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2Centro de Investigación en Matemáticas. Universidad Autónoma del Estado de

Hidalgo, Pachuca 42184, México
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Abstract. Using an Environmentally Friendly Renormalization Group we derive an

ab initio universal scaling form for the equation of state for the O(N) model, y = f(x),

that exhibits all required analyticity properties in the limits x → 0, x → ∞ and

x → −1. Unlike current methodologies based on a phenomenological scaling ansatz

the scaling function is derived solely from the underlying Landau-Ginzburg-Wilson

Hamiltonian and depends only on the three Wilson functions γλ, γϕ and γϕ2 which

exhibit a non-trivial crossover between the Wilson-Fisher fixed point and the strong

coupling fixed point associated with the Goldstone modes on the coexistence curve.

We give explicit results for N = 2, 3 and 4 to one-loop order and compare with known

results.

PACS numbers: 64.60.Ak,

1. Introduction

The equation of state for the O(N) model has been an object of intense scrutiny over the

last 30-40 years (see, for instance, [1] and [2] for recent reviews). It exhibits crossover

behaviour between three distinct asymptotic regimes - the critical region approached

along the critical isotherm, the critical region approached along the critical isochore,

and, finally, the coexistence curve. It is the difficulty of encapsulating these distinct

scaling behaviours within one overall scaling function that has prevented its ab initio

derivation from an underlying microscopic model.

The first attempts at such an ab initio calculation, using the renormalization group

(RG) and an ε-expansion [3], foundered on the fact that they did not exhibit Griffiths

analyticity in the large x = t/ϕ1/β limit. This was due to the fact that the expansion was

around a particular fixed point - the Wilson-Fisher fixed point. However, to obtain a

universal equation of state, valid in the entire phase diagram, using the RG and without

http://arXiv.org/abs/0811.2202v1
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phenomenological input, the ϕ-dependent crossover between this fixed point and the

strong coupling fixed point associated with the massless Goldstone excitations on the

coexistence curve must be accessed and controlled. In the latter regime the non-linear σ

model gives a good description [5]. However, this model only accounts for the Goldstone

bosons and does not offer a full description of the phase diagram.

As pure first principles calculations using a Landau-Ginzburg-Wilson Hamiltonian

and the RG have not been capable of obtaining an equation of state valid in all

asymptotic regimes, the current “state of the art” [1, 2] is to base calculations on

a parametrised phenomenological scaling form [6] that has the correct analyticity

properties. Instead of the magnetisation, ϕ, reduced temperature, t, and magnetic

field, H , new variables, θ and R, are introduced, the relation between them being

ϕ = m0R
βm(θ) t = R(1 − θ2) H = h0R

βδh(θ)

The particular functional dependence on R ensures that Griffith’s analyticity is

preserved. However, the two functions m(θ) and h(θ) are arbitrary. Hence, any

particular choice constitutes a pure ansatz. Thus, Schofield’s scaling form gives a large

class of models, all of which, by construction, are consistent with Griffith’s analyticity.

How a particular microscopic model is related to this large class depends on how these

undetermined functions are represented, the canonical approach being to represent them

as polynomials. Thus, there is no unique map between a microscopic model and a

member of the class of Schofield parametrisations.

In this new parametrisation the scaling function of the equation of state is given by

f (x) =

(

m (θ)

m (1)

)

−δ
h (θ)

h (1)
where x =

1 − θ2

θ2
0 − 1

(

m (θ0)

m (θ)

)1/β

. (1)

Most current field theoretic formulations for determining the equation of state (see

[2] for a comprehensive review) rely on such formulations. The drawback is that the

underlying microscopic theory is not used to determine the functional form of m(θ) and

h(θ). Rather, an ansatz is made as to the general functional form, which depends on

certain unknown parameters, and then the underlying microscopic theory is used to

fix them. The most common ansatz is that the functions are polynomials in θ. The

coefficients of the powers of θ are then determined by calculating the values of certain

observables independently from the underlying microscopic theory.

In contrast to the above, in this paper‡, using only the Landau-Ginzburg-Wilson

Hamiltonian for the O(N) model and by implementing an Environmentally Friendly

RG [8, 9] that tracks the crossover between the fixed points that control the different

asymptotic regimes, we derive an universal equation of state that obeys all required

analyticity properties and where no phenomenological input is required, only the three

Wilson functions γϕ, γϕ2 and γλ.

‡ Which is a follow up to [10] which treated the case N = 1
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2. The Equation of State

In the critical region, the equation of state [11] relates the external magnetic field H ,

the reduced temperature t, and the magnetization ϕ,

y = f (x) (2)

where the universal scaling function f(x), is normalised such that f(0) = 1 on the

critical isotherm, and f(−1) = 0 on the coexistence curve. The scaling variables y and

x are given by y = Bδ
cH/ϕδ and x = B1/βt/ϕ1/β .

The function f(x) has expansions around the limits x = 0 and x → ∞ given by

f(x) = 1 +
∞
∑

n=1

f 0
nxn f(x) = xγ

∞
∑

n=0

f∞

n x−2nβ (3)

In the limit x → ∞ a natural variable is z = b1ϕ/tβ, where b1 an amplitude ratio in

terms of which the equation of state takes the form H ∝ tβδF (z), where the universal

scaling function F (z) for small z has an expansion of the form

F (z) = z +
1

6
z3 +

∞
∑

n=3

r2n

(2n − 1)!
z2n−1 (4)

where r2 = r4 = 1 by choice of normalisation. As (4) is an expansion in ϕ, the

constants r2n are related to the 2n-point correlation functions at ϕ = 0 and hence

are very natural observables to calculate in lattice simulations. In the limit z → ∞,

F (z) has an expansion of the form

F (z) = zδ
∞
∑

k=0

F∞

k z−k/β (5)

By relating f(x) and F (z) expansion coefficients of the two functions can be related to

find

f∞

n = z2n+1−δ
0

r2n+2

F∞

0 (2n + 1)!
(6)

f 0
n =

F∞

n

F∞

0

z
−n/β
0 (7)

where z0 is the universal zero of the equation of state in terms of the variable z. Thus,

we see it is sufficient to know the expansion coefficients of f(x) in the limits x → 0 and

∞ in order to calculate the asymptotic properties of F (z) and the interesting functions

r2n.

Unlike the limits x → 0 and ∞, near the coexistence curve, x → −1, there are

no rigorous mathematical arguments as to the analyticity properties of f(x), although

there do exist conjectures. In [12], based on an ε-expansion analysis, it was conjectured

that (1 + x) has a double expansion in powers of y and y(d−2)/2 of the form

1 + x = c1y + c2y
1−ǫ/2 + d1y

2 + d2y
2−ǫ/2 + ... (8)

In three dimensions it predicts an expansion of (1 + x) in powers of y1/2. Studies of the

non-linear σ model lead one to expect a leading behavior of the form

f(x) ∼ cf(1 + x)2/(d−2) (9)
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though, as mentioned, the nature of the corrections to this behavior is not well

understood, although (8) is one conjecture. In the 1/N expansion there is some evidence

[2] for logarithmic corrections of the form ln(1 + x) in three dimensions.

3. A Renormalization Group Representation of the Equation of State

In this section we briefly outline the derivation of the equation of state for a theory

described by the standard Landau-Ginzburg-Wilson Hamiltonian with O(N) symmetry

H[ϕ] =
∫

ddx

(

1

2
∇ϕa∇ϕa+

1

2
r(x)ϕaϕa+

λB

4!
(ϕaϕa)2

)

(10)

with r = rc + tB, where rc is the value of r at the critical temperature Tc and

tB = Λ2 (T−Tc)
Tc

, Λ being the microscopic scale. Due to the Ward identities of the

model, it is sufficient to know only the transversal correlation functions Γ
(N,M)
t , as all

the other vertex functions can be reconstructed from these. For instance, the equation

of state itself is given by H = Γ
(2)
t ϕ.

Due to the existence of large fluctations in the critical regime a renormalization of

the microscopic bare parameters of the form

t(mt, κ) = Z−1
ϕ2 (κ)tB(mt) (11)

λ(κ) = Zλ(κ)λB (12)

ϕ(κ) = Z−1/2
ϕ (κ)ϕB (13)

must be imposed, where κ is an arbitrary renormalization scale and mt is the inverse

transverse correlation length. The renormalized parameters satisfy the differential

equations

κ
dt(κ)

dκ
= γϕ2(κ)t(κ) where γϕ2(κ) = −κ

d

dκ
ln Zϕ2 |c (14)

κ
dλ(κ)

dκ
= γλ(κ)λ(κ) where γλ(κ) = κ

d

dκ
ln Zλ|c (15)

κ
dϕ(κ)

dκ
= −

1

2
γϕ(κ)ϕ(κ) where γϕ(κ) = κ

d

dκ
ln Zϕ|c (16)

where the right hand side are the Wilson functions associated with this coordinate

transformation and the derivative is taken along an appropriately chosen curve in the

phase diagram, which we here denote by c.

Integration of the RG equation for any multiplicatively renormalizable Γ
(N,M)
t yields

Γ
(N,M)
t (t, λ, ϕ) = e

∫ mt

κ
(N

2
γϕ−Mγ

ϕ2 )dx
x Γ

(N,M)
t (t(κ), λ(κ), ϕ(κ)) (17)

The renormalization constants Zϕ, Zϕ2 and Zλ are fixed by imposing the explicitly

magnetization dependent normalization conditions on the transverse correlation

functions

∂p2Γ
(2)
t (p, t(κ, κ), λ(κ), ϕ(κ), κ)

∣

∣

∣

p2=0
= 1 (18)

Γ
(2,1)
t (0, t(κ, κ), λ(κ), ϕ(κ), κ) = 1 (19)

Γ
(4)
t (0, t(κ, κ), λ(κ), ϕ(κ), κ) = λ. (20)
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T

ϕ

b

b

Tc

Tc(ϕ)

Figure 1. Integrating along curves of constant ϕ (or t) in the phase diagram

starting from the coexistence curve.

while the condition

κ2 = Γ
(2)
t (0, t(κ, κ), λ(κ), ϕ(κ), κ), (21)

serves as a gauge fixing condition that relates the sliding renormalization scale κ to the

physical temperature t and magnetization ϕ. Physically, κ is a fiducial value of the

non-linear scaling field mt.

Besides mt, the other non-linear scaling field we use to parametrise our results is

m2
ϕ =

1

3

Γ
(4)
t ϕ2

∂p2Γ
(2)
t |p2=0

(22)

which is a RG invariant. It represents the anisotropy in the masses of the longitudinal

and transverse modes and is related to the stiffness constant ρs = ϕ2∂p2Γ
(2)
t |p2=0 via

m2
ϕ = 1

3
λρs. With this renormalization prescription one may determine the equation

of state in terms of the non-linear scaling fields mt and mϕ, as the transverse and

longitudinal propagators that appear in all perturbative diagrams can be parametrised

in terms of them.

We now give a short review of the general methodology used to derive the equation

of state as developed in reference [9, 10]. The equation can be found by integrating

dΓ
(2)
t (t, ϕ) along a curve of constant ϕ (see figure (1)), where in dt = dΓ

(2)
t /Γ

(2,1)
t , the

right hand side is written in the coordinate system (mt, mϕ). We note the following

points [10]:

1) We take mt = κ as the flow variable of the RG and hold ϕ constant. The

non-linear scaling variable, mϕ, is then κ dependent through its definition (22).

2) We integrate dt along a curve of constant ϕ and fix the boundary condition on

the coexistence curve, where mt = 0, whence we may write (T − Tc(ϕ)) = t + ∆, where

∆ = (Tc−Tc(ϕ)) is the temperature shift that measures the distance between the critical

point and the point on the coexistence curve, Tc(ϕ), see figure (1). One finds

A1(1 + x) = F(z) (23)
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where z = mt/mϕ and the scaling variable x = B1/βt/ϕ1/β , B being a amplitude. The

universal scaling function F(z) is given by

F(z) =
∫ z

0

2(2 − γϕ)

2 − γλ + γϕ
e
−

∫ x

∞

2

(

∆γ
ϕ2−

∆γλ
2β

+
∆γϕ
2β

2−γλ+γϕ

)

dy

y

x
1
β
dx

x
(24)

where we have defined ∆γi = (γi − γWF
i ), WF denoting the Wilson-Fisher fixed point.

3) The equation of state is obtained using H = Γ
(2)
t ϕ and the RG equation for Γ

(2)
t .

One obtains H/ϕδ = A−1
3 G(z), with the universal function

G(z) = e
γ
β

∫ z

∞

∆γλ−∆γϕ
2−γλ+γϕ

dy
y e

−

∫ z

∞

2∆γϕ
2−γλ+γϕ

dy
y (25)

Defining the scaling variable y = A−1
3 (H/ϕδ) we then obtain the universal equation of

state in the form (2) with

f(x) =
1

A3
G(F−1(A1(1 + x)). (26)

4) The amplitudes A1 and A3 are both universal and can be determined as

A1 = F(zc) and A3 = G(zc), where zc is the value of z that corresponds to the critical

isotherm.

In order to determine the expansion coefficients f 0
n and f∞

n , as introduced in section

1, one requires the Taylor expansion of f(x) around x = 0 and x = ∞. In terms of

our parametric representation, dnf(x)/dxn can be expressed using d/dx = (dz/dx)d/dz,

where dz/dx = A1/(dF(z)/dz) hence,

dnf(x)

dxn
=

A1

A3





(

dF(z)

dz

)

−1
d

dz





n

G(z) (27)

which needs to be evaluated at the points of interest z = zc (x = 0), z = ∞ (x = ∞)

and z = 0 (x = −1).

4. Results

4.1. The one loop Wilson functions

To one loop order the bare vertex functions are given by

Γ
(2)
t = p2 + r +

λ

6
ϕ2 +

λ

2
q +

λ

6
(N − 1) q (28)

Γ
(2,1)
t = 1 −

λ

2

(

q q +
N − 1

3
q q

)

(29)

Γ
(4)
t = λ −

3

2
λ2
(

q q +
N − 1

9
q q

)

(30)

where the dashed line in the loops denotes the transversal propagator and the continuous

line the longitudinal one, i.e., q =
∫ ddq

(2π)d
1

q2+t+ λ
2
ϕ2 and q =

∫ ddq
(2π)d

1
q2+t+ λ

6
ϕ2 .
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Using (18), (19) and (20), the renormalization constants can be determined and hence

the Wilson functions

γλ = −
3

2
λκ

d

dκ

(

q q +
N − 1

9
q q

)

(31)

γϕ = 0 (32)

γϕ2 = −
λ

2
κ

d

dκ

(

q q +
N − 1

3
q q

)

(33)

The running dimensionless coupling λ satisfies

z
dλ(z)

dz
= −ελ + cdλ

2(z)

(

(1 +
1

z2
)

d−6
2 +

(N − 1)

9

)

(34)

Taking the initial condition λ(z0) = λ, in the limit z0 → ∞, λ → ∞ one arrives at the

universal separatrix solution§

λ(z) =

(

cd

(

(1 +
1

z2
)

d−6
2 +

(N − 1)

9

))

−1

(35)

On the separatrix

γλ = (4 − d)





(1 + 1
z2 )

d−6
2 + (N−1)

9

(1 + 1
z2 )

d−4
2 + (N−1)

9



 (36)

γϕ2 = (4 − d)





(1 + 1
z2 )

d−6
2 + (N−1)

3

3(1 + 1
z2 )

d−4
2 + (N−1)

3



 (37)

γϕ = 0 (38)

With the Wilson functions in hand we can calculate the scaling functions. In three

dimensions the scaling function G(z) is analytic, while the function F(z) can be written

as an integral. Explicitly,

G(z) = z4
3
∏

i=1





√

1 + 1/z2 − ri

1 − ri





12
12+(N−1)ri

(39)

F(z) =
∫ z

0

4

2 − γλ





1 +
√

1 + 1/x2

2





12(N−1)
(N−10)(N+8)

×
3
∏

i=1





√

1 + 1/x2 − ri

1 − ri





ni

x
20+N
8+N dx (40)

where ri satisfies the cubic equation (N − 1)r3
i + 18r2

i − 9 = 0 and ni =
9(1−N)+(161+2N−N2)ri+9(N−1)r2

i

12ri+(N−1)r2
i

4
(10−N)(N+8)

.

In the limit z → ∞, which corresponds to approaching the critical point along the

critical isochore, the Wilson-Fisher fixed point is approached and γi → γWF
i with, at

one loop, γλ = (4 − d) and γϕ2 = (4 − d)(N + 2)/(N + 8). On the contrary, in the

limit z → 0, which corresponds to approaching the critical point along the coexistence

§ This solution may also be reached by choosing the initial coupling to be on the separatrix solution

at z = z0.
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curve x → −1, the strong-coupling fixed point is approached and γi → γSC
i . There,

the Goldstone bosons dominate and γλ = γϕ2 = (4 − d). Finally, the critical isotherm,

x = 0, is reached in the limit z → zc.

With (40) and (39) we can plot the scaling function, f(x), for the full universal

equation of state, as seen in Figures 2, 3 and 4 for the cases N = 2, 3 and 4 respectively.

-1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

f(x)

x

Figure 2. The scaling function f(x) for the three-dimensional XY model. The

dashed line was taken from reference [15].

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

f(x)

x

Figure 3. The scaling function f(x) for the three-dimensional Heisenberg

model. The dashed line was taken from reference [13].

4.2. The limit z → ∞

In the limit z → ∞, the Wilson functions can be expanded as power series in z−2

γi(z) = γWF
i +

∞
∑

n=1

ai(n)z−2n (41)
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-1 -0.5 0 0.5 1 1.5
0

1

2

3

4

f(x)

x

Figure 4. The scaling function f(x) for the three-dimensional O(4) model. The

dashed line was taken from reference [14].

Hence, the universal scaling functions F and G can also be written as power series in

z−2. This is true in a diagrammatic expansion to all orders, not just at one loop. In the

limit z → 0, γi → γSC
i but the nature of the corrections is not obvious. At the one-loop

level, from (36), one can see that the leading corrections to the strong coupling fixed

point values will be z(4−d)/2.

To determine the constant A1 we take the z → ∞ limit of (40), identify the divergent

part with A1x and the constant remainder with A1.‖ For instance, for N = 1, 2, 3, 4 we

can write the divergent component of the function F :

I∞

1 = 4 − 4

(

1 +
1

3

2
∑

i=1

1

ri − 1

)

1

z2
(42)

I∞

2 = 4 +

(

−
15

4
+

1

10

3
∑

i=1

9 − 161ri − 9r2
i

ri(ri − 1)(ri + 12)

)

1

z2
(43)

I∞

3 = 4 + 2

(

−
138

77
+

4

77

3
∑

i=1

18 − 158ri − 18r2
i

ri(ri − 1)(2ri + 12)

)

1

z2
(44)

I∞

4 = 4 +

(

−
7

2
+

4

77

3
∑

i=1

27 − 153ri − 27r2
i

ri(ri − 1)(3ri + 12)

)

1

z2
(45)

The universal amplitudes A3 can then be obtained using the corresponding equation

in 4) in section 3. With these two constants, along with the two scaling functions F

and G the scaling function of the universal equation of state may be obtained, and,

correspondingly, any expansion coefficient, f 0
n, f∞

n or rn.

In Table 1 we see some results for a variety of expansion coefficients associated

with the asymptotic regimes x → 0 and x → ∞. We also compare with various

other known results. The agreement is as good as one would expect from a one-loop

‖ If 2(4− d)/3(d− 2) is a positive integer, n, then this remainder is zero and A1 cannot be determined

by looking at the asymptotic limit z → ∞. This is a pure artefact of the one-loop approximation,

where η = 0, and has no physical meaning.
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approximation. However, of note here is not the precision of the estimates but that

they have been obtained from an ab initio calculation where no phenomenological input

was necessary. Thus, any expansion coefficient is obtained by an expansion in the

appropriate asymptotic limit of the universal functions F(z) and G(z) which in their

turn depend only on the Wilson functions.

Table 1. Values of some one-loop amplitudes for the 3-dimensional O(N)

model. We have written some known results as reported in [2] (see table (21))

for N=2; [13] for N=3 and [14] for N=4.

N 2 3 4

zc 0.694 0.677 0.656

A1 0.959 0.934 0.897

A3 1.022 0.840 0.698

R4
+ 6.35 ( 7.6(2) ) 6.06 (7.8(3) ) 8.86 ( 7.6(4) )

F∞0 0.035 ( 0.0304(3) ) 0.0348 (0.0266(5)) 0.015 ( 0.0240(5) )

Rχ 1.42 (1.41(6)) 1.280 (1.31(7)) 1.18 ( 1.12(11) )

f∞1 0.746 0.789 1.246

f∞2 0.641 0.695 1.171

f∞3 0.103 0.097 0.151

f∞4 -0.005 -0.006 -0.014

cf 15.6 (15(10)) 4.92 ( 5(3)) 2.66 ( 2.8(1.4) )

f0
1 1.16 1.26 (1.34(5)) 1.35 ( 1.5(8))

f0
2 0.086 0.143 (0.020(2)) 0.2031 ( 0.33(5))

f0
3 -0.022 -0.040(-0.10(1)) -0.056 (-0.08(2) )

r6 2.704 ( 1.951(14) ) 2.90 ( 2.1(6)) 2.11 ( 1.79(2) )

r8 2.873 ( 1.36(9) ) 2.80 ( 0.6(2) ) 1.29 ( 0.2(4))

r10 -1.58 ( -7(5) ) - 2.05 ( -6(3) ) -0.97 ( -5(6))

4.3. The limit z → 0

In the limit z → 0, corresponding to the coexistence curve, the parametric functions

F(z) and G(z) can be written as power series in the scaling variable z as F(z) =

A1(1 + x) = a
2
z2 + b

3
z3 + c

4
z4 + . . . and G(z) = A3 y = dz4 + fz5 + gz6 + . . .. We can

invert the equation for F(z) to obtain the non-linear scaling field z in terms of (1 + x)

and then, once we substitute into the function G(z), we obtain the equation of state

near the coexistence curve in the form

y = cf(1 + x)2 + c1(1 + x)5/2 + c2(1 + x) + . . . (46)

or alternatively

(1 + x) = c̃1y + c̃2y
1/2 + c̃3y

3/4 + . . . (47)

In Table 2 we give the first expansion coefficients and compare them to the results of

[12].
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Table 2. Values of some one-loop amplitudes for the 3-dimensional O(N) model

in the limit z → 0. The values in parenthesis for c̃1 y c̃2 were taken from [12],

where an ε expansion was used.

N 2 3 4

c1 −111.6 −17.8 −6.4

c2 399.8 32.0 7.6

c̃1 0.82(0.9) 0.66(0.82) 0.54(0.75)

c̃2 0.25(0.1) 0.45(0.18) 0.61(0.25)

c̃3 0.46 0.55 0.57

5. Conclusions

Although there exist established methods for calculating the universal equation of state,

f(x), while preserving Griffiths analyticity, they are based on a phenomenological scaling

ansatz that has no underlying microscopic basis. On the other hand it has not been

possible to preserve all asymptotic properties of f(x) starting from a Landau-Ginzburg-

Wilson Hamiltonian using the RG, due to the fact that the latter involved an expansion

around the Wilson-Fisher fixed point. In order to calculate f(x) using RG methods it

is necessary to be able to capture ϕ dependent crossover between the two different fixed

points.

In this paper we have developed a RG that captures the crossover between the

Wilson-Fisher and strong-coupling fixed points and therefore captures all elements of

Griffiths analyticity, accessing all three different scaling regimes. Thus, we have achieved

an ab initio calculation of the universal equation of state from an underlying microscopic

model with no phenomenological input. The calculation depends only on the three

Wilson functions γϕ, γϕ2 and γλ. We used the method to calculate f(x) to one loop

for arbitrary N and made a comparison to known results from other methods. The

novelty of the present approach is not in the precision of any result for an expansion

coefficient, as here we have only worked to one loop, but rather in exhibiting a method

that order by order in perturbation theory preserves all necessary analyticity properties

of f(x). However, the method can be extended to higher loop order. The chief difficulty

in doing so is that the higher order Feynman diagrams must be evaluated numerically

(remembering that they are crossover functions not constants) as there are no closed

form expressions for them. As the amplitude A1 involves cancelling two divergent

expressions this also is trickier when done numerically. We will return to the question

of two-loop calculations in a future publication.
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