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Abstract

The Dirac-Yang monopoles are singular Yang–Mills field configurations in all
Euclidean dimensions. The regular counterpart of the Dirac monopole in D = 3 is
the t Hooft-Polyakov monopole, the former being simply a gauge transform of the
asymptotic fields of the latter. Here, regular counterparts of Dirac-Yang monopoles
in all dimensions, are described. In the first part of this talk the hierarchy of Dirac–
Yang (DY) monopoles will be defined, in the second part the motivation to study
these in a topoical context will be briefly presented, and in the last part, two classes
of regular counterparts to the DY hierarchy will be presented.

1 The Dirac–Yang hierarchy in D ≥ 3

The Dirac [1] monopole can be constructed by gauge transforming the asymptotic ’t Hooft-
Polyakov monopole [2] in D = 3, which can be taken to be spherically symmetric 1, such
that the SO(3) isovector Higgs field is gauged to a (trivial) constant, and the SU(2) ∼
SO(3) gauge group of the Yang-Mills (YM) connection breaks down to U(1) ∼ SO(2),
the resulting Abelian connection developing a line singularity on the positive or negative
(x3 =)z-axis.

In exactly the same way, the Yang [3] monopole can be constructed by gauge trans-
forming the asymptotic D = 5 dimensional ’monopole’ [4] such that the such that the
SO(5) isovector Higgs field is gauged to a (trivial) constant, and the SO(5) gauge group
of the YM connection breaks down to SO(4), the resulting non Abelian connection de-
veloping a line singularity on the positive or negative x5-axis. In fact, the residual non
Abelian connection can take its values in one or other chiral representations of SU(2), as
formulated by Yang [3], but this is a low dimensional accident which does not apply to the
higher diemnsional analogues to be defined below, all of which are SO(D−1) connctions.

1It is not infact necessary to restrict to spherically symmetric fields only. By choosing to start with
the asymptotic axially symmetric fields characterised with vorticity n, the gauge tranformed connection
is just n times the usual Dirac monopole field.
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Just like the ’t Hooft-Polyakov monopole monopole is the regular counterpart of the Dirac
monopole, so is the D = 5 dimensional ’monopole’ [4] the regular counterpart of the Yang
monopole.

The above two definitions of the Dirac and of the Yang monopoles will be the template
for our definition of what we will refer to as the hierarchy of Dirac–Yang (DY) monopoles
in all dimensions. The two examples just given are both in odd (D = 3 and D = 5)
dimensions, but the DY hierarchy is in fact defined in all, including even, dimensions.

Just as the Dirac monopole can be defined as a gauge transform of the asymptotic
spherically symmetric ’t Hooft-Polyakov monopole, our definition for the DY fields in
arbitrary D dimensions starts from the (non Abelian) SO(D) YM field Ai and the D-
tuplet Higgs field Φ

A
(±)
i =

1

r
Σ

(±)
ij x̂j , Φ = x̂i Σ

(±)
i,D+1 , for odd D (1)

A
(±)
i =

1

r
Γij x̂j , Φ = x̂i Γi,D+1 , for even D . (2)

x̂i = xi

r
, i = 1, 2, .., D, is the unit radius vector. Γi are the Dirac gamma matrices in D

dimensions with the chiral matrix ΓD+1 for even D, so that

Γij = −
1

4
[Γi, Γj]

are the Dirac representations of SO(D). The matrices Σij , employed only in the odd D

case, are

Σ
(±)
ij = −

1

4

(

1I ± ΓD+2

2

)

[Γi, Γj] ,

ΓD+1 being the chiral matrix in D +1 dimensions, and Σ
(±)
ij being one or other of the two

possible chiral representations of the SO(D) subgroup of SO(D + 1).
That (1)-(2) are the asymptotic fields of regular monopoles in D dimensions is the

subject of the last part of this talk, while in the next part we will argue why such regular
finite energy monopoles are relevant. Here, we define the DY field configurations as gauge
transforms of (1)-(2).

The DY monopoles result from the action of the following SO(D) gauge group element

g± =
(1 ± cos θ1)1I ± ΓDΓαx̂α sin θ1

√

2(1 ± cos θ1)
, (3)

having parametrised the IRD coordinate xi = (xα, xD) in terms of the radial variable r

and the polar angles
(θ1, θ2, .., θD−2, ϕ) (4)

with the index alpha running over α = 1, 2, .., D − 1. The meaning of the ± sign in (3)
is as follows: Choosing these signs the Dirac line sinularity will be along the negative
or positive xD–axis, respectively. (In the case of odd D if we chose the opposite sign
on Σ in (1) the situation will be reversed.) In other words the DY field will be the
SO(D − 1) connection on the upper or lower half D − 1 sphere, SD−1, respectively, the
transition gauge transformation being given by g+g−1

−
. Notice that the dimensionality of

the matrices g, (3), and those of both (1) and (2), match in each case.
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In D > 3 dimensions, the gauge group element (3) was first employed in [5] and [6] in
D = 4, and was subsequestly extended to all D in [7] and [8].

The result of the action of (3) on (1) or (2),

Ai → gAig
−1 + g∂ig

−1

Φ → gΦg−1

yields the required DY fields Â
(±)
i = (Â(±)

α , Â
(±)
D )

Â(±)
α =

1

r(1 ± cos θ1)
Σαβ x̂β , Â

(±)
D = 0 , for odd D (5)

Â(±)
α =

1

r(1 ± cos θ1)
Γαβx̂β , Â

(±)
D = 0 , for even D , (6)

and the Higgs field is gauged to a constant, i.e. it is trivialised.
The components of the DY curvature F̂

(±)
ij = (F̂

(±)
αβ , F̂

(±)
αD ) follow from (5)-(6) straight-

forwardly. To save space we give only the curvature corresponding to (5)

F̂
(±)
αβ = −

1

r2

[

Γαβ +
1

(1 ± cos θ1)
x̂[α Γβ]γx̂[γ

]

(7)

F̂
(±)
αD = ±

1

r2
Γαγ x̂γ , (8)

where the notation [αβ] implies the antisymmetrisation of the indices, and the components
of the curvature for even D corresponding to (6) follows by replacing Γ in (7)-(8) with
Σ(±). The parametrisation (5)-(6) and (7)-(8) for the DY field appeared in [7] and [8].

That the DY field (5)-(6) in D dimensions, constructed by gauge transforming the
asymptotic fields (1)-(2) of a SO(D) EYM system, is a SO(D − 1) YM field is obvious.
For D = 3 and D = 5, these are the Dirac [1] and Yang [3] monopoles, respectively.

In retrospect, we point out that to construct DY monopoles it is not even necessary
to start from a YMH system, but ignoring the Higgs field and simply applying the gauge
transformation (3) to the YM members of (1)-(2) results in the DY monopoles (5)-(6). In
other words the only function of the Higgs fields in (1)-(2) is the definition of the gauge
group element (3) designed to trivialise it.

We will henceforth restrict our detailed considerations concerning the regular counter-
parts of the DY monopoles, to the first two lowest dimensions, namely D = 3 and D = 4.
This excludes even the Yang monopole itself, but it is more instructive since we then deal
both with an odd and and even D. Before that however, we will motivate briefly the role
of the regular monopoles in the next part of this talk.

2 Motivation

Field theory solitons in higher dimensions find application [9] as the D-branes of string
theory, and also, for open heterotic strings [10] in the absence of gravity. As solitons of
string theory, D-branes must be finite energy/mass solutions of the appropriate gravitat-
ing field theories.
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When non Abelian matter gravitates, there occur both regular and black hole solutions
with finite mass/energy, in contrast with Abelian matter where only black hole solutions
exist. In 3 + 1 spacetime dimensions the gravitating YM field, both in the absence [11]
and in the presence [12, 13] of the isovector Higgs field has been intensively studied. The
Dirac monopole field features in these solutions as a limiting field configuration in the
form of Reissner–Nordstrøm (RN) solutions of the Einstein–Maxwell system.

In D + 1 spacetime dimensions, with D ≥ 4, the gravitating YM field again has both
regular [14] and black hole [15] solutions with finite mass/energy. The situation is the same
also in the presence of a negative [16] and a positive [17] cosmological constant. Again,
higher dimensional Reissner–Nordstrøm (RN) solutions appear as limiting solutions [18],
but the latter feature non Abelian gauge fields now, unlike in the D = 3 case where
the gauge sector of the RN field is the usual, Abelian, Maxwell field. These are the DY
monopoles introduced above.

The fields DY (5)-(6) and (7)-(8) appeared recently in [19], where it was shown that
they satisfy the gravitating YM equation (for the usual p = 1 YM system) is satisfied by
them in all dimensions D, with or without cosmological constant. This is not surprising,
since in the presence of gravity the second order field equations to YM systems consisting
of the superposition of all possible members of p-hierarchy (defined below by (11)) are
satisfied by DY fields.

In [14, 15] we have constructed finite mass solutions to the (p = 1) + (p = 2) YM
model in D = 4, 5, 6, 7, or spacetimes d = 5, 6, 7, 8 for the spherically symmetric SO(D)
YM connection

Ai =
1 − w(r)

r
Σij x̂j . (9)

Setting the function w(r) = 0 by hand reduces (9) to the singular Wu-Yang (WY) part
of the field (1)-(2), which we know are gauge equivalent to the DY fields (5)-(6) and
hence equations satified by the WY fields are also satisfied by the DY fields. This result
carries through to the full superposed YM hierarchy in any given dimension, subject to
satisfying finite energy scaling requirements. Of course when gravitating YM solutions
are constructed, w(r) = 0 is not set by hand. These are the DY fields which arise as the
RN configurations for as limiting solutions [18].

There remains to see what the interesting properties of the gravitating WY (with
w = 0 in (9)) fields, are. Clearly, these have to be black hole solutions since the WY fields
are singular at the origin. In [16] we have given the mass function m(r) (first member of
Eqn (24) therein) for the field (9) in arbitrary dimensions, for the gravitating YM system
consisting of the full superposition of p-YM terms. In the WY limit, i.e. with w = 0, this
is

m′ =
P

∑

p=1

τp

2(2p − 1)!

(d − 3)!

(d − 2[p + 1])!
r−(4p−d+2) , (10)

where d = D + 1 is the dimension of the spacetime. Obviously the mass, namely the
integral of (10), will diverge for certain combinations of p and d. Most importantly, for
d ≥ 5 (i.e. for “higher dimensions”) the usual p = 1 YM term will result in infinite mass,
and for the mass to be finite the least nonlinear YM term must be the p = 2 one. Thus,
restricting to the usual YM term as in [19] leads to infinite mass!

In [19] it is commented that the advantage of employing singular DY (or alternatively
WY as seen above) solutions is, that they are evaluated in closed form, unlike the regular
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gravitating matter solutions as e.g. [11] in D = 3 and [14] in D ≥ 4. To retain this feature
– of closed form black hole gravitating non Abelian matter solutions – and to have finite
mass, the appropriate p-YM rather than (usual) p = 1-YM terms must be employed.

Strictly speaking, for the purposes of picking out the correct p-YM terms in (10), there
is no need to start from the full theory that supports regular finite energy topologically
stable counterparts of the DY monopoles. One could simply consider the (singular) black
hole solution featuring the DY fields (5)-(6), or even more directly the corresponding
Wu-Yang fields [7, 8, 25].

3 The regular counterparts of DY fields

Regular solutions to gravitating non Abelian (YM) matter fall into two main classes. The
first of these is simply the solutions to the models described by the Lagrangians consisting
of the superposition of (possibly) all members of the YM hierarchy 2 [20]

LP =
√

−detg
P

∑

p=1

τp

2(2p)!
Tr F (2p)2 , (11)

F (2p) denoting the p fold totally antisymmetrised product

F (2p) ≡ Fµ1µ2...µ2p
= F ∧ F ∧ ... ∧ F , p times ,

of the YM curvature, F (2) = Fµν , in this notation. Clearly, the highest value P of p in
(11) is finite and depends on the dimensionality d = D +1 of the spacetime. To complete
the definition of the models (11), the gauge group G must be specified. With our aim
in the present paper, of constructing static spherically symmetric solutions in d = D + 1
spacetime dimensions, the smallest such gauge group is G = SO(d − 1) = SO(D).

To (11) is added some gravitational Lagrangian, e.g. Einstein–Hilbert or Gauss–
Bonnet, or a superposition of these, or possibly even a dilaton term. Many such studies
[14, 15, 16, 18] were carried out and the regular solutions were constructed. In [18] in
particular it was pointed out that the SO(2) Reissner–Nordstrøm fixed point occuring in
d = 3+1 has its SO(D−1) analogues for all D. These are indeed the DY monopole fields
discussed in part 1 above, although in [18] we did not use that nomenclature, referring to
these simply as RN fields. Before proceeding to the second class of models, we end our
discussion of the present class by pointing out that the finite mess/energy solutions they
support do not always survive the decoupling of gravity, e.g. in the d = 4 case [11].

2The YM hierarchy of SO(4p) gauge fields in the chiral (Dirac matrix) representations consisting only
of the p-YM term in (11) was introduced in [20] to construct selfdual instantons in 4p dimensions. (The
selfduality equation for the p = 2 case was solved indepenently in [21], whose authors subsequently stated
in their Erratum, that this solution was the instanton of the p = 2 member of the hierarchy introduced
earlier in [20].) The instantons of the generic system (11), while stable, are not selfdual and cannot
be evaluated in closed form and are constructed numerically [24]. Restricting ourselves here to finite
action (instanton) solutions only, it is worth mentioning an altenative hierarchy which supports selfdual
instantons in 4p + 2 dimensions [22, 23]. While it is straightforward to construct spherically symmetric
solutions with gauge group SO(4p + 2) in the chiral Dirac representations, these selfduality equations
are even more overdetermined than those of the 4p dimensional hierarchy. The action densities of these
systems are not positive definite so that, while the selfduality equations do solve the second order field
equations, they do not saturate a Bogomol’nyi bound and hence are not necessarily stable.
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The second class of models consists of YM fields, viz. (11), interacting with scalar
matter. By far the most prominent of these are the gauged Higgs (YMH) models 3

whose solitons are stabilised by monopole charges. In D = 3 these are the celebrated
’t Hooft–Polyakov monopoles and in D dimensions those defined in Refs [4], which will be
illustrated below, in the non gravitating case. All these models feature an D–component
isovector Higgs field which is instrumental (but not essential) in our definition of DY fields
in part 1. The main difference of the solutions of gauged Higgs systems from those of
(11) without Higgs fields is, that they always survive the decoupling of gravity.

While the Dirac monopole [1] and the Yang monopole [3] are defined in D = 3 and
D = 5, here we will choose the dimensions D = 3 and D = 4 for our illustrations, with
the purpose of displaying both an odd D and an even D example. Even in these restictive
catchment, there are two ways of constructing YMH models. The first of these is via
the dimensional reduction of p-YM systems on a product space IRD × S4p−D, while the
second one is more ad hoc and it relies on the fact that the topology of a YMH system is
encoded in the Higgs field exclusively [27, 8]. The relation between these two procedures
was explored in some detail in [28] so we give just a summary here. In both procedures,
the all important quantities are the topological charges, for whose definitions we refer to
[28], which enable the statment of Bogomol’nyi inequalities leading to the D dimensional
models. In the first case these are the magnetic monopole charges descending from the
2p-th Chern–Pontryagin (CP) charge defined on IRD × S4p−D, while in the second case
the topological charges are the winding numbers of the Higgs field, suitably re-expressed
so that the winding numbers are the integrals of gauge invariant densities.

We will first consider the descended CP topological charge case, and then the covari-
antised winding number case, for D = 3 and D = 4. In each cae we will define the charge
density, followed by the resulting models whose solutions support regular monopoles.

In any given dimensions D the descended CP density can be constructed from any
p-YM system on any IRD × S4p−D. Naturally, the examples we give here are the simplest
possibilities, pertaining to smallest possible choice for this p. Descending from the 2-nd
CP density on IRD × S4−D and the 4-th CP density on IRD × S8−D, for D = 3 and D = 4
respectively, the two reduced CP (or magnetic charge) densities [5, 6] are

̺
(3)
CP =

1

16π
εijk Tr Fij DkΦ , i = 1, 2, 3 (12)

=
1

16π
εijk ∂k Tr Fij Φ (13)

̺
(4)
CP =

1

64π2
εijkl Tr Γ5

[

S2Fijkl + 4{S, DiΦ}{F[jk, Dl]Φ}

+ 3 ({S, Fij} + [DiΦ, DjΦ]) ({S, Fkl} + [DkΦ, DlΦ])
]

, i = 1, 2, 3, 4 (14)

=
1

64π2
εijkl ∂iTr Γ5

[

η4Aj

(

Fkl −
2

3
AkAl

)

+
1

6
η2Φ{F[jk, Dl]Φ}

+
1

6
Φ ({S, Fkl} + [DkΦ, DlΦ]) DjΦ

]

(15)

where Fijkl = {Fi[j , Fkl]} is the curvature 4-form, and we have used the notation S =

3There are other gravitating YM–scalar matter models, e.g. the gauged Grassmannian model in
d = 5 [26].
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(η2 − Φ2).
In passing, (13) and (15) demonstrate the fact that the topological current of a reduced

CP charge density is gauge invariant for odd D, and is gauge variant for even D.
In this case the resulting action/energy density that supports regular finite action/energy

topologically stable solutions follows uniquely from the same dimensional descent that
yielded the charge densities (12)-(14), now applied to the action density of the p-YM
system on IRD × S2p−D (with p = 1 for D = 3 and p = 2 for D = 4). The descended
Bogomol’nyi inequalities can be saturated only in the p = 1 case, so that the solutions in
question are only those to the second order field equations for p ≥ 2.

The energy/action densities bounded from below by (12)-(14), with this bound actually
saturated in the D = 3 case, are

S(3) =
1

4
Tr

(

F 2
ij + 2 DiΦ

2
)

(16)

S(3) =
1

48
Tr

(

F 2
ijkl + 4{F[jk, Dl]Φ}

2 + 18 ({S, Fij} + [DiΦ, DjΦ])2 + 5{S, Fkl}
2 + 54 S4

)

.(17)

The DY gauge here has a particularly enlightening application. In this gauge, all Higgs
dependent terms in (16)-(17) vanish and all we are left with are the 2-form and 4-form
YM terms. What is more is that this shows that the asymptotic behaviour of any of these
monopoles is such that the curvatrure 2-form decays as r−2, unlike instantons.

It may be interesting here to remark that in D = 4, where we performed the descent
over IR4 × S4 yielding (14) and (17), we could have opted instead to descend over the six
dimensional space IR4 × S2. In that case the appropriate six dimensional YM system 4

would have been

Tr
(

1

4
F 2

µν +
κ

48
F 2

µνρσ

)

,

if the residual action is to be bounded from below by a topological charge, in this case the
3rd CP charge. But then the residual model would have featured a F 2

ij term whose volume
integral diverges by virtue of the asymptotics explained in the previous paragraph.

Next we give the suitably gauge covariantised [28] winding number densities in terms
of the usual winding number density

̺
(D)
0 = εi1i2...iDεa1a2...aD∂i1φ

a1∂i2φ
a2 ...∂iDφaD , (18)

which is not gauge invariant, and the gauge invariant density

̺
(D)
G = εi1i2...iDεa1a2...aDDi1φ

a1Di2φ
a2 ...DiDφaD , (19)

which is not a total divergence. For the purpose at hand it is more convenient to use a
component notation for the SO(D) YM connection and the D-plet Higgs field

Ai = −
1

2
Aaa′

i Σaa′ , Φ = −
1

2
φa ΣaD+1

4Departing from our brief for a moment and considering a monopole in D = 5 on the other hand, it
is indeed possible to descend from a purely p = 2 YM term on IR5 × S1, so residual system in this case
would feature only a F 2

ijkl term with a valid topological lower bound [4].
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for odd D, with Σ replaced by Γ for even D. These charge densities are,

̺
(3)
wind = ̺

(3)
0 +

1

4π

3

2
εijkε

baa′

∂i

(

Aaa′

j φb∂k|φ
c|2

)

(20)

= ̺
(3)
G +

1

4π
.
3

2
εijkε

baa′

F aa′

ij φb∂k|φ
c|2 (21)

for D = 3, and for D = 4,

̺
(4)
wind = ̺

(4)
0 − ∂i

(

|~φ|2∂jΩij

)

−
3

8
εijklε

bb′cc′∂i

{

(η4 − |~φ|4)Acc′

j

[

∂kA
bb′

l +
2

3
(AρAl)

bb′
]}

(22)

= ̺
(4)
G +

3

2
εijklε

bb′cc′
{

(

∂i|~φ|
2
)

F cc′

kl φbDjφ
b′ +

1

16

(

η4 − |~φ|4
)

F bb′

ij F cc′

kl

}

(23)

where Ωij denotes the gauge variant tensor quantity

Ωij =
3

2
εijklε

bb′cc′Acc′

l φb
(

∂kφ
b′ + Dkφ

b′
)

, (24)

which vanishes when subjected to spherical symmetry irrespective of the detailed asymp-
totic decay of the fields. The surface integrals of the total divergence term in (13) and
(15) vanish for suitable finite energy/action boundary conditions, so that the topological
charge here is simply the winding number. The Bogomol’nyi inequalities are constructed
from the gauge covariant charge densities (21) and (23). This is quite a straighforward
procedure, but increasingly non unique with increasing dimension. The only caveat is
to exclude those possibilities not consistent with finite energy/action requirements for a
Higgs model. We will not list these here as they are not particularly instructive and rather
cumbersome, the D = 3 case being given in [28]. Perhaps the main distinctive feature of
energy/action densities bounded by (13)-(15) versus those bounded by (12)-(14) instead
is, that the energy/action of the models constructed via dimensional descent always have
smaller energy/action than those arrived at directly via winding number considerations.
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