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Abstract: In the context of gauge/gravity duality, we study both probe D7– and
probe D5–branes in global Anti-de Sitter space. The dual field theory is N = 4 theory
on × S3 with added flavour. The branes undergo a geometrical phase transition in
this geometry as function of the bare quark mass mq in units of 1/R with R the S3

radius. The meson spectra are obtained from fluctuations of the brane probes. First, we
study them numerically for finite quark mass through the phase transition. Moreover,
at zero quark mass we calculate the meson spectra analytically both in supergravity
and in free field theory on × S3 and find that the results match: For the chiral
primaries, the lowest level is given by the zero point energy or by the scaling dimension
of the operator corresponding to the fluctuations, respectively. The higher levels are
equidistant. Similar results apply to the descendents. Our results confirm the physical
interpretation that the mesons cannot pair-produce any further when their zero-point
energy exceeds their binding energy.
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1. Introduction

The AdS/CFT correspondence in its original form involves the near-horizon limit of
D3–branes. This limit leads to the AdS5×S5 geometry, where the Anti-de Sitter factor
of the geometry is realized as the Poincaré patch of AdS5.

Following [1], there have been extensive studies of probe D7–branes in this geometry
which on the dual field theory side leads to added hypermultiplets in the fundamental
representation of the gauge group. For preserving N = 2 supersymmetry, the probe
D7–brane has to wrap a subspace which is asymptotically AdS5×S3 near the boundary.
The complete meson spectra arising from the fluctuations of the probe brane, ie. for
all scalar, fermion and vector modes, have been found in [2]. For instance, for scalar
mesons the result is [2]

Ms(n, l) =
2L

R2

�
(n+ l + 1)(n+ l + 2) ,

L

R2
=

√
2π

mq
√
λ
, (1.1)

where L is the embedding coordinate of the D7 brane, R is the AdS radius, mq is
the quark mass and λ the ’t Hooft coupling. n is the main quantum number and l is
the quantum number of the SO(4) symmetry associated with the S3 asymptotically
wrapped by the D7–brane probe near the boundary. The spectrum has a large degener-
acy since it depends only on the combination (n+ l). This is expected from the N = 2
supersymmetry of the system. For general Dp/Dq–brane systems, similar spectra were
found in ref. [3, 4].

By embedding a D7–brane probe into deformed versions of AdS5 × S5, physical
phenomena may be described. Examples are chiral symmetry breaking, which is ob-
tained, by embedding a D7–probe into a confining background [5], and a first-order
meson-melting phase transition at finite temperature which arises when embedding
a probe brane into the AdS-Schwarzschild black hole geometry [5, 6, 7, 8]. For the
AdS-Schwarzschild geometry, a topology-changing phase transition occurs, depending
on the ratio of quark mass over temperature, between branes that reach the black hole
horizon and those that do not.

Supersymmetric embeddings of D5–brane probes wrapping an AdS4×S2 of AdS5×

S5 have first been studied in [9]. In this case, the dual field theory is a superconformal
‘defect’ theory [10] in which the additional hypermultiplets are confined to a (2+1)-
dimensional subspace.

In [11] (see also [12]), the authors investigate the embedding of D7– and D5–brane
probes into global AdS. Global AdS is dual to N = 4 Super Yang-Mills theory on
×S3. Moreover these authors study the thermodynamical properties of these systems

by considering brane probes in global thermal AdS, where also the time direction is
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compactified, such that the field theory is defined on S1×S3. Again in these geometries
they find a topology-changing phase transition, depending on the ratio of quark mass
over S3 radius, between those embeddings that reach the S3 and those that do not.
Using critical exponents, the authors show (see also refs. [13, 14, 15]) that the phase
transition is third order for D7–brane probes, while it is first order for D5–brane probes.
They also consider fluctuations of the brane and calculate the mass of the lowest-lying
scalar meson mode. The authors find that the spectrum has a kink at the phase
transition. Moreover, by making use of the Polyakov loop, they study the physical
properties of the low-energy phase. In this phase, the zero-point energy of the mesons
– which is due to the finite volume of the S3 – is larger than their binding energy.
This means in particular that the mesons are deconfined in the sense that they cannot
pair-produce any more. String breaking is no longer possible.

In this paper we investigate the mesonic spectrum on ×S3 in further detail. We
look at scalar and vector fluctuations for both the D7– and the D5–brane probe cases.
For the D7 brane probe, we establish the complete bosonic spectrum on the gravity
side. Our most important result concerns the spectrum at vanishing quark mass, for
which we perform analytical calculations both on the gravity and on the field theory
side. On the gravity side, we map the fluctuation equations of motion to equations of
Schrödinger type. For the chiral primaries, we find that the energy of the ground state is
given by the dimension of the operator dual to the fluctuations. The higher fluctuation
modes, labelled by the quantum number n, are equidistant. For the descendents, we
also find an equidistant spectrum. However the energy of the ground state is no longer
equal to the dimension of the operator.

We then turn to the field theory side, and in particular to the free N = 2 theory
in 3 + 1 dimensions obtained by adding a flavour hypermultiplet to the original N = 4
theory. We expand the fields on the S3 within × S3. The spectrum of the mesonic
composite operators is obtained by combining the expansions of the component fields,
making use of the appropriate Clebsch-Gordan coefficients. This requires a careful
analysis of the transformation properties of the mesonic composite operators under the
antipodal map.1 For both the chiral primaries and the descendents, we find the same
result for the spectrum as in the gravity calculation. As an example, let us quote our
result for scalar D7–brane mesons, which is

M(n, l, l̃) =
1

R
(3 + 2n+ l + l̃) . (1.2)

Here, R is the radius of the S3 in the field theory directions, which gives rise to the
1The antipodal map A : Sn → Sn, defined by A(x) = −x, sends every point on the sphere to its

antipodal point.
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conformal mass 1/R. Note that since this mass arises from the background metric rather
than from the D7–brane boundary conditions, (1.2) is independent of the ’t Hooft
coupling λ, while (1.1) is O(1/

√
λ). Moreover, (1.2) depends on the main quantum

number n, as well as on the S3 quantum numbers l and l̃, where l refers to the internal
S3, asymptotically wrapped by the D7–brane, while l̃ refers to the S3 in × S3 in
the field theory directions. The lowest mode, ie. the zero-point energy, is given by the
conformal dimension of the dual operator, ∆ = 3.

It is remarkable that the free field calculation and the gravity calculation of the
meson spectrum agree. This is of course due to non-renormalization theorems which
hold also in N = 2 theory. From the physics perspective this confirms the physical
interpretation, already advocated in [11], that the mesons cannot pair-produce even at
strong coupling when confined into a small volume such that their zero-point energy is
larger than their binding energy.

We note that when setting l̃ to zero, our new result (1.2), which in this case
depends on the combination 2n + l, is less degenerate than (1.1) which depends on
n + l. This linked to the fact that for supersymmetric field theories on S3, scalars,
fermions and vectors in the same multiplet have different conformal mass. Also, the
supersymmetry transformations of the field theory fermions are modified to contain
curvature-dependent terms. For N = 4 Super-Yang-Mills theory on × S3, these
issues have been studied in detail in [16]. We expect similar results to hold for the
N = 2 theory considered here.

Our calculation shows - in a simple example - that it is possible to directly compare
gravity and field theory calculations in top-down approaches to holographic models of
physical relevance. Such top-down models have been used widely recently to holograph-
ically describe physical phenomena such as superfluidity, quantum critical points and
transport properties [17, 18, 19, 20]. These models have the advantage - as compared
to bottom-up models - that the dual field theory is explicitly known. We hope that
further field-theory studies will follow soon for a more detailed comparison between the
weak and strong coupling aspects of a given model.

This paper is organized as follows. In section 2 we introduce the general setup of
global AdS and its probe brane embeddings, and present the phase transitions for the
D7 and D5 brane cases. In section 3 we study the probe brane fluctuations as function
of the bare quark mass and discuss the behaviour of the meson spectrum for both the
phase transition and the case of vanishing quark mass. In section 4, we analytically
compute the meson spectra at zero quark mass on the gravity side. We obtain the full
bosonic spectrum for the D7 brane fluctuations, as well as some characteristic examples
for the D5 brane case. In section 5 we present the field theory calculation at zero quark
mass and show that it agrees with the gravity results. We end with concluding remarks
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in section 6.

2. General Setup

Our starting point is AdS5 × S5 in global coordinates:

ds
2 = −(1 + w

2
/R

2)dt2 + w
2
dΩ2

3 +
dw2

1 + w2/R2
+R

2
dΩ2

5 . (2.1)

It is convenient to introduce the following radial coordinate:

u =
1

2
(w +

√
R2 + w2) . (2.2)

The metric (2.1) in these coordinates is given by:

ds
2 = −

u2

R2

�
1 +

R2

4u2

�2

dt
2 +

u2

R2

�
1−

R2

4u2

�2

dΩ2
3 +

R2

u2

�
du

2 + u
2
dΩ2

5

�
. (2.3)

Note that u ≥ R/2. In this way the transverse R6 has a ball of radius R/2 sitting at
the origin.

2.1 Probe D7–brane.

Let us introduce a probe D7–brane. To this end it is convenient to write the metric of
unit S5 in the following coordinates:

ds
2
S5 = dθ

2 + cos2 θdΩ2
3 + sin2

θdφ
2
. (2.4)

Now if we let the D7-brane be extended along the AdS5 part of the geometry and wrap
an S̃3 ⊂ S5, the radial part of the corresponding DBI lagrangian is given by:

L ∝

�
1−

R4

16u4

��
1−

R2

4u2

�2

u
3 cos3 θ

�
1 + u2θ�(u)2 . (2.5)

Possible embeddings split into two classes Minkowski embeddings and “ball” embed-
dings correspondingly wrapping shrinking S3 cycles in the S5 and AdS5 parts of the
background [12] (look at figure 1). The two classes are separated by a critical em-
bedding which has conical singularity at the ball (represented by the dashed curve in
figure 1). According to the AdS/CFT dictionary the bulk dynamics of the scalar θ(u)
encodes the dynamics of the dual gauge invariant operator. In particular one can read
off the source and the vev of the operator from the asymptotic behaviour of θ(u). In
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Figure 1: Blue curves correspond to Minkowski embeddings and Red curves correspond to
“ball” embeddings. The black dashed line corresponds to the critical embedding.

our case the operator is the fundamental bilinear and the source and vev of the operator
correspond to the mass of the hypermultiplet and the fundamental condensate. The
precise dictionary has been derived in ref. [21], where an elegant renormalization pre-
scription has been offered. Let us briefly review the results of refs. [21, 12] in a slightly
modified form relevant to our notations. For large u the solution to the equation of
motion derived from (2.5) has the following expansion:

θ(u) =
θ0R

u
+

θ2R
3

u3
−

θ0R
3

2u3
log

u

R
+ . . . . (2.6)

After following the renormalization prescription outlined in ref. [21] the condensate of
the theory can be calculated in terms of the parameters θ0, θ2. For our choice of radial
coordinate the result is given by:

�ψ̄ψ� ∝ −2θ2 +
θ30

3
+ θ0 log θ0; . (2.7)

If we split the R6 space corresponding to du2 + u2dΩ2
5 to R4 × R2 and define radial

coordinates ρ = u cos θ and L = u sin θ the DBI lagrangian in this coordinates is given
by:

L ∝

�
1 +

R2

4u2

��
1−

R2

4u2

�3

ρ
3
√
1 + L�2 . (2.8)
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The profile of the D7–brane embedding L(ρ) has the following asymptotic behaviour
at large ρ:

L(ρ) = m+
c1

ρ2
−

m

2ρ2
log ρ+ . . . . (2.9)

Further more one has the relations m = θ0R and c1 = R3(θ2 − θ30/6). The condensate
of the theory is then given by:

�ψ̄ψ� ∝ −2c1 +m log(m/R) ≡ −2c , (2.10)

where we have defined a new parameter c proportional to the condensate. Note also
that the bare mass of the hypermultiplet is proportional to m the exact relation is
mq = m/2πα�.

After solving numerically for the D7–brane embeddings we can generate a plot of
the equation of state c(m) presented in figure 2, where we have used dimensionless
parameters m̃ = m/R and c̃ = c/R3. As one can see there is no apparent multi-valued

0.5 1.0 1.5 2.0 m�

�0.15

�0.10

�0.05

�c�

Figure 2: A plot of the condensate −c̃ versus the bare mass m̃. The states corresponding to
“ball” embeddings are presented by the red curve and the states corresponding to Minkowski
embeddings are presented by the blue curve.

region near the transition from Minkowski to “ball” embeddings. In fact it has been
shown that the phase transition is continuous and is of a third order [11].

Let us comment briefly on the physical meaning of the parameter m̃ = m/R and
in particular its R dependence. Consider a constant u = Λ � R slice of the AdS5 ×S5

space-time. The induced metric has the asymptotic form:

ds
2
Λ =

Λ2

R2
(dt2 +R

2
dΩ3) +R

2
dΩ2

5 . (2.11)
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Here Λ is specifying the energy scale of the dual gauge theory. It is natural to identify
the radius of the AdS5 space-time R with the radius of the three sphere R3 where the
holographically dual field theory is defined. Furthermore we know that m = 2πα�mq,
where mq is the bare mass of the hypermultiplet. However the quantity mq/R3 is
obviously not a dimensionless parameter. To clarify this let us consider a rescaling
Λ → γΛ of the energy scale. The metric in equation (2.11) becomes:

dsγΛ =
Λ2

R2
(γ2

dt
2 + γ

2
R

2
dΩ2

3) +R
2
dΩ2

5 . (2.12)

We can always scale the time coordinate t → t/γ to compensate for the rescaling of
the energy scale. Note that this suggests that the bare mass of the hypermultiplet
should also be rescaled mq → γmq. Furthermore the radius of the three sphere is now
R3 = γR and hence we can write: γ = R3/R. For the parameter m̃ we obtain:

m̃ =
γmq(2πα�)

R
= mqR3

2πα�

R2
=

π
√
2

mqR3
√
λ

, (2.13)

where we have used that R2 is related to the t’Hooft coupling of the dual gauge theory
via: R2 = 2λα�. Equation (2.13) specifies the physical meaning of the parameter m̃.
Now we can interpret the phase transition as taking place at constant bare mass mq

and varying radius of S3. Note that varying R3 corresponds to varying the Casimir
energy of the dual gauge theory and hence it is essentially a quantum phase transition.

2.2 Probe D5–brane

Let us review the case of a probe D5–brane studied in ref. [11]. To this end it is
convenient to write the S5 part of the geometry in the following coordinates:

ds
2
S5 = dψ

2 + cos2 ψdΩ2
2 + sin2

ψdΩ̃2
2 . (2.14)

Next we define: r = u cosψ and l = u sinψ. The metric (2.3) can then be written as:

ds
2 = −

u2

R2

�
1 +

R2

4u2

�2

dt
2 +

u2

R2

�
1−

R2

4u2

�2

[dα2 + sin2
α(dβ2 + sin2

βdγ
2)]

+
R2

u2
[dr2 + r

2
dΩ2

2 + dl
2 + l

2
dΩ̃2

2] . (2.15)

Now if we let the D5–brane be extended along the t, β, γ, r,Ω2 directions and has a
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non-trivial profile along l, the corresponding DBI lagrangian is given by:

L ∝

�
1 +

R2

4u2

��
1−

R2

4u2

�2

r
2
√
1 + l�2 . (2.16)

It is easy to show that the solution to the equation of motion has the following asymp-
totic behaviour at large r:

l(r) = m+
c

r
+ . . . . (2.17)

Note that unlike the D7–brane case there is no extra logarithmic term [21] in the
asymptotic expansion of l(r). One can then directly relate the coefficient c to the fun-
damental condensate of the theory (�q̄q� ∝ −c). It is convenient to define dimensionless
quantities c̃ = c/R2 and m̃ = m/R.

After solving numerically the equation of motion of the probe D5–brane we obtain
the plot of −c̃ versus m̃ presented in figure 3. As one can see there is a multi–valued

0.5 1.0 1.5 2.0 2.5m
�

0.1

0.2

0.3

0.4

0.5

0.6

�c�

1.196 1.198 1.200 1.202 1.204 1.206 m�

0.49

0.50

0.51

0.52

0.53

�c�

Figure 3: A plot of the condensate −c̃ versus the bare mass m̃ for the D5–brane probe.
The states corresponding to “ball” embeddings are presented by red curves and the states
corresponding to Minkowski embeddings are presented by blue curves. The zoomed in plot
suggests a first order phase transition in the dual gauge theory.
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region near the state corresponding to the critical embedding. This suggests that in
this case the corresponding phase transition in the dual gauge theory is a first order
one. The value of the critical bare mass at which the phase transition takes place
can be obtained using the equal area law as illustrated in the second plot in figure 3.
The authors of ref. [11] showed that the order of the phase transition can be inferred
analytically, by calculating appropriate critical exponents.

3. Meson spectra

Some aspects of the spectrum corresponding to fluctuations of the D7–brane embed-
dings were studied in ref. [11], where the lowest mode for each of the fluctuations was
considered. In particular, the authors considered the scalar meson frequency squared
corresponding to the fluctuation along the profile of the embedding (the coordinate L
in our case) and found that as function of the quark mass parameter m̃, it has a kink
precisely at the critical value m̃∗ where the phase transition occurs. This kink was
shown to be consistent with the fact that the phase transition is third order. On the
other hand, the spectrum of fluctuations along the coordinate φ was shown to be a
smooth function of m̃ across the phase transition. Moreover, the authors of ref. [11]
pointed out that for large m̃ � 1 (ie. for large S3 radius) the spectrum matches with
the meson spectrum of the D3/D7 brane intersection obtained in ref. [2].

The authors of ref. [11] explain the behaviour of the lowest meson mode as follows:
Consider the case that at fixed quark mass, the system is squeezed into smaller and
smaller volume. When the compactification radius R passes through its critical value
R∗, the mesons are expected to deconfine as their finite volume zero point energy within
becomes larger than their binding energy. Beyond the phase transition the theory is in
a deconfined phase, in the sense that it cannot pair–produce.

Below we provide a more detailed analysis of the spectrum of meson-like excitations
by considering higher excited modes (n > 0 in the notations of ref. [2]). Our study
shows that at the phase transition, the qualitative behaviour of the higher modes is the
same as that of the ground state, as far as the appearance of the kink is concerned. For
values m̃ < m̃∗, we continue to find a discrete spectrum. In particular, for the limit of
zero bare mass (m̃ = 0), we are able to perform an analytic calculation, presented in
detail in section 4 and 5, mapping the fluctuation equation of motion to an equation
of Schrödinger type, and find that the discrete spectrum is equidistant. Moreover, for
the fluctuations dual to chiral primaries we find that the energy of the ground state
is given by the conformal dimension of the dual operator (in units of 1/R). A similar
structure emerges for the fluctuations of a D5 brane probe.
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Moreover, for the D5 brane probe fluctuations we also investigate the m̃ dependence
and show that the qualitative behaviour near the critical embedding is consistent with
the phase transition being first order. In particular, the spectrum develops tachyonic
states exactly at those points m̃∞ of the multi-valued region of the condensate c̃(m̃)
where the slope of the condensate diverges.

We also turn on the Kaluza–Klein modes of the D7–brane in the S5 part of the
geometry corresponding to operators with non-vanishing R–charge. We find that the
large degeneracy of the spectrum of the D3/D7 system considered in ref. [2] is lifted for
the theory on S3. In the limit of large m̃ (large radius of S3) this degeneracy is restored.
In the limit of zero bare mass the degeneracy is only partially restored. Furthermore,
once again the energy of the ground state is determined by the engineering dimension
of the operator (∆ = 3 + l) and the spectrum is equidistant.

The outline of our calculations and results in this section is as follows: We first
present our numerical results for fluctuations of a probe D7—brane along the coordi-
nate L. We describe the qualitative behaviour across the phase transition and discuss
the structure of the spectrum at vanishing bare mass. Next we present our numerical
results for the spectrum of fluctuations along φ for the D7–brane case, discussing also
the Kaluza–Klein modes. In the limit of vanishing bare quark mass, we compare our
numerical results to the analytical results obtained below in section 4 and 5. Moreover
we analyze the spectrum of fluctuations of the D5–brane. We discuss both fluctua-
tions along the l coordinate and along the Neumann–Dirichlet coordinate (the polar
coordinate of S3 ⊂ AdS5).

3.1 Fluctuations of the D7–brane embedding.

3.1.1 Fluctuations of the transverse scalars.

In order to study the light meson spectrum, we look for the quadratic fluctuations of
the D7–brane embedding along the transverse directions parametrized by L,φ. To this
end we expand:

L = L̄+ 2πα�
δL; φ = 2πα�

δφ; , (3.1)

in the lagrangian (2.8) and leave only terms of order (2πα�)2. After some calculations
we obtain the following lagrangian for the quadratic fluctuations along L:

L
(2)
LL

∝
1

2

√
−gGLL

gαβ

1 + L�2∂αδL∂βδL+
1

2

�
∂
2
L

√
−g −

d

dρ

�
L�

1 + L�2∂L
√
−g

��
δL

2
, (3.2)

where GLL is the corresponding component of the metric of the AdS5×S5 background
and gαβ is the inverse of the induced metric on the worldvolume of the D7–brane.
Next we obtain the equation of motion for δL and consider an ansatz δL = eiωth(ρ).
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Finally we solve the resulting differential equation for h(ρ) numerically and require
normalizability of the solution, which leads to a quantized spectrum. The corresponding
spectrum is presented in figure 4, where the dimensionless quantity ω̃ = ωR has been

n�0

n�1

n�2

n�3

0.5 1.0 1.5 2.0 m�

5

10

15

Ω�

Figure 4: A plot of the meson mass ω̃ versus the bare quark mass m̃ for the spectrum
of D7 fluctuations along L. The black dashed lines correspond to the spectrum of D3/D7
intersection [2] given by equation (3.3), one can observe the good agreement at large m̃. At
the critical bare mass (represented by the vertical dashed line) the spectrum has a kink.
Interestingly at m̃ = 0 the spectrum is discrete and equidistant taking only integer values
given by equation (3.4).

defined. At large values of m̃ (large radius of S3) the spectrum approaches the spectrum
of the D3/D7 intersection given by

ω =
2m

R2

�
(n+ 1)(n+ 2) . (3.3)

At the critical bare mass (represented by the vertical dashed line in figure 4) the
spectrum has a kink as pointed out in ref. [11]. Below the phase transition the spectrum
has a discrete quasi–equidistant structure which becomes exact at vanishing bare mass:

ω = (2n+ 3)
1

R
. (3.4)

Note that in (3.4), the energy of the ground state (n = 0) is given by the engineering
dimension ∆ = 3 of the operator dual to the fluctuations considered.

As the authors of ref. [11] argue in this phase the mesons are deconfined. The
equidistant structure of the spectrum then arises from the Kaluza-Klein tower of the
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collection of fields on S̃3 corresponding to the field content of the deconfined mesons.
We refer the reader to sections 4 and 5 for analytic derivations of equation (3.4) both
on the supergravity and on the field theory side of the correspondence.

Note that the dependence of the spectrum on the ’t Hooft coupling λ is through
the parameter m̃. According to equation (3.3), at large bare mass m̃ the dimensionless
quantity ω̃ depends linearly on the parameter m̃ and hence in view of equation (2.13)
is proportional to 1/

√
λ. In agreement with figure 4, below the phase transition, i.e.

at small values of m̃, the spectrum changes weakly with m̃. Asymptotically, for m̃ → 0
the spectrum becomes independent of m̃ and hence of λ.

Let us now focus on the spectrum of fluctuations along φ. After expanding to second
order in α� in the DBI lagrangian (2.8) and substituting the ansatz δφ = eiωtYlm(S3)f(ρ)
into the resulting equation of motion we obtain:

1
√
−gL̄2

∂ρ

�
√
−gL̄

2 f �(ρ)

1 + L̄�2

�
+

�
R4ω2

(u2 + R4

4 )2
−

l(l + 2)

ρ2

�
f(ρ) = 0 . (3.5)

Note that the quantum number l represents Kaluza–Klein modes on S3 ⊂ S5 and labels
representations of the global SU(2) R–symmetry of the dual gauge theory. Let us first
focus on the spherically symmetric case (l = 0). Solving equation (3.5) numerically and
requiring normalizability of the solution, we obtain the meson mass ω̃ versus the bare
quark mass m̃ presented in figure 5. We see that for large bare mass (or equivalently for
large radius of S3), the spectrum matches the spectrum of the D3/D7 system described
by equation (3.3). In the limit of zero bare mass (m̃ = 0), the spectrum is equidistant
and is again identical to spectrum of fluctuations along L described by equation (3.4).
At the phase transition (the vertical dashed line in figure 5) the spectrum is a smooth
function of m̃.

Our next goal is to study the spectrum at non-zero l. Note that in the “flat
case” considered in ref. [2], ie. with a Minkowski boundary in Poincaré coordinates, the
spectrum has degeneracy in n and l and is described by generalization of equation (3.3):

ω =
2m

R2

�
(n+ l + 1)(n+ l + 2) . (3.6)

On the other hand, the theory on S̃3, which we consider here, is not supersymmetric
for generic values of m̃ and we do not expect the spectrum to be degenerate. Indeed
our numerical investigations confirm this. As an illustration, in figure 6 we provide the
spectrum of the ground state (n = 0) for various values of l. As one may expect,
at large m̃ the spectrum again matches the spectrum of the D3/D7 system given by
equation (3.6). We also compared to the l = 0, n �= 0 result in figure 5 and verified that
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Figure 5: A plot of the meson mass ω̃ versus the bare quark mass m̃ for the spectrum of D7
fluctuations along φ. At large m̃ the spectrum is described by equation (3.3). At zero bare
mass (m̃ = 0) the spectrum is equidistant and is described by equation (3.4). Note that the
spectrum is a smooth function of m̃ across the phase transition.
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Figure 6: D7 brane fluctuations: A plot of the meson mass ω̃ versus the bare quark mass
m̃ for various values of l. At large m̃ the spectrum is given by equation (3.6). At zero bare
mass the spectrun is described by ω̃ = 3 + l.

for generic values of m̃ the spectrum is not degenerate. This is particularly evident in
the deconfined phase (the red colored curves). Interestingly, the spectrum at m̃ = 0 is
described by ω̃ = 3 + l, which suggests that the spectrum again has some degeneracy.
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This fits with the fact that supersymmetry is restored at m̃ = 0. In fact, by taking
the limit L̄ → 0 in equation (3.5) and analyzing the resulting equation of motion
analytically, we find that the spectrum at m̃ is given by:

ω = (3 + 2n+ l)
1

R
. (3.7)

We refer the reader to section 4 for a detailed derivation of the spectrum at m̃ = 0.
Notice however that the combination 3+ l in equation (3.7) is equal to the engineering
dimension of the corresponding dual field theory operator. Indeed if we look at the
asymptotic form of the equation of motion (3.5) for large ρ we obtain:

f
��(ρ) +

3

ρ
f
�(ρ)−

l(l + 2)

ρ2
f(ρ) = 0 . (3.8)

The solution of equation (3.8) is of the general form:

f(ρ) = ρ
l
δm+ ρ

−(l+2)
δc (3.9)

and hence according to the standard AdS/CFT dictionary, the corresponding gauge
invariant operator indeed has conformal dimension ∆ = 3 + l. This suggests that for
generic meson–like excitations the spectrum at zero bare mass is given by:

ω = (∆+ 2n)
1

R
, (3.10)

where ∆ is the conformal dimension of the field operator dual to the lowest fluctuation
mode in agreement with the standard field/operator dictionary. Note also the increase
in units of 2n between the equidistant levels. We study the spectrum in more detail in
sections 4 and 5 below. For completeness and to check the validity of equation (3.10),
we now turn to analyzing the spectrum of fluctuations of a probe D5–brane in the next
subsection.

3.2 Fluctuations of the D5–brane embedding.

In order to study the meson spectrum corresponding to fluctuations of the D5–brane
along the coordinate l(r), defined above (2.15), we expand l(r) = l̄(r) + (2πα�)δl(r)
in the DBI Lagrangian (2.16) and leave only terms of order α�2. Next we obtain the
corresponding equation of motion and consider an ansatz δl(r) = eiωtη(r). After solving
the equation of motion numerically and imposing regularity of the solution, we obtain
the meson spectrum as a function of the bare quark mass. Our results for the ground
state and the first few excited states are presented in figure 7, where ω̃ = ωR as before.
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Similarly to the D7–brane case, the spectrum for large m̃ matches the spectrum of the
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Figure 7: A plot of the meson mass ω̃ versus the bare quark mass m̃ for the spectrum of D5
brane fluctuations corresponding to l(r). At large m̃ the spectrum is described by equation
(3.11). At zero bare mass (m̃ = 0) the spectrum is equidistant and is described by equation
(3.10) with ∆ = 2. Near the phase transition the spectrum becomes tachyonic at the points
where the slope of the −c̃ versus m̃ plot from figure 3 diverges.

D3/D5 intersection studied in refs. [3, 4] where the following analytic expression has
been obtained:

ω =
2m

R2

�
(n+ 1/2)(n+ 3/2) . (3.11)

For n = 0, 1, 2, (3.11) is represented by the dashed black lines in figure 7. Interestingly
at vanishing bare mass (m̃ = 0), the spectrum is discrete and equidistant and is de-
scribed by equation (3.10) with ∆ = 2. This is to be expected since fluctuations along l

correspond to fluctuations of the fundamental condensate of the dual gauge theory and
for the defect–field theory that we consider (2+1 dimensional defect), the condensate
operator is a dimension two operator (∆ = 2). We refer the reader to sections 4 and 5
below for an analytic derivation of the spectrum at zero bare mass both on the gravity
and on the field theory side of the correspondence.
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The second plot in figure 7 represents the structure of the spectrum near the phase
transition. From the first order phase transition pattern of the plot of −c̃ versus m̃

presented in figure 3, one may expect that the theory becomes unstable at the points
where the slope of the fundamental condensate diverges. As we can see from the graph
for the ground state (n = 0) in figure 7, the spectrum drops to zero exactly at these
points. We have verified numerically that beyond these points the spectrum of the
ground state is indeed tachyonic.

For completeness of our study and to verify the stability of the D5–brane embed-
dings, we consider the spectrum of fluctuations along the Neumann–Dirichlet direc-
tion α of the D5–brane as defined in (2.15) . Note that the term ‘Neumann-Dirichlet’
is valid only at large m̃, where we can think of the AdS5 ×S5 geometry as correspond-
ing to the near-horizon limit of the gravitational background of a stack of coincident
D3–branes since large m̃ corresponds to a large S̃3 radius. To obtain the spectrum, we
expand α = 0 + (2πα�)δα in the DBI Lagrangian of the D5–brane and obtain the cor-
responding quadratic Lagrangian. Here α is the polar angle on S̃3 ⊂ AdS5 (2.15), with
S̃3 denoting the 3–sphere in the field theory directions. In general, fluctuations along α

couple to fluctuations of the U(1) gauge field of the probe D5–brane (as discussed in
detail in refs. [3, 4] for the “flat” D3/D5 case). However, if one restricts the fluctuations
to depend only on the time t and the holographic direction r, the modes decouple. It
is the stability of this decoupled mode that we analyze. Another important point is
that the corresponding gauge invariant operator is a dimension four (∆ = 4) operator.
This is obtained from the asymptotic behaviour of the general solution of the equation
of motion, using the standard field/operator dictionary, in analogy to the calculation
we performed for the D7 brane case above.

After implementing the ansatz δα = eiωth(r), solving numerically the corresponding
equation of motion and imposing regularity of the solution, we obtain the plot of the
spectrum versus bare mass presented in figure 8.

At large m̃, the spectrum should match the spectrum of the “flat” D3/D5 case.
For the decoupled mode subject to our investigation, the analytic result obtained in
refs. [3, 4] is given by:

ω =
2m

R2

�
(n+ 3/2)(n+ 5/2) , (3.12)

represented by the dashed black lines in figure 8. One can see the good agreement at
large m̃. Near the phase transition, the spectrum remains tachyon-free. At the phase
transition it has a finite jump, as shown in the second plot in figure 8. Interestingly,
at zero bare mass (m̃ = 0) the spectrum is again described by equation (3.10) with
∆ = 4. Once again the energy of the ground state is determined by its engineering
dimension. A detailed analytic study of the spectrum at zero bare quark mass is
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Figure 8: A plot of the spectrum ω̃ versus the bare quark mass m̃ for the spectrum of
fluctuations corresponding to α. At large m̃ the spectrum is described by equation (3.12),
while at zero bare mass (m̃ = 0) the spectrum is equidistant and is described by equation
(3.10) with ∆ = 4. The spectrum is tachyon free and has a finite jump at the phase transition.

provided in sections 4 and 5. The lack of tachyon modes in the spectrum suggests that
the D5–brane embedding is stable and does not slip off the equatorial two sphere of
the three sphere where the field theory is defined (α = 0, S̃2 ⊂ S̃3).

4. Spectrum at zero bare mass – Gravity side

Here we provide an analytic derivation of the spectrum of fluctuations at zero bare
mass on the gravity side of the correspondence. To obtain the spectrum we recast
the second order linear differential equation of motion of the fluctuation modes to one
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dimensional Schrödinger equation. Our analysis is along the lines of the one employed
in ref. [8] for the study of quasi-normal modes in the meson melting phase transition
in flavoured supersymmetric Yang-Mills plasma. Let us briefly describe the method.

We start with a second order differential equation of the form:

h
��(ρ̃) + C1(ρ̃)h

�(ρ) + (B(ρ̃)2ω̃2 + C0(ρ̃))h(ρ̃) = 0 . (4.1)

Upon the substitution h(ρ̃) = σ(ρ̃)f(ρ̃), with σ(ρ̃) defined via

σ�(ρ̃)

σ(ρ̃)
= −

1

2

�
C1(ρ̃) +

B�(ρ̃)

B(ρ̃)

�
, (4.2)

equation (4.1) becomes:

1

B(ρ̃)

d

dρ̃

�
1

B(ρ̃)

d

dρ̃
f(ρ̃)

�
+
�
ω̃
2
− Veff(ρ̃)

�
f(ρ̃) = 0 , (4.3)

where the effective potential Veff(ρ̃) is given by

Veff(ρ̃) = −
1

B(ρ̃)2

�
C0(ρ̃) + C1(ρ̃)

σ�(ρ̃)

σ(ρ̃)
+

σ��(ρ̃)

σ(ρ̃)

�
. (4.4)

The final step is to define a new variable u(ρ̃) satisfying dz/dρ̃ = B(ρ̃). The resulting
equation of motion is equivalent to a one dimensional Schrödinger equation for a particle
with 2mE = ω̃2 in the effective potential Veff(z):

f
��(z) + [ω̃2

− Veff(z)]f(z) = 0 . (4.5)

This approach is particularly useful since it enables us to study properties of the spec-
trum, such as the existence of bound states, even without solving the equation of
motion. In our case the corresponding effective potential is relatively simple and we
are able to obtain the spectrum in closed form. Let us present our results for the
different modes studied in section 3.

4.1 Fluctuations of a D7–brane probe

4.1.1 Fluctuations along L

We consider the ansatz δL = e
i
ω̃
R t
h(ρ̃)Ỹ l̃(S̃3)Y l(S3) in the equation of motion derived

from the quadratic lagrangian (3.2). Here ρ̃ = ρ/R, while Ỹ l̃ and Y l are spherical
harmonics on S̃3 ⊂ AdS5 and S3 ⊂ S5 respectively. The corresponding differential
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equation for h(ρ̃) is of the general form (4.1) with coefficients:

C0(ρ̃) = −
l̃(l̃ + 2)

(ρ̃2 − 1
4)

2
−

l(l + 2)

ρ̃2
+

8 + 16ρ̃2

ρ̃2 − 16ρ̃6
;

C1(ρ̃) =
5 + 16ρ̃2 + 48ρ̃4

−ρ̃+ 16ρ̃5
; B(ρ̃) =

4

1 + 4ρ̃2
. (4.6)

Applying the prescription outlined in equations (4.1)-(4.5) results in the effective po-
tential

Veff(z) =
3 + 4l(l + 2)

4 sin2
z

+
3 + 4l̃(l̃ + 2)

4 cos2 z
; z ∈ [π/2, π) ; , (4.7)

where
z(ρ̃) ≡ 2 arctan (2ρ̃). (4.8)

The effective potential diverges at the interval boundaries z = π/2, π, implying that
the corresponding “wave function” f(z) should vanish there. It turns out that for this
effective potential, we can solve equation (4.5) exactly. The solution regular at z = π/2
is given by:

f
±(z) = C(cos z)l̃+

3
2 2F1[

1

2
(3 + l̃+ l− ω̃),

1

2
(3 + l̃+ l+ ω̃), l̃+ 2, cos2 z](sin z)l+

3
2 . (4.9)

Regularity at z = π requires that one of the first two arguments of the hypergeometric
function is a non-positive integer. Without loss of generality, we consider only positive
ω̃. This implies that

1

2
(3 + l̃ + l − ω̃) = −n; n = 0, 1, 2, . . . . (4.10)

Therefore we obtain the following expression for the spectrum:

ω̃ = 3 + l + 2n+ l̃; n = 0, 1, 2, . . . . (4.11)

At l = l̃ = 0, (4.11) agrees with the numerical analysis considered in section 3 above. 1

4.1.2 Fluctuations along φ.

In this subsection we study the spectrum of fluctuations along φ in the limit of zero
bare quark mass. Our starting point is equation (3.5). In this case there is a subtlety
in taking the limit L̄ → 0 in equation (3.5). Indeed if we substitute L̄(ρ) = �ξ(ρ) into
equation (3.5) and take the limit � → 0, it is easy to verify that the coefficients of
the equation of motion will remain ξ(ρ) dependent. Indeed if we bring the equation of
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motion to the general form (4.1), with dimensionless variables ω̃ = ωR and ρ̃ = ρ/R),
the coefficients are:

C0(ρ̃) = −
l̃(l̃ + 2)

(ρ̃2 − 1
4)

2
−

l(l + 2)

ρ̃2
;

C1(ρ̃) = −
5 + 16ρ̃2 + 48ρ̃4

ρ̃− 16ρ̃5
+

2ξ�(ρ̃)

ξ(ρ̃)
; B(ρ̃) =

4

1 + 4ρ̃2
. (4.12)

The resulting effective potential Veff(ρ̃) defined via equation (4.4) depends on the func-
tion ξ(ρ̃) and its derivatives. However ξ(ρ̃) should also satisfy the linearized equation
of motion for the classical D7–brane embedding. The next step is thus to solve for the
highest derivative of ξ(ρ̃) from the linearized classical equation of motion and substitute
into the expression for the effective potential Veff(ρ̃). It is a straightforward exercise to
verify that this completely removes the ξ(ρ̃) dependence of the effective potential.

Note that the function B(ρ̃) is the same as in equation (4.6) and hence z(ρ̃) is given
by equation (4.8). In this coordinate z, the equation of motion is of the general form
(4.5) with Veff(z) given by equation (4.7). Therefore we conclude that the spectrum of
fluctuations along φ at zero bare mass is identical to the spectrum of fluctuations along
L and is given by equation (4.11) which we duplicate below:

ω̃ = 3 + l + 2n+ l̃; n = 0, 1, 2, . . . . (4.13)

One can see that at l̃ = 0 equation (4.13) agrees with the numerical results for the
spectrum of fluctuations along φ from Figure 5 in Section 3.

4.1.3 Fluctuations of the gauge field.

In this subsection we are interested in studying the fluctuations of the U(1) gauge field
of the probe D7–brane at zero bare mass. Our starting point is the action of the probe
D7–brane:

S =
µ7

gs

�
dξ

8
�

|Gab + (2πα�)2Fab|+
(2πα�)2

2
µ7

�
P [C(4)] ∧ F(2) ∧ F(2) , (4.14)

where P [C4] is the pullback of the R–R four form whose “electric part” is defined by

dC(4) =
4

R
Vol(AdS5) , (4.15)

where Vol(AdS5) is the volume form of AdS5. Note that in (4.14) we have written
only the quadratic contribution (in α�) to the Wess–Zumino term of the action. The
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equation of motion is:

√
−g∇aF

ab
−

4

R
ρu

2

�
1 +

R2

4u2

��
1−

R2

4u2

�3 �
1 +

L

ρ
L
�
��

g̃3δ
b

k
ε̃
kij
∂iAj = 0 , (4.16)

where a, b are general indices for the eight worldvolume coordinates of the probe D7–
brane, while i, j, k are indices for the coordinates parametrizing the S3 ⊂ S5 wrapped
by the D7–brane. Note also that the Levi-Civita symbol ε̃ijk is a tensor density (takes
values 0,±1) and g̃3 is the determinant of the metric on the unit S̃3 ⊂ AdS5. In
this section we are interested in the spectrum of fluctuations at zero bare quark mass
(L(ρ) ≡ 0). Thus we write

√
−g = R

6
G(ρ̃)

�
g̃3
√
g3; G(ρ̃) = ρ̃

3

�
1 +

1

4ρ̃2

��
1−

1

4ρ̃2

�3

; ρ̃ =
ρ

R
. (4.17)

Here g3 is the determinant of the metric on the unit S3 ⊂ S5. With these notations
the equation of motion (4.16) can be written as

∂a(G(ρ̃)
�

g̃3
√
g3F

ab)−
4

R4
G(ρ̃)

�
g̃3δ

b

k
ε̃
kij
∂iAj = 0 . (4.18)

Since we are in global coordinates, our probe brane is wrapping two three–spheres: one
in the AdS5 part of the geometry, S̃3 ⊂ AdS5, and one in the S5 part of the geometry,
S3 ⊂ S5. Moreover, we have to expand both in scalar and in vector spherical harmonics
on the S̃3. Let us briefly review some basic properties of spherical harmonics:

The scalar spherical harmonics Y l(Ω3) on S3 satisfy:

∇i∇
i
Y

l = −l(l + 2)Y l
, (4.19)

and form a ( l

2 ,
l

2) irreducible representation of SO(4). On the other hand, there are
three types of vector spherical harmonics on S3 [2]: The first type is constructed by
simply applying a derivative on the scalar spherical harmonics ∂iY l (longitudinal vector
spherical harmonics) and transform in the ( l

2 ,
l

2) irreducible representation of SO(4).
The other two types Y l,±

i
(Ω3) (transverse vector spherical harmonics) transform in the

( l∓1
2 ,

l±1
2 ) irreducible representations and satisfy:

∇i∇
i
Y

l,±
j

−R
k

j
Y

l,±
k

= −(l + 1)2Y l,±
j

, (4.20)

ε
jk

i
∇jY

l,±
k

= ±(l + 1)Y l,±
i

, (4.21)

∇
i
Y

l,±
i

= 0 . (4.22)
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Here R
j

i
= 2δj

i
is the Ricci scalar curvature of an unit S3. Next we classify the fluctu-

ations of the U(1) gauge field into three different types:

Type I comprises of fluctuations A±
i
along the S3 ⊂ S5 which have expansion in

transverse vector spherical harmonics Y l,±
i

. Since these modes satisfy ∇iA
±
i
= 0, they

decouple from the remaining modes. Hence we have the ansatz:

A
±
i
= Φ±

I (ρ)e
iωt

Ỹ
l̃(S̃3)Y l,±

i
(S3); A0 = 0; Aα = 0; Aρ = 0 . (4.23)

Here greek indices denote components along the S̃3 ⊂ AdS5.

Type II are fluctuations of the gauge field A±
α
along the S̃3 ⊂ AdS5, which have

an expansion in transverse vector spherical harmonics Ỹ l,±
i

. Similarly to type I modes,
these modes satisfy ∇αAα = 0 and decouple from the rest. This implies the ansatz:

A
±
α
= Φ±

II(ρ)e
iωt

Ỹ
l̃,±
α

(S̃3)Y l(S3); A0 = 0; Aρ = 0; Ai = 0 . (4.24)

Finally type IIImodes are modes that do not fall into type I or type II classes. One
may expect that in this case all modes are coupled and should be studied simultaneously.
However only vector spherical harmonics transforming as scalar spherical harmonics
can be used, which are given by ∂αỸ

l̃(S̃3) and by ∂iY
l(S3). Therefore both Aα and

Ai components of the gauge field are pure gauge and one of these sets may always be
gauged away. Thus without loss of generality, the type III modes can be described by
the ansatz:

A0 = Φ̂III(ρ)e
iωt

Ỹ
l̃(S̃3)Y l(S3); Aρ = ΦIII(ρ)Ỹ

l̃(S̃3)Y l(S3); (4.25)

Ai = Φ̃III(ρ)Ỹ
l̃(S̃3)∂iY

l(S3); Aα = 0 .

Next we proceed with the analysis of the equations of motion. Let us begin with
type I modes. After substituting the ansatz (4.23) into the equations of motion (4.18)
we obtain:

1

G(ρ̃)ρ̃2
∂ρ̃

�
G(ρ̃)ρ̃2∂ρ̃Φ

±
I

�
+

�
ω̃2

(ρ̃2 + 1
4)

2
−

l̃(l̃ + 2)

(ρ̃2 − 1
4)

2
−

(l + 1)(l + 1± 4)

ρ̃2

�
Φ±

I = 0 .

(4.26)

Equation (4.26) is of the general form (4.1) with coefficients given by:

C1(ρ̃) =
3 + 16ρ̃2 + 80ρ̃4

ρ̃(16ρ̃4 − 1)
; B(ρ̃) =

4

4ρ̃2 + 1
C0(ρ̃) = −

l̃(l̃ + 2)

(ρ̃2 − 1
4)

2
−

(l + 1)(l + 1± 4)

ρ̃2
.

(4.27)
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Using the procedure outlined in equations (4.1)-(4.5), we obtain an equation of the
form (4.5) with effective potential

V
±
eff(z) =

(2l + 1± 4)(2l + 3± 4)

4 sin2
z

+
3 + 4l̃(l̃ + 2)

4 cos2 z
; z ∈ [π/2, π) , (4.28)

where z(ρ̃) is given by equation (4.8). The general solution regular at z = π/2 is given
by:

f
±(z) = C±(cos z)

l̃+ 3
2

× 2F1[
1

2
(3± 2 + l̃ + l − ω̃),

1

2
(3± 2 + l̃ + l + ω̃), l̃ + 2, cos2 z](sin z)l+

3
2±2

.

(4.29)

Regularity at z = π requires that one of the first two arguments of the hypergeometric
function must be a non-positive integer. Without loss of generality we can consider
only positive ω̃ and find

1

2
(3± 2 + l̃ + l − ω̃) = −n; n = 0, 1, 2, . . . . (4.30)

Therefore we obtain the following expression for the spectrum:

ω̃
± = 3± 2 + l + 2n+ l̃; n = 0, 1, 2, . . . . (4.31)

At large ρ̃ the equations of motion (4.26) are the same as the equations of motion of
type I modes for the “flat case” studied in ref. [2]. Therefore the conformal dimension
of the corresponding gauge invariant operators are the same, namely ∆± = 3 ± 2 + l.
Finally for the spectrum of type I fluctuations we can write:

ω̃
± = ∆± + 2n+ l̃ n = 0, 1, 2, . . . . (4.32)

We see that similarly to the spectrum of fluctuations of the transverse scalars, the
ground state is again determined by the conformal dimension of the corresponding
gauge invariant operators. In the next section we will confirm equation (4.32) from
field theory considerations.

We now focus on the spectrum of type II modes. Substitution of the ansatz (4.24)
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into the equations of motion (4.18) results in the following equation:

16ρ̃

(16ρ̃4 − 1)
∂ρ̃

�
(16ρ̃4 − 1)

16ρ̃
∂ρ̃Φ

±
II

�
+

�
ω̃2

(ρ̃2 + 1
4)

2
−

(l̃ + 1)2

(ρ̃2 − 1
4)

2
−

l(l + 2)

ρ̃2

�
Φ±

II = 0 ,

(4.33)
which is of the type (4.1) with coefficients:

C1(ρ̃) = −
1 + 48ρ̃4

ρ̃− 16ρ̃5
; B(ρ̃) =

4

4ρ̃2 + 1
;

C0(ρ̃) = −
(l̃ + 1)2

(4ρ̃2 − 1)2
−

l(l + 2)

ρ̃2
. (4.34)

Following the procedure outlined in (4.1)-(4.5) one obtains an equation of the form
(4.5) with effective potential

Veff(z) =
3 + 4l̃(l̃ + 2)

4 cos2 z
+

3 + 4l(l + 2)

4 sin2
z

, (4.35)

where z(ρ̃) is given by equation (4.8). The general solution regular at z = π/2 is given
by:

f [z] = C(cos z)
3
2+l̃

2F1[
1

2
(3 + l̃+ l− ω̃),

1

2
(3 + l̃+ l+ ω̃), l̃+ 2, cos2 z](sin z)

3
2+l

. (4.36)

Regularity at z = π requires that one of the first two arguments of the hypergeometric
function be a non-positive integer. Therefore the spectrum of type II modes is given
by:

ω̃ = 3 + l + 2n+ l̃; n = 0, 1, 2, . . . . (4.37)

Given that the conformal dimension of the dual gauge invariant operator is ∆ = l + 3
[2] one obtains:

ω̃ = ∆+ 2n+ l̃; n = 0, 1, 2, . . . . (4.38)

Once again the ground state is determined by the conformal dimension of the dual
gauge invariant operator.

Finally we study the spectrum of type III modes. Substitution of the ansatz (4.25)
into (4.18) results in the following equations coming from components of the gauge field
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along the t, ρ, S3 ⊂ S5 and S̃3 ⊂ AdS5 directions:

(ρ̃2 + 1
4)

2

ρ̃4G(ρ̃)
∂ρ(

ρ̃4G(ρ̃)

(ρ̃2 + 1
4)

2
(∂ρ̃Φ̂III − iω̃ΦIII))−

l̃(l̃ + 2)

(ρ̃2 − 1
4)

2
Φ̂III −

l(l + 2)

ρ̃2
(Φ̂III − iωΦ̃III) = 0 ,

1

(ρ̃2 + 1
4)

2
(ω̃2ΦIII + iω̃∂ρ̃Φ̂III)−

l̃(l̃ + 2)

(ρ̃2 − 1
4)

2
ΦIII −

l(l + 2)

ρ̃2
(ΦIII − ∂ρ̃Φ̃III) = 0 ,

1

ρ̃2G(ρ̃)
∂ρ̃(ρ̃

2
G(ρ̃)(∂ρ̃Φ̃III − ΦIII)) +

1

(ρ̃2 + 1
4)

2
(ω̃2Φ̃III + iω̃Φ̂III)−

l̃(l̃ + 2)

(ρ̃2 − 1
4)

2
Φ̃III = 0 ,

(ρ̃2 − 1
4)

2

ρ̃4G(ρ̃)
∂ρ(

ρ̃4G(ρ̃)

(ρ̃2 − 1
4)

2
ΦIII)−

iω̃

(ρ̃2 + 1
4)

2
Φ̂III −

l(l + 2)

ρ̃2
Φ̃III = 0 . (4.39)

Note that the third and fourth equations in (4.39) are valid only for l > 0 and l̃ > 0,
respectively. Moreover, note that we have four equations for three unknown functions
Φ̂III, ΦIII and Φ̃III. However one can show that only three of the equations are indepen-
dent. In particular, it is easy to verify with simple algebraic manipulations that the last
three equations in (4.39) imply the first one, which may thus be skipped. Moreover,
generically ω̃ �= 0 and one can use the fourth equation to eliminate Φ̂III from the second
and third equations in (4.39). The resulting system of coupled equations for ΦIII and
Φ̃III is given by:

Φ��
III(ρ̃) + C11(ρ̃)Φ

�
III(ρ̃) + [B1(ρ̃)

2
ω̃
2 + C01(ρ̃)]ΦIII +M12(ρ̃)Φ̃III(ρ̃) = 0 ,

Φ̃��
III(ρ̃) + C12(ρ̃)Φ̃

�
III(ρ̃) + [B2(ρ̃)

2
ω̃
2 + C02(ρ̃)]Φ̃III +M21(ρ̃)ΦIII(ρ̃) = 0 , (4.40)

where the coefficient functions are given by:

C11(ρ̃) = −
1− 16ρ̃2 + 112ρ̃4

ρ̃− 16ρ̃5
; B1(ρ̃) =

4

1 + 4ρ̃2
; M12(ρ̃) =

2l(l + 2)(1− 4ρ̃2)

ρ̃3 + 4ρ̃5
;

C01(ρ̃) =
1 + 16ρ̃2 (−1 + 2ρ̃2) (1 + 12ρ̃2 + 72ρ̃4)

(ρ̃− 16ρ̃5)2
−

l̃(l̃ + 2)

(ρ̃2 − 1
4)

2
−

l(l + 2)

ρ̃2
; (4.41)

C12(ρ̃) = −
3 + 16ρ̃2 + 80ρ̃4

ρ̃− 16ρ̃5
; B2(ρ̃) =

4

1 + 4ρ̃2
; M21(ρ̃) =

(2 + 8ρ̃2)

ρ̃− 4ρ̃3
;

C02(ρ̃) = −
l̃(l̃ + 2)

(ρ̃2 − 1
4)

2
−

l(l + 2)

ρ̃2
.

Note that the functions B1 and B2 in equations (4.40) are the same. This suggests that
we may employ similar procedure to the one outlined in equations (4.1)-(4.5). To this
end we define:

ΦIII(ρ̃) = f1(ρ̃)σ1(ρ̃); Φ̃III(ρ̃) = f2(ρ̃)σ2(ρ̃) , (4.42)
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where σ1 and σ2 are defined via:

σ�
i

σi

= −
1

2

�
C1i +

B�
i

Bi

�
; i = 1, 2; . (4.43)

The system (4.40) may be brought to the form

f ��
1 (z) +[ω̃2

− V
(1)
eff (z)]f1(z) +m12(z)f2(z) = 0 , (4.44)

f ��
2 (z) +[ω̃2

− V
(2)
eff (z)]f2(z) +m21(z)f1(z) = 0;

where

V
(1)
eff (z) =

−1 + 4l(l + 2)

4 sin2
z

+
3 + 4l̃(l̃ + 2)

4 cos2 z
; m12(z) = −

2l(l + 2)

sin2
z

; (4.45)

V
(2)
eff (z) =

15 + 4l(l + 2)

4 sin2
z

+
3 + 4l̃(l̃ + 2)

4 cos2 z
; m21(z) = −

2

sin2
z
; z ∈ [π/2, π) .

and z(ρ̃) is given by equation (4.8). Note that the difference of the effective potentials
∆Veff = V

(2)
eff − V

(1)
eff and the “coupling functions” m12,m21 are all proportional to

1/ sin2
z and differ only by constant multiplicative factors. This fortunate property

enable us to decouple easily the system of equations (4.45). Indeed let us form the linear
combination η = f1 + af2 for some constant parameter a. Combining the equations in
(4.45) results in the following equation of motion for η(z):

η
��(z) + [ω̃2

− V
(1)
eff ]η(z) + am21(f1 +

m12 − a∆Veff

am21
f2) = 0 . (4.46)

Note that due to the property mentioned above, the fraction (m12 − a∆Veff)/(am21) is
a constant and therefore we can demand that it is equal to a. We may now write

η
��(z) + [ω̃2

− Veff(z)]η(z) = 0; Veff(z) ≡ V
(1)
eff (z)− am21(z) . (4.47)

The parameter a is determined by:

a =
(m12 − a∆Veff)

(am21)
; ⇔ a

2
− 2a− l(l + 2) = 0; ⇒ a+ = l + 2; a− = −l; . (4.48)

Therefore we end up with two decoupled modes η±(z) = f1(z) + a±f2(z) described by
the effective potentials:

V
(±)
eff (z) =

−1 + 4(l + 1± 1)2

4 sin2
z

+
3 + 4l̃(l̃ + 2)

4 cos2 z
. (4.49)
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The corresponding solutions of the equations of motion regular at π/2 are given by:

η
±(z) = C±(cos z)

3
2+l̃

×2F1[
1

2
(3± 1 + l̃ + l − ω̃±),

1

2
(3± 1 + l̃ + l + ω̃±), l̃ + 2, cos2 z](sin z)

3
2±1+l

.

(4.50)

Regularity of the solutions at z = π implies the following eigenfrequencies:

ω̃± = 3± 1 + l + 2n± + l̃; n± = 0, 1, 2, . . . ; . (4.51)

Note that the spectrum of η+ is contained in the spectrum of the η− modes. Therefore
modulo the number of independent modes the spectrum of type III modes is described
by:

ω̃ = 2 + l + 2n+ l̃; n = 0, 1, 2, . . . ; . (4.52)

On the other hand, by studying the asymptotic behaviour of the solutions at large ρ̃,
we can verify that the conformal dimension of the dual gauge invariant operators is
∆ = 3 + l. Therefore we can write our expression for the spectrum as:

ω̃ = ∆− 1 + 2n+ l̃ . (4.53)

Note that the entire spectrum is shifted by −1 relative to the spectrum of type II
modes. The spectrum of modes with l̃ = 0 and l = 0 requires separate analysis. Here
we will simply report the result, which is that the expression for the spectrum is still
given by equation (4.52) at vanishing l̃ or l. We will comment more on the spectrum
of type III modes in the Section 5 below, where we reproduce our results from field
theory considerations.

4.2 Fluctuations of a D5–brane probe

In this subsection we obtain the spectrum of fluctuations of a probe D5–brane at
vanishing bare mass m̃ = 0 in closed form. Let us first consider fluctuations of l(r).

4.2.1 Fluctuations of l(r)

We consider the ansatz δl = e
i
ω̃
R t
h(r̃)Y l̃(S̃2)Y l(S2) for the fluctuation of the D5–brane

and substitute this into the corresponding equation of motion (here r̃ = r/R) . The
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result is a differential equation of the general form (4.1) with coefficients:

C0(ρ̃) =
6 + 8r̃2

r̃2 − 16r̃6
−

l̃(l̃ + 1)

(r̃2 − 1/4)2
−

l(l + 1)

r̃2
;

C1(r̃) = −
4 + 8r̃2 + 32r̃4

r̃ − 16r̃5
; B(r̃) =

4

1 + 4r̃2
. (4.54)

The calculation proceeds in complete analogy to the D3/D7 case. One applies the
procedure outlined in equations (4.1)-(4.5) and obtains the effective potential:

Veff(z) =
l(l + 2)

sin2
z

+
l̃(l̃ + 2)

cos2 z
; z ∈ [π/2, π) , (4.55)

where
z(r̃) ≡ 2 arctan (2r̃). (4.56)

The solution regular at z = π/2 is given by:

f
±(z) = C(cos z)l̃+1

2F1[
1

2
(2 + l̃+ l− ω̃),

1

2
(2 + l̃+ l+ ω̃), l̃+

3

2
, cos2 z](sin z)l+1 (4.57)

Regularity at z = π requires that one of the first two arguments of the hypergeometric
function must be a non-positive integer. Without loss of generality we can consider
only positive ω̃, which implies

1

2
(2 + l̃ + l − ω̃) = −n; n = 0, 1, 2, . . . . (4.58)

Therefore we obtain the following expression for the spectrum:

ω̃ = 2 + l + 2n+ l̃; n = 0, 1, 2, . . . . (4.59)

Equation (4.59) is equivalent to equation (3.10) with ∆ = 2, l = 0, l̃ = 0. In section 5
we will obtain this equation from field theory considerations. Now let us focus on the
fluctuation of the Neumann-Dirichlet coordinate.

4.2.2 Fluctuation of the Neumann-Dirichlet coordinate.

In this subsection we analyze the spectrum of fluctuations along the polar coordinate
α defined in (2.15) of the three-sphere inside the global AdS5 space-time. Note that
in the limit of infinite radius of the three-sphere, we obtain AdS5 space-time in a
Poincaré patch. In this limit we have an underlying description in terms of a stack
of Nc coincident D3–branes and the notion of Neumann-Dirichlet coordinate is well-
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defined.

To obtain the spectrum of fluctuations we follow the same prescription that we did
so far. We substitute δα = e

ω̃
R t
h(r̃) into the equation of motion for δα (here r̃ = r/R)

and obtain a differential equation of the general form (4.1) with coefficients:

C0(r̃) =
32

(1− 4r̃2)2
; C1(r̃) =

4 + 24r̃2 + 96r̃4

r̃(16r̃4 − 1)
; B(r̃) =

4

1 + 4r̃2
. (4.60)

The corresponding effective potential Veff(r̃) defined in equation (4.4) is given by

Veff(r̃) =
3(1 + 4r̃2)2

8r̃2
. (4.61)

After changing variables to u(r̃) ≡ 2 arctan (2r̃) the equation of motion takes the general
form (4.5) with effective potential Veff(u) given by

Veff(u) =
6

sin2
u
; u ∈ (π/2, π) . (4.62)

The general solution is given by:

f(u) =
�
D1P

5/2
ω̃−1/2(cosu) +D2Q

5/2
ω̃−1/2(cosu)

�√
sin u . (4.63)

In the original variables (h(ρ̃)), we can verify that regularity of the solution requires
that f(π/2) = f(π) = 0. This requires:

�
cos(ω̃ π

2 ) −
π

2 sin(ω̃
π

2 )
cos(ω̃π) −

π

2 sin(ω̃π)

� �
D1

D2

�
= 0 . (4.64)

Non-trivial solutions exist only if the determinant in (4.64) vanishes. This is equivalent
to sin (ω̃ π

2 ) = 0 and hence ω̃ = 2n1, where n1 = 0, 1, 2, . . . . In fact, even with this
restriction we can verify that h(r̃) diverges at r̃ = 1/2. In particular, it behaves as
∝ 1/(r̃− 1/2). However this still corresponds to bounded fluctuation of the probe D5–
brane since the invariant quantity Gαα(δα)2 ∝ (r̃ − 1/2)2h(r̃)2 < ∞ remains bounded.
Next we impose the condition that at infinity (r̃ → ∞) h(r̃) falls as ∝ 1/r̃5. This
is related to the fact that the corresponding gauge invariant operator has conformal
dimension four (∆ = 4). One can verify that all solutions with n1 ≥ 2 have that
asymptotic behaviour. Therefore the final expression for the spectrum is:

ω̃ = 4 + 2n; n = 0, 1, 2, . . . , (4.65)
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which is exactly equation (3.10) with (∆ = 4).

5. Spectrum at zero bare mass – Field theory side

We now turn to the analysis of the spectrum at zero bare quark mass on the quantum
field theory side of the correspondence. It is instructive to begin with a brief review of
the properties of a conformally coupled free scalar on R1 × S̃n.

5.1 A Conformally coupled scalar on R1 × S̃n

We begin by reviewing the derivation of the spectrum of a conformally coupled free
scalar field on an Einstein universe R1 × S̃n. We start with the Lagrangian

L =
�

−g(n)

�
1

2
g
ab

(n)∂aφ∂bφ+
1

2
ξR

(n)
φ
2

�
. (5.1)

Here g(n)ab
is the metric on R1 × S̃n given by:

ds
2 = −dt

2 +R
2
n
dΩ2

n
, (5.2)

R(n) is the Ricci scalar curvature of the metric in equation (5.2) given by:

R
(n) = n(n− 1)

1

R2
n

(5.3)

and Rn is the radius of S̃n. For ξ = (n − 1)/4(n), the scalar is conformally coupled.
Now it is straightforward to write down the equation of motion:

−∂
2
0φ+

1

R2
n

∆Ωnφ−
(n− 1)2

4

1

R2
n

φ = 0 . (5.4)

Next we Fourier transform :

φ(t,Ωn) =

�
dω

�

l̃

C
l̃
(ω)eiωtY l̃(Ωn); l̃ = 0, 1, . . . ; (5.5)

where Y l̃(Ωn) are the scalar spherical harmonics on the unit Sn satisfying:

∆ΩnY
l̃(Ωn) = −l̃(l̃ + n− 1)Y l̃(Ωn); l̃ = 0, 1, . . . ; . (5.6)
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The equation of motion (5.4) becomes:

�
ω
2
−

�
(n− 1)/2 + l̃

�2 1

R2
n

�
C

l̃
(ω) = 0 , (5.7)

which implies:
C

l̃
(ω) ∝ δ(ω2

− E
2
l̃
) , (5.8)

where E
l̃
is given by:

E
l̃
=

�
(n− 1)/2 + l̃

� 1

Rn

; l̃ = 0, 1, . . . ; . (5.9)

Now one can write equation (5.5) as:

φ(t,Ωn) =
�

l̃

1�
E

l̃

�
e
iEl̃ta

l̃+Ȳ
l̃(Ωn) + e

−iEl̃ta
l̃−Y

l̃(Ωn)
�

(5.10)

and proceed with quantization of φ in the standard way.

5.2 A collection of fields on S̃3

In this section we calculate the spectrum of a collection of free scalar fields propagating
on S3. In particular we consider the field content of the gauge invariant operators holo-
graphically dual to the normal modes of the D7–brane that we computed in section 4.
The flavoured dual field theory in question is a N = 4 SYM theory in 1+3–dimensions
coupled to an N = 2 hypermultiplet. The coupling of theory is conveniently studied
if we decompose the N = 4 supermultiplet of the adjoint degrees of freedom into one
vector multiplet and two N = 2 hypermultiplets. The bosonic content of the N = 4
multiplet is the (1 + 3)–dimensional vector Aµ and the six adjoint scalars X4, . . . X9.
The bosonic sector of the vector multiplet contains the vector Aµ and the adjoint scalars
XA

V
= (X8, X9). The rest four adjoint scalars X i (i = 4, 5, 6, 7) form the bosonic con-

tent of the two adjoint hypermultiplets. The fundamental fields form a hypermultiplet
comprised of two spinor fields ψi and two complex scalar fields qm (i,m = 1, 2).

The operators corresponding to mesonic excitations of flavouredN = 2 SYM theory
on flat Minkowski spacetime have been identified in refs. [2],[22]. In particular the
meson states have been classified in multiplets forming irreducible representations of
the global SO(4) ≈ SUΦ(2)×SUR(2) symmetry. Furthermore it has been verified that
states from the same supermultiplet (sharing the same charge under SUR(2) ) have the
same mass spectrum. The latter has beeg determined via holographic techniques.

The flavoured SYM theory on R1×S̃3 that we consider has the same global SO(4) ≈
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SUΦ(2) × SUR(2) symmetry. This is why we may use the same classification of the
mesonic excitations. However, the supersymmetry algebra on R1 × S̃3 mixes states at
different floors of the Kaluza-Klein tower on S̃3. Therefore we cannot expect to have
the same degeneracy of the spectrum of meson excitations as for the theory on flat
Minkowski spacetime. A summary of our results is provided in table 1. To begin with,

fluctuation d.o.f. (jΦ, jR) op. ∆ spectrum

mesons 1 scalar 1 ( �−1
2 , �+1

2 ) CI� 1 + � ∆+ 2n+ �̃

(bosons) 2 scalars 2 ( �2 ,
�

2) MA�

s
3 + � ∆+ 2n+ �̃

1 scalar 1 ( �2 ,
�

2) J 5� 3 + � ∆+ 1 + 2n+ �̃

1 scalar 1 ( �2 ,
�

2) J 0� 3 + � ∆− 1 + 2n+ �̃

1 tr. vector on S̃3 2 ( �2 ,
�

2) J α� 3 + � ∆+ 2n+ �̃

1 scalar 1 ( �+1
2 , �−1

2 ) – 5 + � ∆+ 2n+ �̃

Table 1: Bosonic sector of mesonic excitations of conformally coupled flavoured N = 2
SYM on R1 × S̃3 . Here (jΦ, jR) labels irreducible representations of the global SO(4) ≈

SUΦ(2)× SUR(2) symmetry, while �̃ labels the multipole momentum on S̃3 . Note also that
the transverse vector J α� satisfies ∇̃αJ

α� = 0 (Coulomb gauge), where ∇̃α is a covariant
derivative on S̃3. The hyphen in the fifth column corresponds to a descendent of the operator
CI�. Note also that the spectrum of the pseudo-scalar J 5� and that of the descendent of CI�

has been obtained only from supergravity in this paper, while all others are obtained on both
sides of the correspondence.

let us consider the operator dual to fluctuations of the transverse scalar modes of the
probe brane (fluctuations along L and φ). The corresponding operator is given by [22]:

M
Al

s
= ψ̄iσ

A

ij
χ
l
ψj + q̄mX

A

V
χ
l
qm (i,m = 1, 2) , (5.11)

which has conformal dimension ∆ = l + 3. Here χl denotes the symmetric traceless
operator insertion X{i1 . . . X il} of l adjoint scalars (i = 4, 5, 6, 7), XA

V
denotes the

vector (X8, X9) and σA = (σ1, σ2) is a doublet of Pauli matrices. Let us focus on the
scalar part of the operator (5.11). Without loss of generality we can consider only the
(m = 1, A = 8) additive term. In view of the result obtained in the previous subsection
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we expand:

X
(C)
ij

(t) =

�
R3

2

�
e
i

t
R3X

C

0 ij
+ e

−i
t

R3X
C

0
†
ij

�
; C = 4, 5, 6, 7, 8; (5.12)

q
i

1
†
(t, S̃3) =

∞�

l̃1=0

(l̃1+1)2�

I1=0

√
R3�

2 + 2l̃1

�
e
i(1+l̃1)

t
R3 a

i

l̃1I1
Ȳ

l̃1I1(S̃3) + e
−i(1+l̃1)

t
R3 b

i†
l̃1I1

Y
l̃1I1(S̃3)

�
;

q
i

1(t, S̃
3) =

∞�

l̃2=0

(l̃2+1)2�

I2=0

√
R3�

2 + 2l̃2

�
e
i(1+l̃2)

t
R3 b

i

l̃2I2
Ȳ

l̃2I2(S̃3) + e
−i(1+l̃1)

t
R3 a

i†
l̃2I2

Y
l̃2I2(S̃3)

�
.

Here we have written explicitly the i, j = 1 . . . Nc color indices. Note that we have
turned on only the “zero” mode of the adjoint scalar which is due to the conformal
coupling. Next we define a vacuum state |0� satisfying:

a
i

l1I1
|0� = b

i

l2I2
|0� = X

C

0 ij
|0� = 0 . (5.13)

The state representing the collection of fields corresponding to the (m = 1, A = 7)
component of the operator (5.11) is given by

q̄1X
8
V
χ
l
q1|0� =

R3

2

∞�

l̃1,l̃2=0

(l̃1+1)2�

I1=0

(l̃2+1)2�

I2=0

e
i(3+l+l̃1+l̃2)

t
R3

Y l̃2I2(S̃3)Y l̃1I1(S̃3)�
(l̃2 + 1)(l̃1 + 1)

a
†
l̃2I2

X
8
0
†
χ
l

0
†
b
†
l̃1I1

|0� .

(5.14)
Note that the state (5.14) is a superposition of states with definite energy El,J =
(3 + l + J)/R3, where J = l̃1 + l̃2. Apparently there is a large degeneracy of the
spectrum corresponding to the different choices of l̃1 and l̃2 which sum up to the same
number J . Note also that a state with a definite energy has a definite eigenvalue under
the antipodal map (which for spheres in even dimensions coincides with parity) on the
three-sphere given by (−1)J . Our next step is to expand the product of the spherical
harmonics in (5.14) in Laplace series:

Y
l̃1I1(S̃3)Y l̃2I2(S̃3) =

∞�

l̃=0

(l̃+1)2�

I=0

Cl̃I

l̃1I1,l̃2I2
Y

l̃I(S̃3) . (5.15)

The coefficients Cl̃I

l̃1I1,l̃2I2
are non-zero only for |l̃1− l̃2| ≤ l̃ ≤ l̃1+ l̃2 (addition of angular

momentum) and (−1)l̃ = (−1)l̃1+l̃2(conservation of the antipodal map eigenvalue)2.
Therefore the Laplace series in (5.15) terminates at J = l̃1 + l̃2. For all values of l̃ that

2We refer the reader to the appendix of ref. [23] for a detailed review of the properties of SU(2)×
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appear in the expansion, we can write J = 2n+ l̃ for some non-negative integer n. This
implies that a state with a definite energy EJ,l can be expanded as:

|EJ,l� =
R3

2
e
iEJ,lt

�

2n+l̃=J

(l̃+1)2�

I=0

Y
l̃I(S̃3)C†

nl̃I
|0� , (5.16)

where C
†
nl̃I

is defined by:

C
†
nl̃I

≡

�

l̃1+l̃2=2n+l̃

(l̃1+1)2�

I1=0

(l̃2+1)2�

I2=0

Cl̃I

l̃1I1,l̃2I2�
(l̃2 + 1)(l̃1 + 1)

a
†
l̃2I2

X
8
0
†
χ
l

0
†
b
†
l̃1I1

. (5.17)

Now the general state (5.14) can be written as:

q̄1X
8
V
χ
l
q1|0� =

R3

2

∞�

n,l̃=0

(l̃+1)2�

I=0

e
i(3+l+2n+l̃) t

R3Y
l̃I(S̃3)C†

nl̃I
|0� . (5.18)

Therefore if we define ω̃ = ωR3, our final expression for the dispersion relation is given
by

ω̃ = 3 + l + 2n+ l̃; n = 0, 1, 2, . . . . (5.19)

This coincides precisely with equation (4.11) which is obtained for the dual mode on
the gravity side of the correspondence. The fact that our free field theory analysis
reproduces the spectrum at strong coupling is consistent with the non-renormalization
theorem for chiral primaries. Note that this matching provides a non-trivial check of
the holographic technique employed in Section 4.

Vector modes. Next we apply the same approach to study the spectrum of gauge
invariant operators corresponding to fluctuations of the U(1) worldvolume gauge field
of the D7–brane. There is only one chiral primary operator corresponding to the type
I A−

i
mode analyzed in section 4. It has conformal dimension ∆− = 1 + l and is given

by3:
C
Il = q̄

m
σ
I

mn
χ
l−1

q
n
, (5.20)

where σI

mn
(I = 1, 2, 3) is a triplet of Pauli matrices. To obtain the spectrum of the

corresponding collection of scalar fields one may apply a procedure analogous to the

SU(2) Clebsch-Gordan coefficients. Note that half integer quantum numbers rather than integer ones
are used in ref. [23].

3Note that we are using the convention for the quantum number l employed in ref. [2], namely the
ground state has l = 1.
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one outlined in equations (5.12)-(5.18). The ground state is again given by the sum of
the zero point energies of the constituent fields, namely (1+1+(l−1))/R3 = (1+l)/R3.
Furthermore by expanding in Laplace series and employing properties of the Clebsch-
Gordan coefficients on can argue that the spectrum is given by the negative sign in
equation (4.32):

ω̃
− = ∆− + 2n+ l̃ n = 0, 1, 2, . . . . (5.21)

The operator corresponding to the A+
i
mode is descendent of the operator CIl and can

be analyzed in a similar way.

Next we consider the spectrum of type II modes described in section 4. Note
that our type II modes are subset of the type II modes defined in refs. [2], [22]. The
latter correspond to the components of the U(Nf ) flavour current operator [22] in 1+3
dimensions:

J
µl = ψ̄

a

i
γ
µ

ab
χ
l
ψ

b

i
+ iq̄mχ

l
D

µ
qm − iD̄

µ
q̄mχ

l
qm (µ = 0, 1, 2, 3) (5.22)

and satisfy ∂µJ
µl = 0 (Lorentz gauge) which leaves only three independent degrees of

freedom. In our case the field theory is defined on 1× S̃3 and the Lorentz symmetry is
broken. Our type II modes (look at section 4) comprise of the spacial part of the current
operator (5.22) defined on S̃3 and satisfy ∇̃αJ

αI = 0 (Coulomb gauge). Therefore we
have only two independent degrees of freedom which have Laplace expansion in terms
of transverse vector spherical harmonics Y l̃±

α
. It turns out that one can successfully

apply the procedure outlined in (5.12)-(5.18) with minor modifications. Consider the
scalar part of the operator (5.22) one can see that the energy levels of the corresponding
collection of fields are given by (1+1+ l+ l̃1+ l̃1)/R3. The relevant Laplace expansion
is given by:

Y
l̃1I1(S̃3)∇̃αY

l̃2I2(S̃3) =
l̃1+l̃2−1�

l̃=|l̃1−l̃2|+1

(l̃+1)2�

I=0

GlI

l̃1I1,l̃2I2
Y

l̃±,I

α
(S̃3) . (5.23)

Note that the coefficients Gl̃I

l̃1I1 l̃2I2
are non vanishing only for l̃1 + l̃2 = 2n + 1 + l̃ [23]

for non-negative integer values of n. Therefore the final expression for the spectrum of
ω̃ is given by equation (5.19) again.

Finally we consider the spectrum of type III modes. The corresponding operators
are the time component of the U(Nf ) flavour current (5.22) and the pseudo-scalar
operator [22]:

J
5l−1 = ψ̄

a

i
γ
5
ab
χ
l−1

ψ
b

i
+ . . . ; (l ≥ 1) . (5.24)

There are is also a contribution from the space-like components of the flavour current
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(5.22) which have expansion in longtudinal vector spherical harmonics ∇̃αY
l̃(S̃3). The

corresponding spectrum (modulo degeneracy of the ground state) was calculated in
section 4 and is given by equation (4.52). To obtain the spectrum from field theory
considerations, we consider the relevant contributions from the scalar fields to the
flavour current (5.22). The energy levels of the corresponding collection of fields is given
by (1+1+ l+ l̃1+ l̃1)/R3. The relevant Laplace expansion is in terms of scalar spherical
harmonics (for the time-like component of the flavour current) and longitudinal vector
spherical harmonics ∇̃αY

l̃ (for the space-like components of the flavour current). Using
properties of the C l̃I

l̃1I1 l̃2I2
Clebsch-Gordan coefficients, we can show that in both cases

the l̃-th terms in the expansion vanish unless l̃1 + l̃2 = 2n+ l̃. Therefore the spectrum
is given by

ω̃ = 2 + l + 2n+ l̃ , (5.25)

which coincides with the gravity result (4.52). Note that the type III vector modes
analyzed in section 4 have two independent modes η± with spectrum ω̃± given by
equation (4.51):

ω̃± = 3± 1 + l + 2n+ l̃ , (5.26)

and we verified that the contributions from the scalar fields to the flavour current (5.22)
reproduce the spectrum of the η− modes. It is natural to assume that the pseudo-scalar
operator (5.24) corresponds to the η+ modes and has spectrum given by the positive
sign in equation (5.26).

This completes our study of the meson spectrum of the bosonic sector of confor-
mally coupled flavoured N = 2 SYM theory on R1 × S̃3.

5.3 A collection of fields on S̃2

In this subsection we consider the gauge field theory holographically dual to a D5–
brane probe in a global AdS5 × S5 space-time. The theory in question is an N = 4
SYM theory on R1 × S̃3 coupled to a defect field theory defined on an equatorial
S̃2 ⊂ S̃3. At vanishing bare quark mass, the theory is superconformal and preserves
N = 4 supersymmetry in 2+1 dimensions. The coupling of theory is the same as
the one for the theory on flat Minkowski space studied for a first time in refs. [9, 10]
and reviewed in ref. [24]. The analysis requires decomposing the (3 + 1)–dimensional
N = 4 supermultiplet into two (2 + 1)–dimensional N = 4 supermultiplets, a vector
multiplet and a hypermultiplet. The bosonic content of the (3+1)–dimensional N = 4
multiplet is the (3 + 1)–dimensional vector Aµ and the six adjoint scalars X4, . . . X9.
The bosonic content of the (2+ 1)–dimensional vector multiplet comprises of the 2+ 1
dimensional vector Ak k = 0, 1, 2 and the three scalars XA

V
= (X7, X8, X9). The

bosonic content of the (2+1)–dimensional hypermultiplet is the scalarA3 and the scalars

– 37 –



XH = (X4, X5, X6). The flavour fields form a (2+1)–dimensional hypermultiplet with
two fermions ψi and two complex scalars qm (i,m = 1, 2).

A full analysis of the spectrum of mesonic excitations is beyond the scope of this
paper. In this subsection we calculate the spectrum of fluctuations of the operator
corresponding to the fundamental condensate of the defect field theory given by the
operator [24]:

E
Al = ψ̄iσ

A

ij
χ
l
ψj + 2q̄mXA

V
χ
l
q
m; (A = 1, 2, 3; i,m = 1, 2) . (5.27)

Here χl denotes the symmetric traceless operator insertion X{i1 . . . X il} of l adjoint
scalars (i = 4, 5, 6), XA

V
denotes the vector (X7, X8, X9) and σA = (σ1, σ2, σ3) is a

triplet of Pauli matrices. On gravity side this operator is dual to the fluctuations
modes of the transverse scalars of the probe D5–brane. For a particular component
(say A = 7), the operator EAl corresponds to fluctuations of the profile function l(r)
studied in section 4. Therefore the corresponding spectrum is given by equation (4.59).
Our goal is to obtain the same result from field theory considerations. Note that the
operator EAl is the analog of the operator MAl

s
considered in the previous subsection.

This implies that the spectrum can be obtained by adapting the procedure outlined in
equations (5.12)-(5.18) to the defect field theory defined on the equatorial S̃2. To begin
with let us focus on the scalar sector of the A = 7 component of the operator EAl and
consider only the m = 1 additive term. The analog of equation (5.12) is given by:

X
(C)
ij

(t) =

�
R3

2

�
e
i

t
R3X

C

0 ij
+ e

−i
t

R3X
C

0
†
ij

�
; C = 4, 5, 6, 7; (5.28)

q
i

1
†
(t, S̃3) =

∞�

l̃1=0

l̃1�

m1=−l̃1

√
R3�

1 + 2l̃1

�
e
i( 12+l̃1)

t
R3 a

i

l̃1m1
Ȳ

l̃1m1(S̃2) + e
−i( 12+l̃1)

t
R3 b

i†
l̃1m1

Y
l̃1m1(S̃2)

�
;

q
i

1(t, S̃
3) =

∞�

l̃2=0

l̃2�

m2=−l̃2

√
R3�

1 + 2l̃2

�
e
i( 12+l̃2)

t
R3 b

i

l̃2m2
Ȳ

l̃2m2(S̃2) + e
−i( 12+l̃1)

t
R3 a

i†
l̃2m2

Y
l̃2m2(S̃2)

�
.

Note that in equation (5.28) the adjoint fields XC are truncated to the zero modes
on S̃3, while the fundamental scalars are expanded in spherical harmonics on S̃2 and
have zero point energies 1/(2R3). Note also that R2 = R3 since the fundamental fields
propagate on an equatorial two-sphere S̃2 inside the three-sphere S̃3. Next we define a
vacuum state |0� satisfying:

a
i

l1m1
|0� = b

i

l2m2
|0� = X

C

0 ij
|0� = 0 . (5.29)
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The state representing the collection of fields corresponding to the (m = 1, A = 7)
component of the operator (5.27) is given by:

q̄1X
7
V
χ
l
q1|0� =

∞�

l̃1,l̃2=0

l̃1�

m1=−l̃1

l̃2�

m2=−l̃2

R3e
i(2+l+l̃1+l̃2)

t
R3

Y l̃2m2(S̃2)Y l̃1m1(S̃2)�
(2l̃2 + 1)(2l̃1 + 1)

a
†
l̃2m2

X
7
0
†
χ
l

0
†
b
†
l̃1m1

|0� .

(5.30)

Note that the state (5.30) is a superposition of states with definite energy El,J =
(2 + l + J)/R3, where J = l̃1 + l̃2. Note also that a state with a definite energy has a
definite parity given by (−1)J . Next we expand:

Y
l̃1m1(S̃2)Y l̃2m2(S̃2) =

l̃1+l̃2�

l̃=|l̃1−l̃2|

l̃�

m=−l̃

Cl̃m

l̃1m1,l̃2m2
Y

l̃m(S̃2) . (5.31)

The coefficients Cl̃m

l̃1m1,l̃2m2
are non-zero only for |l̃1− l̃2| ≤ l̃ ≤ l̃1+ l̃2 (addition of angular

momentum) and (−1)l̃ = (−1)l̃1+l̃2(conservation of parity). Therefore for all values of
l̃ that appear in the expansion, we can write J = 2n+ l̃ for some non-negative integer
n. This implies that a state with a definite energy EJ,l can be expanded as:

|EJ,l� = R3e
iEJ,lt

�

2n+l̃=J

l̃�

m=−l̃

Y
l̃m(S̃2)C†

nl̃m
|0� , (5.32)

where C
†
nl̃m

is defined by:

C
†
nl̃m

≡

�

l̃1+l̃2=2n+l̃

l̃1�

m1=−l̃1

l̃2�

m2=−l̃2

Cl̃m

l̃1m1,l̃2m2�
(2l̃2 + 1)(2l̃1 + 1)
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†
l̃2m2

X
7
0
†
χ
l

0
†
b
†
l̃1m1

. (5.33)

Now the general state (5.30) can be written as:

q̄1X
8
V
χ
l
q1|0� =

∞�

n,l̃=0

l̃�

m=−l̃

R3e
i(2+l+2n+l̃) t

R3Y
l̃I(S̃2)C†

nl̃m
|0� . (5.34)

Therefore if we define ω̃ = ωR3, our final expression for the dispersion relation is given
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precisely by equation (4.59):

ω̃ = 2 + l + 2n+ l̃; n = 0, 1, 2, . . . . (5.35)

This completes our study of the meson spectrum of the defect field theory on S̃2. The
free field theory analysis of the spectrum agrees with the results obtained at strong
coupling via holographic techniques. Similarly to the case of the flavoured gauge field
theory on S̃3 considered in the previous subsection, this is in agreement with a non-
renormalization theorem. However the perfect matching of equations (4.59) and (5.35)
provides a satisfying verification of the validity of the holographic approach towards
strongly coupled systems at least in the presence of some supersymmetry.

6. Conclusion

We have considered meson spectra on × S3 in a holographic approach of embedding
D7 or D5 brane probes into global AdS space. First, in a numerical approach, we de-
termined the bare quark mass dependence of the spectra through the phase transition
which occurs between branes which do or do not reach the S3 sphere in the field theory
directions. Second, we studied the spectra at zero bare quark mass analytically and
found exact agreement between the gravity and field theory calculations. For the field
theory calculation, we expanded the fields in the operators considered on S3 and com-
bined them using the relevant Clebsch-Gordan coefficients together with a generalized
parity argument. The fact that the free field calculation agrees with the gravity calcu-
lation is consistent with the non-renormalization theorems of supersymmetric theories.
Moreover, our calculation confirms the physical interpretation that since the zero-point
energy on S3 exceeds the binding energy of the mesons, the mesons cannot pair-produce
any more.

As far as we know, this is the first example of a calculation within gauge/gravity
duality with added flavour using the Born-Infeld action where there is an exact match
between a non-trivial field theory calculation and the gravity result. In the plane wave
limit, field theories similar to ours have been studied previously in [25, 26, 27]. We
hope that the results of this paper will inspire further field-theory calculations in top-
down gauge/gravity models where the dual field theory is known explicitly, in view
of further comparisons between weak and strong coupling results for observables of
physical relevance.
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