calculation can also be done quite easily in the limit m−→∞ and one finds that there

is no UV-IR mixing in the model in this case. The UV-IR mixing is thus confined to the

scalar sector of the model since the limit m−→∞ projects out the scalar fluctuation Φ. It

is hence natural to think that the extra matrix phase observed in the phase structure of the

theory is related to this mixing; in other words it is the non-perturbative manifestation of the

perturbative UV-IR mixing property since as we have shown this phase seems also to disappear

in the limit of large masses.

4 Monte Carlo simulation

From the above one-loop argument it is expected to observe at least one phase transition

on the line m = β = 0. This is a continuous first order phase transition from a fuzzy sphere

phase with α > α∗ to a pure matrix phase with α < α∗. It is also expected that this critical

value α∗ decreases with the value of m ( keeping β fixed equal −2Mc2α
2 with 2M = Nm2/c2

) and it becomes zero when we let m−→∞.

4.1 Zero mass

We start with M = β = 0. To detect the different phases of the model we propose to measure

the following observables. First we measure the average value of the action, viz < S >. Second

the specific heat will allow us to demarcate the boundary between the different phases. It is

defined by Cv =< S2 > − < S >2.

13



In order to determine the critical point (if any) we run several simulations with different

values of N , say N = 4, 6, 8, 10, 12, 16. We always start from a random (hot) initial configuration

and run the metropolis algorithm for Ttherm + Tcorr×Tmont Monte Carlo steps. Ttherm is

thermalization time while Tmont is the actual number of Monte Carlo steps. Two consecutive

Monte Carlo times are separated by Tcorr sweeps to reduce auto-correlation time. In every

step ( sweep ) we go through each entry of the three matrices X1, X2 and X3 and update it

according to the Boltzman weight. This by definition is one unit of time ( Monte Carlo time )

in the generated dynamics. For every N and α we tune appropriately Ttherm, Tmont, Tcorr

as well as the interval I from which we choose the variation of the entries of the matrices Xa

so that to reduce auto-correlation times and statistical errors.

The continuum limit of a given observable will be obtained by collapsing the corresponding

data, in other words finding the scaling of this operator in the large N limit which yields an

N−independent quantity. For example the scaling of the coupling constant α with N is clearly

given by α̃ =
√

Nα as anticipated from the one-loop calculation.

For the action the data is plotted in figure 6. We remark that the 4 curves with N = 4, 6, 8

and 10 all intersect around the point

αs = 2.2±0.1. (21)

This is the critical point since it is independent of N as it should be. The collapse of the data

is given by < S > /4c2. Indeed a very good fit for the action < S > is given by the classical

action in the configuration Xa = αLa, i.e

< S >= − α̃4c2

6
(22)

The data for the specific heat is shown on figure 7. We can immediately remark that Cv peakes

around the above critical point. More precisely the peak is at the values α̃ = 2.25±0.05, 2.1±0.1

and 2.1±0.1, 2.2±0.1 for N = 4, 6 and 8, 10 respectively.

From figure 7 the correct scaling of the specific heat is given by Cv/4c2. Let us also remark

that the specific heat is equal Cv = N2 − 1 in the fuzzy sphere phase and Cv = 0.75(N2 − 1) in

the matrix phase.

We have therefore established the existence of a first order phase transition from the fuzzy

sphere to a matrix phase in agreement with the one-loop calculation. The next step is to add

to the Alekseev-Recknagel-Schomerus model the potential term (8).

4.2 Non-zero mass : the S2
N−to-matrix phase transition

As we have shown m2 plays precisely the role of the mass parameter of the normal scalar

field in the fuzzy sphere phase. From the one-loop calculation as well as from the large 1/N

expansion it is argued that the fuzzy sphere becomes more dominant ( i.e it becomes more

stable under quantum fluctuations ) as we increase the mass m of the scalar mode. In the

limit m−→∞ we expect the matrix phase to disappear altogether. In this limit m−→∞ the

14
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normal scalar field decouples from the pure two dimensional gauge sector and as a consequence

it is natural to conjecture that the matrix phase ( and correspondingly the perturbative UV-IR

mixing phenomena ) has its origin in the coupling of this extra normal mode to the rest of the

dynamics. Another way of putting this conjecture is that the presence of the matrix phase (

which is absent in the continuum theory ) is nothing else but a non-perturbative manifestation

of the perturbative UV-IR mixing. However although this is true to a large extent there are

more non-trivial things happening in this limit as we will now report.

We again measure the action < S > for non-zero values of the mass m for N = 4, 6 and 8.

The results are shown on figure 8. As before the action < S > is scaled as < S > /4c2 as a

function of α̃. It is also immediately clear that the critical point decreases as we increase m. In

other words the fuzzy sphere becomes more dominant as promised by the one-loop calculation.

For example for m2 = 0.5 the actions for N = 4, N = 6 and N = 8 intersect at αs = 1.9±0.1.

The theory predicts a critical value given by α̃∗ = 1.72 which is reasonably close.

We repeat the above calculation for various values of the mass m. The intersection point of

the actions with different N defines the critical value αs. This value follows to a good accuracy

the one-loop prediction given by equation (17). As it turns out this phase transition is also

captured by the minimum of the specific heat ( more on this below ). The phase diagram of

the fuzzy sphere-to-matrix phase transition is shown on figure 9. A very good fit of < S > is

given by the classical action in the fuzzy sphere configuration. For non-zero mass this is given

by the expression

< S >= − α̃4c2

6
− m2

2
c2α̃

4. (23)
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αmi of Cv. For small masses αs coincides with the maximum αma of Cv.
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4.3 Specific heat: the one-plaquette phase transition

As soon as the mass m takes a non-zero value the specific heat Cv starts to behave in a very

different way compared to its behaviour for zero mass. We observe a new phase transition for

large enough masses which resembles very much the one-plaquette phase transition in ordinary

2−dimensional gauge theory. This is measured by the maximum αma of the specific heat. For

small values of the mass parameter m the maximum αma is defined by the position of the peak

of Cv. For large values of m the peak in Cv disappears and αma is given by the value of the

coupling constant at which the specific heat discontinuously jumps to one. We will also measure

the minimum αmi of Cv which will capture the S2
N−to-matrix phase transition.

For small values of m the scaling of the coupling constant α̃ is found to differ only slightly

from the m = 0 case. It is given by

α̂ = α̃

√

1 − 2

N
. (24)

In the large N limit α̂/α̃−→1 and thus this different scaling is only due to finite size effects

and has no other physical significance. This is expected for small masses. αma and αmi are

actually the values of α̂ at the maximum and minimum of the specific heat. The peak of the

specific heat moves slowly to smaller values of the coupling constant as we increase m. The

agreement with the one-loop prediction given by equation (17) as well as with αs is fairly good

and thus in this regime αma is still detecting the S2
N−to-matrix phase transition. Similarly to

the case m = 0 the specific heat Cv/4c2 as a function of α̂ is equal to 1 in the fuzzy sphere

phase. However there is a shallow valley starting to appear for values of α̂ inside the matrix

phase. The values αmi of the minimum of Cv for these small masses are significantly different

from αs ( see the phase diagram on figure 9 ). As an example the data for m2 = 0.25, 4.75 for

N = 6, 8 is shown on figure 10.

As m keeps increasing deviation from the one-loop prediction becomes important. The data

for m2 = 40, 200 for N = 6, 8 is shown on figure 10. We observe that the peak flattens slowly

and disappears altogether when the mass becomes of the order of m2∼10.

Although the peak in Cv disappears we know that the S2
N -to-matrix phase transition is still

present as indicated by the non-vanishing of αs ( from the phase diagram on figure 9 ) . The

physical meaning of the the critical point αma becomes different for large masses. This is where

the one-plaquette phase transition between weak and strong regimes of gauge theory on the

fuzzy sphere occurs. The valley in the specific heat becomes on the other hand deeper and

more pronounced as m increases and its minimum αmi is moving slowly to smaller values of the

coupling constant α̂. By inspection of the data ( phase diagram on figure 9 ) we can see that

αmi and αs starts to agree for larger masses and thus αmi captures exactly the S2
N -to-matrix

phase transition.

The two regimes with m small and m large are thus physically distinct; in the first regime

we have two phases : the fuzzy sphere phase α̃≥αs and the matrix phase α̃≤αs whereas in the

second regime we have three phases. Beside the matrix phase for α̂≤αmi we have two more
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phases where we have a stable fuzzy sphere as the underlying spacetime structure. These two

phases correspond to U(1) gauge theory on the fuzzy sphere S2
N in the weak α̂≥αma and strong

αmi≤α̂≤αma regimes respectively. There exists therefore a triple point where the three phases

coexist.

For large values of m the scaling of the coupling constant α̃ as well as of the mass parameter

m is found to differ considerably from the m = 0 case. It is now given by

ᾱ = α̃
√

N , m̄ =
m

N
. (25)

The theoretical fit (17) will read in terms of ᾱ and m̄ as follows

ᾱ∗ = [
8

m̄2
]
1

4 . (26)

We define the one-plaquette transition point by the value αma of the coupling constant α̂ ( or

equivalently α̃ in the large N limit ) at which the specific heat discontinuously jumps to one.

In terms of ᾱ this is given at the value

αp = αma

√
N. (27)

The fit of the critical value αma for m small is given by equation (17) while for m large we find

that we can fit the data to

αp = 3.35±0.25 + [
0.04

m̄2
]
1

2 . (28)

In other words in the limit m−→∞ we can fit the data to αp = 3.35±0.25. In the next section

we will give a theoretical derivation of the value 3.35 from the one-plaquette approximation of

gauge fields on the fuzzy sphere in the weak regime ᾱ≥αp.

These results are summarized in the phase diagram on figure 11.

Finally we point out that we can estimate the values ᾱT and m̄2
T of the coupling constant ᾱ

and the mass parameter m̄2 at the triple point by equating the fits (26) and (28). We obtain the

two solutions 1) m̄2
T = 0.009 and ᾱT = 5.46 or equivalently log m̄2

T = −4.71 and log ᾱT = 1.7

and 2) m̄2
T = 0.001 and ᾱT = 9.46 or equivalently log m̄2

T = −6.91 and log ᾱT = 2.25. The

triple point must therefore exist between these two points, viz

1.7≤ log ᾱT≤2.25 (29)

and

− 6.91≤ log m̄2
T≤− 4.71. (30)

The most important remark we can draw from this calculation is that the fuzzy sphere phase

bifurcates into two distinct phases ( the weak coupling and the strong coupling phases of the

gauge field ) almost as soon as we tune on a non-zero mass. The models with and without a

mass term are indeed very different.
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in this regime. These two lines seem to bifurcate at the triple point.
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5 The one-plaquette model and 1/N expansion

In this section we will follow [12].

5.1 The one-plaquette variable W

We start by making the observation that in the large m−→∞ limit we can set Φ = 0 since

the normal scalar field becomes infinitely heavy ( m is precisely its mass ) and thus decouples

from the rest of the dynamics. Hence we can effectively impose the extra constraint X2
a = α2c2

on the field Xa in this limit m−→∞. The action (7) with β = −2Mc2α
2 becomes in the limit

m−→∞ first and then N−→∞ a commutative U(1) action on the ordinary sphere.

The aim is to relate the action (7) with the one-plaquette action. To this end we introduce

the 2N×2N idempotent

γ =
1

N
(12N + 2σaLa) , γ2 = 1 (31)

where σa are the usual Pauli matrices. It has eigenvalues +1 and −1 with multiplicities N + 1

and N − 1 respectively. We introduce the covariant derivative Da = La + Aa through a gauged

idempotent γD as follows

γD = γ̂
1√
γ̂2

γ̂ =
1

N
(1 + 2σaDa) = γ +

2

N
σaAa , γ̂2 = 1 +

8
√

c2

N2
Φ +

2

N2
ǫabcσcFab. (32)

Since we are interested in the large m−→∞ limit we set Φ = 0. Clearly γD has the same

spectrum as γ. In fact γD is an element of the dN−Grassmannian manifold U(2N)/U(N +

1)×U(N −1) and hence it contains the correct number of degrees of freedom dN = 4N2 − (N +

1)2 − (N − 1)2 = 2N2 − 2 which is found in a gauge theory on the fuzzy sphere without normal

scalar field.

The original U(N) gauge symmetry acts on the covariant derivatives Da as Dg
a = gDag

+,

g∈U(N). This symmetry will be enlarged to the following U(2N) symmetry. First we introduce

another covariant derivative D
′

a = La +A
′

a through a gauged idempotent γD′ given by a similar

equation to (32). As before we will also set Φ
′

= 0. From the two idempotents γD and γD′ we

construct the link variable W as follows

W = γD′γD. (33)

The extended U(2N) symmetry will then act on W as follows W−→V WV + , V ∈U(2N). This

transformation property of W can only be obtained if we impose the following transformation

properties γD′−→V γD′V + and γD−→V γDV + on γD′ and γD respectively. Hence the U(N)

subgroup of this U(2N) symmetry which will act on Da as Da−→gDag
+ will also have to act

on D
′

a as D
′

a−→gD
′

ag
+. Under these transformations the gauge fields Aa and A

′

a transform as

Aa−→gAag
+ + g[La, g

+] and A
′

a−→gA
′

ag
+ + g[La, g

+] respectively like we want. Remark also
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that for every fixed configuration A
′

a the link variable W contains the same degrees of freedom

contained in γD.

The main idea is that we want to reparametrize the gauge field on S2
N in terms of the

fuzzy link variable W and the normal scalar field Φ. In other words we want to replace the

triplet (A1, A2, A3) with (W, Φ) where W is the object which contains the degrees of freedom

of the gauge field which are tangent to the sphere. Thus in summary we have the coordinate

transformation (A1, A2, A3)−→(W, Φ). We can check that we have the correct measure, viz

∫

dA1dA2dA3 ∝
∫

dWdΦ. (34)

It remains now to show that the enlarged U(2N) symmetry reduces to its U(N) subgroup in the

large N limit. The starting point is the 2N−dimensional one-plaquette actions with positive

coupling constants λ and λ
′

, viz

SP =
N

λ
Tr2N(W + W+ − 2) , S

′

P = −N

λ′
Tr2N(W 2 + W+2 − 2). (35)

We have the path integral

ZP ∝
∫

dγD′dΦ
′

δ(Φ
′

)
∫

W=γ
D

′ γD

dWdΦδ(Φ)eS
P

+S
′

P . (36)

The extra integrations over γD′ and Φ
′

( in other words over D
′

a ) is included in order to

maintain gauge invariance of the path integral. The integration over W is done along the orbit

W = γD′γD inside the full U(2N) gauge group. In the large N limit this path integral can be

written as

ZP =
∫

dA
′

aδ(Φ
′

)
∫

W=γ
D

′ γD

dAaδ(Φ)eSP +S
′

P . (37)

We need now to check what happens to the actions SP and S
′

P in the large N limit. We

introduce the 6 matrices 2Āa = Aa − A
′

a and 2Âa = Aa + A
′

a with the transformation laws

Āa−→gĀag
+ and Âa−→gÂag

+ + g[La, g
+]. For the continuum limit of the action SP + S

′

P we

obtain after a long calculation the effective theory 2[12]

Z
′

P =
∫

dĀaδ
(

1

2
{xa, Āa}

)

eSeff

P (38)

where

Seff
P = N2 log(

Nπλ1

8
) − 16

λ1N3
Tr
(

i[La, Āb] − i[Lb, Āa] + ǫabcĀc

)2

+ O(
1

λN4
) − O(

1

λ′N4
).

(39)

2The path integral over the three matrices Âa is dominated in the large N limit by the configurations Âa = 0.
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The coupling constant λ1 ( which is assumed positive in this classical theory for simplicity ) is

defined in terms of λ abd λ
′

by

− 1

λ1
=

1

λ
− 4

λ′
. (40)

Notice that this effective action is invariant not only under the trivial original gauge trans-

formation law Āa−→Āa but also it is invariant under the non-trivial gauge transformation

Āa−→Āa + g[La, g
+] where g∈U(N). This emergent new gauge transformation of Āa is iden-

tical to the transformation property of a U(1) gauge field on the sphere. Therefore the action

Seff
P given by the above equation is essentially the same U(1) action −(S − S0) obtained from

(7) provided we make the following identification

16

N2λ1
≡ 16

N2
(−1

λ
+

4

λ′
) =

1

4g2
≡ α̃4

4
≡ ᾱ4

4N2
(41)

between the U(1) gauge coupling constant g on the fuzzy sphere and the one-plaquette model

coupling constant λ1. Let us also remark that in this large N limit in which g is kept fixed

the one-plaquette coupling constant λ1 goes to zero. Hence the fuzzy sphere action with fixed

coupling constant g corresponds in this particular limit to the one-plaquette gauge field in the

weak regime and agreement between the two is expected only for weak couplings ( large values

of α̃ ).

5.2 The one-plaquette path integral

Let us decompose the 2N×2N matrix W as follows

W =

(

W1 W12

−W+
12 −W2

)

. (42)

In particular W1 = W+
1 is an (N +1)×(N +1) matrix, W2 = W+

2 is an (N−1)×(N −1) matrix

and W12 is an (N +1)×(N−1) matrix whereas the hermitian adjoint W+
12 is an (N−1)×(N +1)

matrix. Since W+W = 1 we have the conditions

W+
1 W1 + W12W

+
12 = 1 , W+

2 W2 + W+
12W12 = 1 , W1W12 + W12W2 = 0. (43)

Let us recall that since the integration over W is done along the orbit W = γD
′γD inside U(2N)

and since in the large N limit both γD′ and γD approach the usual chirality operator γ = naσa

we see that W approaches the identity matrix in this limit. Thus we have the behaviour

W1 = (γD′γD)1−→1N+1, −W2 = −(γD′γD)2−→1N−1 and W12 = (γD′γD)12−→0.

The main approximation adopted in [12] consisted in replacing the constraint W = γD′γD

with the simpler constraint W−→12N by taking the diagonal parts W1 and −W2 to be two

arbitrary, i.e independent of γD′ , unitary matrices which are very close to the identities 1N+1

and 1N−1 respectively while allowing the off-diagonal parts W12 and W+
12 to go to zero. We
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observe that by including only W1 and −W2 in this approximation we are including in the limit

precisely the correct number of degrees of freedom tangent to the sphere, viz 2N2. Thus in this

approximation the integrations over Φ, Φ
′

and γD′ decouple while the integrations over W12

and W+
12 are dominated by W12 = W+

12 = 0. There remains the two independent path integrals

over W1 and −W2 which are clearly equal in the strict limit since the matrix dimension of W1

approaches the matrix dimension of −W2 for large N . Thus the path integral Z
′

P reduces to

Z
′

P ∝ [ZP (λ, λ
′

)]2 (44)

where

ZP (λ, λ
′

) =
∫

dW1 exp
{

N

λ
Tr(W1 + W+

1 − 2) − N

λ′
Tr(W 2

1 + W+2
1 − 2)

}

. (45)

5.3 Saddle point solution

The path integral of a 2−dimensional U(N) gauge theory in the axial gauge A1 = 0 on a

lattice with volume V and lattice spacing a is given by ZP (λ,∞)V/a2

where ZP (λ,∞) is the

above partition function (45) for λ
′

= ∞, i.e the partition function of the one-plaquette model

SP = N
λ
Tr(W1 + W+

1 − 2). Formally the partition function ZP (λ, λ
′

)V/a2

for any value of the

coupling constant λ
′

can be obtained by expanding the model S1 + S
′

1 around λ
′

= ∞. Thus it

is not difficult to observe that the one-plaquette action SP +S
′

P does lead to a more complicated

U(N) gauge theory in two dimensions.

Therefore we can see that the partition function Z
′

P of a U(1) gauge field on the fuzzy

sphere is proportional to the partition function of a generalized 2−dimensional U(N) gauge

theory in the axial gauge A1 = 0 on a lattice with two plaquettes. This doubling of plaquettes

is reminiscent of the usual doubling of points in Connes standard model. We are therefore

interested in the N−dimensional one-plaquette model

ZP (λ, λ
′

) =
∫

dWexp
(

N

λ
Tr(W + W+ − 2) − N

λ′
Tr(W 2 + W+2 − 2)

)

. (46)

Let us recall that dW is the U(N) Haar measure. We can immediately diagonalize the link

variable W by writing W = TDT+ where T is some U(N) matrix and D is diagonal with

elements equal to the eigenvalues exp(iθi) of W . In other words Dij = δijexp(iθi). The

integration over T can be done trivially and one ends up with the path integral

ZP (λ, λ
′

) =
∫

∏N

i=1
dθie

NSN . (47)

The action SN is given by

SN =
2

λ

∑

i

cos θi −
2

λ′

∑

i

cos 2θi +
1

2N

∑

i6=j

ln
(

sin
θi − θj

2

)2

− 2N

λ
+

2N

λ′
. (48)
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Since the link variable W tends to one in the large N−→∞ limit we can conclude that all the

angles θi tend to 0 in this limit and thus we can consider instead of the full one-plaquette model

action (48) the small one-plaquette model action

SN = − 1

λ2

∑

i

θ2
i +

1

2N

∑

i6=j

ln
(θi − θj)

2

4
+ O(θ4). (49)

λ2 is given by

2

λ2
= − 2

λ1
+

1

6
. (50)

For the consistency of the solution below the coupling constant λ1 must be negative ( as opposed

to the classical model where λ1 was assumed positive ) and as a consequence the coupling

constant λ2 is always positive. As it turns out most of the classical arguments of section 4.1

will go through unchanged when λ1 is taken negative. Thus in this present quantum theory of

the model we will identify the effective one-plaquette action Seff
P with the fuzzy sphere action

S − S0 ( which is to be compared with the classical identification −Seff
P = S − S0) and hence

we must make the following identification of the coupling constants

− 16

N2λ1

=
1

4g2
=

ᾱ4

4N2
. (51)

Furthermore it is quite obvious that the expansion (49) will only be valid for small angles θi in

the range −1
2
≤θi≤1

2
. Let us also note that the action (49) can be obtained from the effective

one-plaquette model

Seff
P =

2

λeff
2

Tr(Weff + W+
eff − 2)

=
2

λeff
2

∑

i

cos θeff
i − 2N

λeff
2

. (52)

For small θeff
i in the range −1≤θeff

i ≤1 the total effective one-plaquette action becomes

Seff
N = − 1

λeff
2

∑

i

(θeff
i )2 +

1

2N

∑

i6=j

ln
(θeff

i − θeff
j )2

4
+ O((θeff)4). (53)

The action (53) must be identical to the action (49) and hence we must have θeff
i = 2θi and

λeff
2 = 4λ2.

The saddle point solution of the action (52) must satisfy the equation of motion

2

λeff
2

sin θeff
i =

1

N

∑

j 6=i

cot
θeff

i − θeff
j

2
. (54)

In the continuum large N limit we introduce a density of eigenvalues ρ(θ) and the equation of

motion becomes
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2

λeff
2

sin θeff =
∫

dτeffρ(τeff) cot
θeff − τeff

2
. (55)

By using the expansion cot θ−τ
2

= 2
∑∞

n=1 ( sin nθ cos nτ − cos nθ sin nτ) we can solve this equa-

tion quite easily in the strong-coupling phase ( large values of λ2 ) and one finds the solution

ρ(θeff) =
1

2π
+

1

πλeff
2

cos θeff . (56)

However it is obvious that this solution makes sense only where the density of eigenvalues is

positive definite, i.e for λeff
2 such that

1

2π
− 1

πλeff
2

≥0 ⇔(λeff
2 )∗ = 2 ⇔λ∗

2 = 0.5. (57)

In the continuum large N limit where α̃4 is kept fixed instead of λ1 we can see that 1
λ1

scales

with N2 and as a consequence λ2 = −λ1 = 64
N2α̃4 . Thus the critical value λ2

∗ = 0.5 leads to the

critical value

ᾱ4
∗ =

64

λ∗
2

= 128 ⇔ ᾱ∗ = 3.36 (58)

which is to be compared with the observed value

ᾱ∗ = 3.35±0.25. (59)

This strong-coupling solution (56) should certainly work for large enough values of λ2. However

this is not the regime we want. To find the solution for small values of λ2 the only difference

with the above analysis is that the range of the eigenvalues is now [−θ∗, +θ∗] instead of [−π, +π]

where θ∗ is an angle less than π which is a function of λ2. It is only in this regime of small

λ2 where the fuzzy sphere action with fixed coupling constant g is expected to correspond to

the one-plaquette model. Indeed the fact that W−→1 in the large N limit is equivalent to the

statement that the one-plaquette model is in the very weak-coupling regime. In the strong-

coupling region deviations become significant near the sphere-to-matrix transition point.

In the ’very’ weak-coupling regime the saddle point equation reduces to

2θi

λ2
=

2

N

∑

j 6=i

1

θi − θj
(60)

This problem was easily solved using matrix theory techniques in [12]. See also [25]. In the

large N−→∞ we find the density of eigenvalues

ρ(θ) =
1

πλ2

√

2λ2 − θ2. (61)
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It is obvious that this density of eigenvalues is only defined for angles θ which are in the range

−
√

2λ2≤θ≤
√

2λ2. However the value of the critical angle θ∗ should be determined from the

normalization condition
∫ θ∗
−θ∗

dθρ(θ) = 1. This condition yields the value

θ∗ =
√

2λ2. (62)

The fuzzy one-plaquette third order phase transition happens at the value of the coupling

constant λ2 = 0.5 where the eigenvalues eiθi fill half of the unit circles. This half is due to the

fact that θeff
i = 2θi.

In [12] we also computed the predictions coming from this model for the free energy and spe-

cific heat. We found very good agreement between the fuzzy one-plaquette model and the data

in the weak-coupling phase and even across the transition point to the strong-coupling phase

until the matrix-to-sphere transition point where deviations become significant. In particular

the specific heat is found to be equal to 1 in the fuzzy sphere-weak coupling phase of the gauge

field which agrees with the observed value 1 seen in our Monte Carlo simulation. The value 1

comes precisely because we have two plaquettes which approximate the noncommutative U(1)

gauge field on the fuzzy sphere.

6 Conclusion

In this article we have determined to a large extent the phase diagram of noncommutative

U(1) gauge theory in two dimensions using the fuzzy sphere as a non-perturbative regulator.

The central tool we employed was Monte Carlo simulation and in particular the Metropolis

algorithm.

We have identified three distinct phases. 1) A matrix phase in the strong coupling regime.

The order parameter < TrXaXa >= 0 in this phase. 2) A fuzzy sphere phase at weak coupling

with order parameter < TrXaXa > 6=0 and with constant specific heat. 3) A new strong

coupling fuzzy sphere phase. Here the fluctuations are around a fuzzy sphere background, i.e

< TrXaXa > 6=0, in addition the specific heat is non-constant in this phase.

The transition between the weak and strong coupling fuzzy sphere phases is third order.

The other two transitions appear to be first order. We have clear numerical evidence for a

jump in the internal energy < S > between the matrix and weak coupling fuzzy sphere phase.

The corresponding jump in < S > has become smaller or disappeared in the strong coupling

fuzzy sphere to matrix phase transition. However the order parameter < TrXaXa > still jumps

discontinuously. We observe that for the m = 0 model the specific heat becomes constant in

both the strong coupling matrix phase ( Cv = 3
4
N2 ) and the weak coupling fuzzy sphere phase

( Cv = N2 ). As the mass m2 increases a new third phase opens up and the three phases meet

at a triple point.

In this article we have also confirmed the theoretical one-loop prediction of the S2
N−to-

matrix critical line [22]. The transition between strong and weak couplings fuzzy sphere phases

is found to agree with the 1
N

expansion prediction of the one-plaquette critical line in the infinite
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mass limit. It seems that near these lines these approximations ( the one-loop and the one-

plaquette ) are essentially exact. We also gave a Monte Carlo measurement of the triple point

where the three phases meet.

We would like to indicate that a high precision measurement of the one-plaqutte critical line

and the triple point would be highly desirable. We also lack a theoretical control of the triple

point. Improvement of the one-plaquette approximation of the NC U(1) gauge field on the

fuzzy sphere S2
N is necessary. In particular it would be very interesting to have an alternative

more rigorous derivation of the one-plaquette critical value 3.35. Furthermore we believe that

an extension of this approximation to 1) the regime of small masses and 2) the strong-coupling

phase of the gauge theory is possible and needed. The Monte Carlo measurement and the

one-loop theoretical description of the S2
N−to-matrix critical line are on the other hand very

satisfactory.

The most natural generalization of this work is Monte Carlo simulation of fuzzy fermions

in two dimensions [27] and fuzzy topological excitations [26]. In particular our current project

consists of the simulation of the NC Schwinger model and the NC two dimensional QCD on

the fuzzy sphere. Then one must contemplate going to NC 4 dimensions with full QCD. Early

steps towards these goals were taken in [28] and in the first reference of [15]. Supersymmetric

models are also possible and in some sense natural [29]. It would be nice to have Monte Carlo

control over such supersymmetry.
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A The order parameters and probability distribution

In most of this section we restrict our discussion to the case m = 0. The case m6=0 has

the same order parameters and probability distribution and we can show that they behave in

exactly the same way.

A.1 Order parameters

The model (7) is symmetric under U(N) gauge transformations of the matrices Xa and as

a consequence we can only attach a physical meaning to gauge invariant quantities which are

constructed out of Xa. In other words we have to measure gauge invariant observables. Let us

introduce the scalar field Φ̃ defined by

Φ̃ =
√

4c2α
2Φ + α2c2≡

3
∑

a=1

X2
a . (63)
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This field Φ̃ can be decomposed in the basis of N×N polarization tensors Ŷlm as follows

Φ̃ =
N−1
∑

l=0

l
∑

m=−l

φlmŶlm. (64)

We remark that Ŷ00 = 1N , Ŷ1±1 = ±1√
2

√

3
c2

L±, Ŷ10 =
√

3
c2

L3 and since X+ = X we must also

have (φ∗)lm = (−1)mφl−m. The total power in this field is given by

P≡ <
1

N
TrΦ̃2 >=<

N−1
∑

l=0

l
∑

m=−l

|φlm|2 > . (65)

Another gauge invariant quantity we can measure is the power in the l = 0 modes defined by

P0≡ < (
1

N
TrΦ̃)2 >=< φ2

00 > . (66)

The data for P and P0 is given in figure 12. The collapsed data is given in terms of P̂ = N2P
c2
2

and P̂0 = N2P0

c2
2

as functions of α̃. From these results we can conclude that in the fuzzy sphere

phase P = P0 and thus the scalar field Φ̃ is proportional to the identity matrix since all its

power is localized in the zero mode, i.e we have Φ̃ =
∑3

a=1 X2
a = φ001N . Furthermore a fit

is given by P = P0 = α4c2
2 and hence we have essentially φ00 = α2c2 in this phase which is

consistent with the equilibrium configuration Xa = αLa as expected.

This result is confirmed by measuring the observables

p1 =<
1

N
TrX2

1 > , etc. (67)

The data for N = 6, 8 is shown on figure 13. The collapsed quantities are p̂1 = Np1

c2
, etc. We

find that in the fuzzy sphere phase we can fit the data to pa = α2c2
3

which is consistent with the

number 1
N

TrL2
1 = 1

N
TrL2

2 = 1
N

TrL2
3 = c2

3
.

Let us now introduce the following 3 scalar fields ((a, b, c) = (1, 2, 3), (3, 1, 2), (2, 3, 1) )

Φab≡i[Xa, Xb] (68)

The total powers associated with these scalar fields are given by

Pab≡ <
1

N
TrΦ2

ab >=<
N−1
∑

l=0

l
∑

m=−l

|(φab)lm|2 > . (69)

In this case the powers in the l = 0 modes vanish by construction. The definition of the modes

(φab)lm is obvious by analogy with equation (64). The results are displayed on figure 14. The

collapsed quantities are P̂ab = N2Pab

c2
. Again we can fit the data to the theoretical prediction

Pab = α4c2
3

to a high degree of accuracy in the fuzzy sphere phase. Remark that the Yang-

Mills action is given by < Y M >= N2

2
(P12 + P31 + P23). In the fuzzy sphere we clearly have

< Y M >= 3N2

2
P12 = 3N2

2
P31 = 3N2

2
P23.
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Figure 12: The powers P̂ , P̂0 for N = 6, 8.

We will also measure the following gauge invariant quantities

pcs1 = −i <
1

N
TrX1X2X3 > , pcs2 = −i <

1

N
TrX1X3X2 > . (70)

The results are shown on figure 15. In the fuzzy sphere phase we expect that the power pcs1

behaves as pcs1 = α3c2
6

whereas the power pcs2 behaves as pcs2 = −α3c2
6

. These are precisely

the correct fits in the fuzzy sphere phase found for N = 4, 6 and 8 respectively. The collapsed

powers are p̂cs1 =
√

N3pcs1

4c2
, etc. We remark that the Chern-Simons-like action is given by <

CS >= −2αN2(pcs1−pcs2). In the fuzzy sphere phase we clearly have < CS >= −4αN2pcs1 =

4αN2pcs2.

A.2 Geometric interpretation

The covariant derivatives Xa can in general be expanded in terms of N×N spherical har-

monics Ŷlm as follows

Xa = α
3
∑

b=1

xb
aLb + X̄a , X̄a = (xa)00Ŷ00 +

∞
∑

l=2

l
∑

m=−l

(xa)lmŶlm. (71)

The three vectors ~xa are the modes of Xa with angular momentum l = 1 since Ŷ1±1 =

±
√

3
2c2

L± = ±
√

3
2c2

(L1±iL2) and Ŷ10 =
√

3
c2

L3. They are vectors in R3 which define the

geometry of a parallelepiped.This geometry is precisely determined by the dynamics of Xa

given by the action (7). The order parameters p̂a, P̂ab and p̂cs1 − p̂cs2 have the simple interpre-

tation of the lenghts squared, the areas of the faces squared and the volume respectively of this

parallelepiped. We have ( by setting X̄a = 0 ) the following expressions

l2 = p̂1 =
1

3
α̃2~x2

1 , etc
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a2 = P̂12 =
1

3
α̃4(~x1×~x2)

2 , etc

v = p̂cs1 − p̂cs2 =
1

12
α̃3~x1.(~x2×~x3).

(72)

The full effective action in terms of the vectors ~xa takes the form

S[~xa] =
c2α̃

4

3

[

1

2
(~x1×~x2)

2 +
1

2
(~x1×~x3)

2 +
1

2
(~x2×~x3)

2 − 2~x1.(~x2×~x3) − m2~x2
1 − m2~x2

2 − m2~x2
3

+
m2

2
dabcd(x

a
1x

b
1 + xa

2x
b
2 + xa

3x
b
3)(x

c
1x

d
1 + xc

2x
d
2 + xc

3x
d
3)
]

+ S̄[~xa]. (73)

S̄[~xa] is the quantum action obtained by integrating out the field X̄a ( equation (71) ) from

the theory. The coefficients dabcd can be computed easily from the definition 1
N

TrLaLbLcLd =
c2
2

3
dabcd. The original U(N) gauge symmetries are now implemented by O(3) orthogonal symme-

tries which take the 3−dimensional vectors ~xa to ~xR
a = R~xa. The effect of quantum fluctuations

in this problem is to deform the shape of the parallelepiped. In particular the first order phase

transition from the fuzzy sphere to the matrix phase is now seen as the transition where the

parallelepiped collapses. In terms of the lengths squared l2, the areas of the faces squared a2

and the volume v we have

l2 =
1

c2
< TrX2

1 >=

{

α̃2

3
fuzzy sphere phase

l2m matrix phase.

}

, etc. (74)

a2 = −N

c2

< Tr[X1, X2]
2 >=

{

α̃4

3
fuzzy sphere phase

a2
m matrix phase.

}

, etc. (75)
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v = −i
√

N

4c2

< TrX1[X2, X3] >=

{

α̃3

12
fuzzy sphere phase

vm matrix phase.

}

. (76)

From the data we can see that the areas of the faces squared a2
m and the volume vm in the

matrix phase are constant approaching the values 2 and 0 respectively for small values of the

coupling constant α̃. However the length squared l2m scales as N− 3

2 and thus it becomes 0 in

the limit.

A.3 Probability distribution

As we said before for m = 0 we can take Xa to be traceless without any loss of generality

and consider only the probability distribution and the partition function given by

P[Xa] =
δ(TrXa)e

−S[Xa]

Z[0]
, Z[0] =

∫

[dXa]δ(TrXa)e
−S[Xa]. (77)

The classical absolute minimum of the model is given by Xa = αLa. The quantum minimum is

given by Xa = αφLa where αφ plays the role of the radius of the sphere with a classical value

equal α.The complete one-loop effective potential in this configuration is given in the large N

limit by the formula (10). The solution φ of the equation of motion φ4−φ3 + 2
α̃4 = 0 approaches

the classsical value 1 as one increases the coupling constant α̃ much above the critical value α̃∗.

Indeed it is not difficult to check that up to the order of 1
α̃8 we have

φ = 1 − 2

α̃4
− 12

α̃8
+ O(

1

α̃12
). (78)
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In this section we report on the measurement of the radius of the fuzzy sphere. A natural

definition of the radius of S2
N is given by the observable

R2 =
1

α2c2
<

1

N

∑

a

TrX2
a > . (79)

The aim now is to make a precise measurement of φ by measuring R2 and its probability

distribution P(R2). Numerically we thermalize and then we take Tmont measurements of R2,

we determine the minimum and maximum values R2
mi and R2

ma respectively and divide the

interval [R2
mi, R

2
ma] into q = 26 + 1 smaller intervals of equal length δ =

R2
ma−R2

mi

q
. For every

measurement R2
i ,i = 1, ..., Tmont, we compute the integer

j =

∣

∣

∣

∣

integer part
(

R2
i − R2

mi

δ

)
∣

∣

∣

∣

. (80)

It is clear that the value R2
i will lie exactly in the j−th interval, in other words

R2
i = R2

mi + jδ. (81)

We count the number of times N(j) we get the value R2
i and we define the corresponding

probability P(j) by

P(j) =
N(j)

Tmont
. (82)

Remark that this probability satisfies
∑q

j=0 P(j) = 1. In other words for all j = 0, ..., q we have

P(j)≤1.

We observe two radically different behaviour depending on wether we are inside the fuzzy

sphere phase or the matrix phase. Figure 16 shows the probability distribution in the fuzzy

sphere phase whereas figure 17 shows the probability distribution in the matrix phase.
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Once again we find a good agreement between the theory and the simulation in the fuzzy

sphere phase. More precisely we find that the value of R2 depends explicitly but slowly on the

coupling constant α̃ but it does not depend on N . In figure 13 we see clearly that the value

of R2 at the peak of the probability P is increasing with increasing α̃. We also observe clearly

how the value of R2 at the peak is more or less the same for a given value of α̃ with different

N . These results are consistent with equation (78).

In figure 17 we plot the probability distribution P as a function of r2 = α2c2R
2 for N = 6, 8

and for values of the coupling constant which are less than 2. In other words we are inside the

matrix phase. For α̃ = 0.5 , 1 and 1.5 and for all the values of N we observe that the probability

distribution in this phase peaks essentially around the same value which is estimated to be in

the range r2 = 2.4 − 2.8. Hence we can conclude immediately that for a fixed value of the

coupling constant α inside the matrix phase the order parameter R2 = r2

α2c2
will be peaked

around smaller and smaller values as we increase N . This means in particular that the Chern-

Simons-like term in the action is playing no role in this matrix phase and as a consequence we

have no an underlying spacetime structure of a fuzzy sphere.

The results are summarized as follows:

R2 =
1

α2c2

<
1

N

3
∑

a=1

TrX2
a >=

{

1 fuzzy sphere phase

0 matrix phase.

}

. (83)
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