
Lecture 3: Mixed quantum states and channels

Mark M. Wilde∗

In general, we may not know for certain whether we possess a particular quantum state. Instead,
we may only have a probabilistic description of an ensemble of quantum states. This lecture
re-establishes the postulates of the quantum theory so that they incorporate a lack of complete
information about a quantum system. The density operator formalism is a powerful mathematical
tool for describing this scenario. This lecture also establishes how to model the noisy evolution of
a quantum system, and we explore models of noisy quantum channels that are the analogs of noisy
classical channels.

You might have noticed that the development in the first lecture relied on the premise that the
possessor of a quantum system has perfect knowledge of the state of a given system. For instance,
we assumed that Alice knows that she possesses a qubit in the state |ψ〉 where

|ψ〉 = α|0〉+ β|1〉. (1)

Also, we assumed that Alice and Bob might know that they share an ebit |Φ+〉. We even assumed
perfect knowledge of a unitary evolution or a particular measurement that a possessor of a quantum
state may apply to it.

This assumption of perfect, definite knowledge of a quantum state is a difficult one to justify
in practice. In reality, it is difficult to prepare, evolve, or measure a quantum state exactly as
we wish. Slight errors may occur in the preparation, evolution, or measurement due to imprecise
devices or to coupling with other degrees of freedom outside of the system that we are controlling.
An example of such imprecision can occur in the coupling of two photons at a beamsplitter. We
may not be able to tune the reflectivity of the beamsplitter exactly or may not have the timing
of the arrival of the photons exactly set. The noiseless quantum theory as we presented it in the
previous section cannot handle such imprecisions.

In this lecture, we relax the assumption of perfect knowledge of the preparation, evolution, or
measurement of quantum states and develop a noisy quantum theory that incorporates an imprecise
knowledge of these states. The noisy quantum theory fuses probability theory and the quantum
theory into one formalism.

We proceed with the development of the noisy quantum theory in the following order:

1. We first present the density operator formalism, which gives a representation for a noisy,
imprecise quantum state.

2. We then discuss the general form of measurements and the effect of them on our description of
a noisy quantum state. We specifically discuss the POVM (positive operator-valued measure)
formalism that gives a more general way of describing measurements.
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preprint “From Classical to Quantum Shannon Theory” available as arXiv:1106.1445.
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3. We proceed to composite noisy systems, which admit a particular form, and we discuss
several possible states of composite noisy systems including product states, separable states,
classical-quantum states, entangled states, and arbitrary states.

4. Next, we consider the Kraus representation of a noisy quantum channel, which gives a way
to describe noisy evolution, and we discuss important examples of noisy quantum channels.

1 Noisy Quantum States

We generally may not have perfect knowledge of a prepared quantum state. Suppose a third party,
Bob, prepares a state for us and only gives us a probabilistic description of it. We may only know
that Bob selects the state |ψx〉 with a certain probability pX(x). Our description of the state is
then as an ensemble E of quantum states where

E ≡ {pX(x), |ψx〉}x∈X . (2)

In the above, X is a random variable with distribution pX(x). Each realization x of random
variable X belongs to an alphabet X . For our purposes, it is sufficient for us to say that X ≡
{1, . . . , |X |}. Thus, the realization x merely acts as an index, meaning that the quantum state is
|ψx〉 with probability pX(x). We also assume that each state |ψx〉 is a qudit state that lives on a
system of dimension d.

A simple example is the following ensemble:{{
1

3
, |1〉

}
,

{
2

3
, |3〉

}}
. (3)

The states |1〉 and |3〉 live on a four-dimensional system with basis states

{|0〉, |1〉, |2〉, |3〉}. (4)

The interpretation of this ensemble is that the state is |1〉 with probability 1/3 and the state is |3〉
with probability 2/3.

1.1 The Density Operator

Suppose now that we have the ability to perform a perfect measurement of a system with ensemble
description E in (2). Let Πj be the elements of this projective measurement so that

∑
j Πj = I, and

let J be the random variable that denotes the index j of the measurement outcome. Let us suppose
at first, without loss of generality, that the state in the ensemble is |ψx〉 for some x ∈ X . Then
the Born rule of the noiseless quantum theory states that the conditional probability pJ |X(j|x) of
obtaining measurement result j (given that the state is |ψx〉) is

pJ |X(j|x) = 〈ψx|Πj |ψx〉, (5)

and the post-measurement state is
Πj |ψx〉√
pJ |X(j|x)

. (6)
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But, we would also like to know the actual probability pJ(j) of obtaining measurement result j for
the ensemble description E . By the law of total probability, the unconditional probability pJ(j) is

pJ(j) =
∑
x∈X

pJ |X(j|x)pX(x) (7)

=
∑
x∈X
〈ψx|Πj |ψx〉pX(x). (8)

The trace Tr{A} of an operator A is

Tr{A} ≡
∑
i

〈i|A|i〉, (9)

where |i〉 is some complete, orthonormal basis. (Observe that the trace operation is linear.) We
can then show the following useful property with the above definition:

Tr{Πj |ψx〉〈ψx|} =
∑
i

〈i|Πj |ψx〉〈ψx|i〉 (10)

=
∑
i

〈ψx|i〉〈i|Πj |ψx〉 (11)

= 〈ψx|

(∑
i

|i〉〈i|

)
Πj |ψx〉 (12)

= 〈ψx|Πj |ψx〉. (13)

The last equality uses the completeness relation
∑

i|i〉〈i| = I. Thus, we continue with the develop-
ment in (8) and show that

pJ(j) =
∑
x∈X

Tr{Πj |ψx〉〈ψx|}pX(x) (14)

= Tr

{
Πj

∑
x∈X

pX(x)|ψx〉〈ψx|

}
. (15)

We can rewrite the last equation as follows:

pJ(j) = Tr{Πjρ}, (16)

where we define the density operator ρ as

ρ ≡
∑
x∈X

pX(x)|ψx〉〈ψx|. (17)

The above operator is known as the density operator because it is the quantum analog of a proba-
bility density function.

We sometimes refer to the density operator as the expected density operator because there is
a sense in which we are taking the expectation over all of the states in the ensemble in order to
obtain the density operator. We can equivalenty write the density operator as follows:

ρ = EX{|ψX〉〈ψX |}, (18)
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where the expectation is with respect to the random variable X. Note that we are careful to use
the notation |ψX〉 instead of the notation |ψx〉 for the state inside of the expectation because the
state |ψX〉 is a random quantum state, random with respect to a classical random variable X.

Exercise 1 Suppose the ensemble has a degenerate probability distribution, say pX(0) = 1 and
pX(x) = 0 for all x 6= 0. What is the density operator of this degenerate ensemble?

1.1.1 Properties of the Density Operator

What are the properties that a given density operator must satisfy? Let us consider taking the
trace of ρ:

Tr{ρ} = Tr

{∑
x∈X

pX(x)|ψx〉〈ψx|

}
(19)

=
∑
x∈X

pX(x)Tr{|ψx〉〈ψx|} (20)

=
∑
x∈X

pX(x)〈ψx|ψx〉 (21)

=
∑
x∈X

pX(x) (22)

= 1. (23)

The above development shows that every density operator should have unit trace because it arises
from an ensemble of quantum states. Every density operator is also positive, meaning that

∀|ϕ〉 : 〈ϕ|ρ|ϕ〉 ≥ 0. (24)

We write ρ ≥ 0 to indicate that an operator is positive. The proof of positivity of any density
operator ρ is as follows:

〈ϕ|ρ|ϕ〉 = 〈ϕ|

(∑
x∈X

pX(x)|ψx〉〈ψx|

)
|ϕ〉 (25)

=
∑
x∈X

pX(x)〈ϕ|ψx〉〈ψx|ϕ〉 (26)

=
∑
x∈X

pX(x)|〈ϕ|ψx〉|2 ≥ 0. (27)

The inequality follows because each pX(x) is a probability and is therefore non-negative.
Let us consider taking the conjugate transpose of the density operator ρ:

ρ† =

(∑
x∈X

pX(x)|ψx〉〈ψx|

)†
(28)

=
∑
x∈X

pX(x)(|ψx〉〈ψx|)† (29)

=
∑
x∈X

pX(x)|ψx〉〈ψx| (30)

= ρ. (31)
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Every density operator is thus a Hermitian operator as well because the conjugate transpose of ρ
is ρ.

1.1.2 Ensembles and the Density Operator

Every ensemble has a unique density operator, but the opposite does not necessarily hold: every
density operator does not correspond to a unique ensemble and could correspond to many ensembles.

Exercise 2 Show that the ensembles

{{1/2, |0〉}, {1/2, |1〉}} (32)

and
{{1/2, |+〉}, {1/2, |−〉}} (33)

have the same density operator.

This last result has profound implications for the predictions of the quantum theory because
it is possible for two or more completely different ensembles to have the same probabilities for
measurement results. It also has important implications for quantum Shannon theory as well.

By the spectral theorem, it follows that every density operator ρ has a spectral decomposition
in terms of its eigenstates {|φx〉}x∈{0,...,d−1} because every ρ is Hermitian:

ρ =
d−1∑
x=0

λx|φx〉〈φx|, (34)

where the coefficients λx are the eigenvalues.

Exercise 3 Show that the coefficients λx are probabilities using the facts that Tr{ρ} = 1 and ρ ≥ 0.

Thus, given any density operator ρ, we can define a “canonical” ensemble {λx, |φx〉} corre-
sponding to it. The ensemble arising from the spectral theorem is the most “efficient” ensemble,
in a sense, and we will explore this idea more in the lecture on quantum compression (known as
Schumacher compression after its inventor).

1.1.3 Density Operator as the State

We can also refer to the density operator as the state of a given quantum system because it is
possible to use it to calculate all of the predictions of the quantum theory. We can make these
calculations without having an ensemble description—all we need is the density operator. The
noisy quantum theory also subsumes the noiseless quantum theory because any state |ψ〉 has a
corresponding density operator |ψ〉〈ψ| in the noisy quantum theory, and all calculations with this
density operator in the noisy quantum theory give the same results as using the state |ψ〉 in the
noiseless quantum theory. For these reasons, we will say that the state of a given quantum system
is a density operator.

One of the most important states in the noisy quantum theory is the maximally mixed state π.
The maximally mixed state π arises as the density operator of a uniform ensemble of orthogonal
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states
{
1
d , |x〉

}
, where d is the dimensionality of the Hilbert space. The maximally mixed state π

is then equal to

π =
1

d

∑
x∈X
|x〉〈x| = I

d
. (35)

Exercise 4 Show that π is the density operator of the ensemble that chooses |0〉, |1〉, |+〉, |−〉 with
equal probability.

The purity P (ρ) of a density operator ρ is equal to

P (ρ) ≡ Tr
{
ρ†ρ
}

= Tr
{
ρ2
}
. (36)

The purity is one particular measure of the noisiness of a quantum state. The purity of a pure
state is equal to one, and the purity of a mixed state is strictly less than one.

1.2 Noiseless Evolution of an Ensemble

Quantum states can evolve in a noiseless fashion either according to a unitary operator or a mea-
surement. In this section, we determine the noiseless evolution of an ensemble and its corresponding
density operator. (We consider noisy evolution in Section 4.)

1.2.1 Noiseless Unitary Evolution of a Noisy State

We first consider noiseless evolution according to some unitary U . Suppose we have the ensemble E
in (2) with density operator ρ. Suppose without loss of generality that the state is |ψx〉. Then the
evolution postulate of the noiseless quantum theory gives that the state after the unitary evolution
is as follows:

U |ψx〉. (37)

This result implies that the evolution leads to a new ensemble

EU ≡ {pX(x), U |ψx〉}x∈X . (38)

The density operator of the evolved ensemble is

∑
x∈X

pX(x)U |ψx〉〈ψx|U † = U

(∑
x∈X

pX(x)|ψx〉〈ψx|

)
U † (39)

= UρU †. (40)

Thus, the above relation shows that we can keep track of the evolution of the density operator ρ,
rather than worrying about keeping track of the evolution of every state in the ensemble E . It
suffices to keep track of only the density operator evolution because this operator is sufficient to
determine the predictions of the quantum theory.
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1.2.2 Noiseless Measurement of a Noisy State

In a similar fashion, we can analyze the result of a measurement on a system with ensemble
description E in (2). Suppose that we perform a projective measurement with projection operators
{Πj}j where

∑
j Πj = I. Suppose further without loss of generality that the state in the ensemble

is |ψx〉. Then the noiseless quantum theory predicts that the probability of obtaining outcome j
conditioned on the index x is

pJ |X(j|x) = 〈ψx|Πj |ψx〉, (41)

and the resulting state is
Πj |ψx〉√
pJ |X(j|x)

. (42)

Supposing that we receive outcome j, then we have a new ensemble:

Ej ≡
{
pX|J(x|j),Πj |ψx〉/

√
pJ |X(j|x)

}
x∈X

. (43)

The density operator for this ensemble is∑
x∈X

pX|J(x|j)Πj |ψx〉〈ψx|Πj

pJ |X(j|x)

= Πj

(∑
x∈X

pX|J(x|j)
pJ |X(j|x)

|ψx〉〈ψx|

)
Πj (44)

= Πj

(∑
x∈X

pJ |X(j|x)pX(x)

pJ |X(j|x)pJ(j)
|ψx〉〈ψx|

)
Πj (45)

=
Πj

(∑
x∈X pX(x)|ψx〉〈ψx|

)
Πj

pJ(j)
(46)

=
ΠjρΠj

pJ(j)
. (47)

The second equality follows from applying the Bayes rule:

pX|J(x|j) = pJ |X(j|x)pX(x)/pJ(j). (48)

The above expression gives the evolution of the density operator under a measurement. We can
again employ the law of total probability to compute that pJ(j) is

pJ(j) =
∑
x∈X

pJ |X(j|x)pX(x) (49)

=
∑
x∈X

pX(x)〈ψx|Πj |ψx〉 (50)

=
∑
x∈X

pX(x)Tr{|ψx〉〈ψx|Πj} (51)

= Tr

{∑
x∈X

pX(x)|ψx〉〈ψx|Πj

}
(52)

= Tr{ρΠj}. (53)
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We can think of Tr{ρΠj} intuitively as the area of the shadow of ρ onto the space that the
projector Πj projects.

2 Measurement in the Noisy Quantum Theory

We have described measurement in the quantum theory using a set of projectors that form a
resolution of the identity. For example, the set {Πj}j of projectors that satisfy the condition∑

j Πj = I form a valid von Neumann quantum measurement. A projective measurement is not
the most general measurement that we can perform on a quantum system (though it is certainly
one valid type of quantum measurement).

The most general quantum measurement consists of a set of measurement operators {Mj}j that
satisfy the following completeness condition:∑

j

M †jMj = I. (54)

Suppose that we have a pure state |ψ〉. Given a set of measurement operators of the above
form, the probability for obtaining outcome j is

p(j) ≡ 〈ψ|M †jMj |ψ〉, (55)

and the post-measurement state when we receive outcome j is

Mj |ψ〉√
p(j)

. (56)

Suppose that we instead have an ensemble {pX(x), |ψx〉} with density operator ρ. We can carry
out the same analysis in (47) to show that the post-measurement state when we measure result j
is

MjρM
†
j

p(j)
(57)

where the probability p(j) for obtaining outcome j is

p(j) ≡ Tr
{
M †jMjρ

}
. (58)

2.1 POVM Formalism

Sometimes, we simply may not care about the post-measurement state of a quantum measurement,
but instead we only care about the probability for obtaining a particular outcome. This situation
arises in the transmission of classical data over a quantum channel. In this situation, we are
merely concerned with minimizing the error probabilities of the classical transmission. The receiver
does not care about the post-measurement state because he no longer needs it in the quantum
information processing protocol.

We can specify a measurement of this sort by some set {Λj}j of operators that satisfy positivity
and completeness:

Λj ≥ 0, (59)∑
j

Λj = I. (60)
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The set {Λj}j of operators is a positive operator-valued measure (POVM). The probability for
obtaining outcome j is

〈ψ|Λj |ψ〉, (61)

if the state is some pure state |ψ〉. The probability for obtaining outcome j is

Tr{Λjρ}, (62)

if the state is in a mixed state described by some density operator ρ.

Exercise 5 Consider the following five “Chrysler” states:

|ek〉 ≡ cos

(
2πk

5

)
|0〉+ sin

(
2πk

5

)
|1〉, (63)

where k ∈ {0, . . . , 4}. These states are the “Chrysler” states because they form a pentagon on the
XZ-plane of the Bloch sphere. Show that the following set of states form a valid POVM:{

2

5
|ek〉〈ek|

}
. (64)

Exercise 6 Suppose we have an ensemble {p(x), ρx} of density operators and a POVM with ele-
ments {Λx} that should identify the states ρx with high probability, i.e., we would like Tr{ρxΛx} to
be as high as possible. The expected success probability of the POVM is then∑

x

p(x)Tr{ρxΛx}. (65)

Suppose that there exists some operator τ such that

τ ≥ p(x)ρx, (66)

where the condition τ ≥ p(x)ρx is the same as τ − p(x)ρx ≥ 0 (the operator τ − p(x)ρx is a positive
operator). Show that Tr{τ} is an upper bound on the expected success probability of the POVM.
After doing so, consider the case of encoding n bits into a d-dimensional subspace. By choosing
states uniformly at random (in the case of the ensemble {2−n, ρi}i∈{0,1}n), show that the expected

success probability is bounded above by d 2−n. Thus, it is not possible to store more than n classical
bits in n qubits and have a perfect success probability of retrieval (this is a simplified version of the
Holevo bound).

3 Composite Noisy Quantum Systems

We are again interested in the behavior of two or more quantum systems when we join them
together. Some of the most exotic, truly “quantum” behavior occurs in joint quantum systems,
and we observe a marked departure from the classical world.
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3.1 Independent Ensembles

Let us first suppose that we have two independent ensembles for quantum systems A and B. The
first quantum system belongs to Alice and the second quantum system belongs to Bob, and they
may or may not be spatially separated. Let {pX(x), |ψx〉} be the ensemble for the system A and
let {pY (y), |φy〉} be the ensemble for the system B. Suppose for now that the state on system A is
|ψx〉 for some x and the state on system B is |φy〉 for some y. Then, using the composite system
postulate of the noiseless quantum theory, the joint state for a given x and y is |ψx〉 ⊗ |φy〉. The
density operator for the joint quantum system is the expectation of the states |ψx〉 ⊗ |φy〉 with
respect to the random variables X and Y that describe the individual ensembles:

EX,Y {(|ψX〉 ⊗ |φY 〉)(〈ψX | ⊗ 〈φY |)}. (67)

The above expression is equal to the following one:

EX,Y {|ψX〉〈ψX | ⊗ |φY 〉〈φY |}, (68)

because (|ψx〉 ⊗ |φy〉)(〈ψx| ⊗ 〈φy|) = |ψx〉〈ψx| ⊗ |φy〉〈φy|. We then explicitly write out the expecta-
tion as a sum over probabilities:∑

x,y

pX(x)pY (y)|ψx〉〈ψx| ⊗ |φy〉〈φy|. (69)

We can distribute the probabilities and the sum because the tensor product obeys a distributive
property: ∑

x

pX(x)|ψx〉〈ψx| ⊗
∑
y

pY (y)|φy〉〈φy|. (70)

The density operator for this ensemble admits the following simple form:

ρ⊗ σ, (71)

where ρ is the density operator of the X ensemble and σ is the density operator of the Y ensemble.
We can say that Alice’s local density operator is ρ and Bob’s local density operator is σ. We call
a density operator of the above form a product state. We should expect the density operator to
factorize as it does above because we assumed that the ensembles are independent. There is nothing
much that distinguishes this situation from the classical world, except for the fact that the states
in each respective ensemble may be non-orthogonal to other states in the same ensemble. But even
here, there is some equivalent description of each ensemble in terms of an orthonormal basis so
that there is really no difference between this description and a joint probability distribution that
factors as two independent distributions.

3.2 Separable States

Let us now consider two systems A and B whose corresponding ensembles are correlated. We
describe this correlated ensemble as the joint ensemble

{pX(x), |ψx〉 ⊗ |φx〉}. (72)
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It is straightforward to verify that the density operator of this correlated ensemble has the following
form:

EX{(|ψX〉 ⊗ |φX〉)(〈ψX | ⊗ 〈φX |)} =
∑
x

pX(x)|ψx〉〈ψx| ⊗ |φx〉〈φx|. (73)

The above state is a separable state. The term “separable” implies that there is no quantum
entanglement in the above state, i.e., there is a completely classical procedure that prepares the
above state. By ignoring Bob’s system, Alice’s local density operator is of the form

EX{|ψX〉〈ψX |} =
∑
x

pX(x)|ψx〉〈ψx|, (74)

and similarly, Bob’s local density operator is

EX{|φX〉〈φX |} =
∑
x

pX(x)|φx〉〈φx|. (75)

We can generalize this classical preparation procedure one step further. Let us suppose that
we first generate a random variable Z according to some distribution pZ(z). We then generate two
other ensembles, conditional on the value of the random variable Z. Let {pX|Z(x|z), |ψx,z〉} be the
first ensemble and let {pY |Z(y|z), |φy,z〉} be the second ensemble, where the random variables X
and Y are independent when conditioned on Z. Let us label the density operators of the first and
second ensembles when conditioned on a particular realization z by ρz and σz, respectively. It is
then straightforward to verify that the density operator of an ensemble created from this classical
preparation procedure has the following form:

EX,Y,Z{(|ψX,Z〉 ⊗ |φY,Z〉)(〈ψX,Z | ⊗ 〈φY,Z |)} =
∑
z

pZ(z)ρz ⊗ σz. (76)

Exercise 7 By ignoring Bob’s system, we can determine Alice’s local density operator. Show that

EX,Y,Z{|ψX,Z〉〈ψX,Z |} =
∑
z

pZ(z)ρz, (77)

so that the above expression is the density operator for Alice. It similarly follows that the local
density operator for Bob is

EX,Y,Z{|φY,Z〉〈φY,Z |} =
∑
z

pZ(z)σz. (78)

The density operator in (76) is the most general form of a separable state because the above
procedure is the most general classical preparation procedure (we could generalize further with more
ensembles of ensembles, but they would ultimately lead to this form because the set of separable
states is a convex set). A bipartite state characterized by a density operator is entangled if we
cannot write it in the form in (76), as a convex combination of product states.

Exercise 8 Show that we can always write a separable state as a convex combination of pure
product states: ∑

z

pZ(z)|φz〉〈φz| ⊗ |ψz〉〈ψz|, (79)

by manipulating the general form in (76).
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3.3 Local Density Operator

3.3.1 A First Example

Consider the entangled Bell state |Φ+〉AB
shared on systems A and B. In the above analyses, we

were concerned with determining a local density operator description for both Alice and Bob. Now,
we are curious if it is possible to determine such a local density operator description for Alice and
Bob with respect to the state |Φ+〉AB

.
As a first approach to this issue, recall that the density operator description arises from its use-

fulness in determining the probabilities of the outcomes of a particular measurement. We say that
the density operator is “the state” of the system merely because it is a mathematical representation
that allows us to compute the probabilities resulting from a physical measurement. So, if we would
like to determine a “local density operator,” such a local density operator should predict the result
of a local measurement.

Let us consider a local measurement with measurement operators {Mm}m that Alice can per-
form on her system. The global measurement operators for this local measurement are

{
MA

m ⊗ IB
}
m

because nothing (the identity) happens to Bob’s system. The probability of obtaining result m is

〈
Φ+
∣∣MA

m ⊗ IB
∣∣Φ+

〉
=

1

2

1∑
i,j=0

〈ii|MA
m ⊗ IB|jj〉 (80)

=
1

2

1∑
i,j=0

〈i|MA
m|j〉〈i|j〉 (81)

=
1

2

(
〈0|MA

m|0〉+ 〈1|MA
m|1〉

)
(82)

=
1

2

(
Tr
{
MA

m|0〉〈0|
A
}

+ Tr
{
MA

m|1〉〈1|
A
})

(83)

= Tr

{
MA

m

1

2

(
|0〉〈0|A + |1〉〈1|A

)}
(84)

= Tr
{
MA

mπ
A
}
. (85)

The above steps follow by applying the rules of taking the inner product with respect to tensor
product operators. The last line follows by recalling the definition of the maximally mixed state π
in (35), where π here is a qubit maximally mixed state.

The above calculation demonstrates that we can predict the result of any local “Alice” mea-
surement using the density operator π. Therefore, it is reasonable to say that Alice’s local density
operator is π, and we even go as far to say that her local state is π. A symmetric calculation shows
that Bob’s local state is also π.

This result concerning their local density operators may seem strange at first. The following
global state gives equivalent predictions for local measurements:

πA ⊗ πB. (86)

Can we then conclude that an equivalent representation of the global state is the above state?
Absolutely not. The global state |Φ+〉AB

and the above state give drastically different predictions
for global measurements. Exercise 10 below asks you to determine the probabilities for measuring
the global operator ZA ⊗ ZB when the global state is |Φ+〉AB

or πA ⊗ πB, and the result is that
the predictions are dramatically different.
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Exercise 9 Show that the projection operators corresponding to a measurement of the observable
ZA ⊗ ZB are as follows:

Πeven ≡
1

2

(
IA ⊗ IB + ZA ⊗ ZB

)
= |00〉〈00|AB + |11〉〈11|AB, (87)

Πodd ≡
1

2

(
IA ⊗ IB − ZA ⊗ ZB

)
= |01〉〈01|AB + |10〉〈10|AB. (88)

This measurement is a parity measurement, where measurement operator Πeven coherently measures
even parity and measurement operator Πodd measures odd parity.

Exercise 10 Show that a parity measurement (defined in the previous exercise) of the state |Φ+〉AB

returns an even parity result with probability one, and a parity measurement of the state πA ⊗ πB
returns even or odd parity with equal probability. Thus, despite the fact that these states have the
same local description, their global behavior is very different. Show that the same is true for the
phase parity measurement, given by

ΠX,even ≡
1

2

(
IA ⊗ IB +XA ⊗XB

)
, (89)

ΠX,odd ≡
1

2

(
IA ⊗ IB −XA ⊗XB

)
. (90)

Exercise 11 Show that the maximally correlated state Φ
AB

, where

Φ
AB

=
1

2

(
|00〉〈00|AB + |11〉〈11|AB

)
, (91)

gives results for local measurements that are the same as those for the maximally entangled state |Φ+〉AB
.

Show that the above parity measurements can distinguish these states.

3.3.2 Partial Trace

In general, we would like to determine a local density operator that predicts the outcomes of all
local measurements without having to resort repeatedly to an analysis like that in (80-85). The
general method for determining a local density operator is to employ the partial trace operation.
For a simple state of the form

|x〉〈x| ⊗ |y〉〈y|, (92)

the partial trace is the following operation:

|x〉〈x| Tr{|y〉〈y|} = |x〉〈x|, (93)

where we “trace out” the second system to determine the local density operator for the first. We
define it mathematically as acting on any tensor product of rank-one operators (not necessarily
corresponding to a state)

|x1〉〈x2| ⊗ |y1〉〈y2|, (94)

as follows:

Tr2{|x1〉〈x2| ⊗ |y1〉〈y2|} ≡ |x1〉〈x2| Tr{|y1〉〈y2|} (95)

= |x1〉〈x2| 〈y1|y2〉. (96)

The subscript “2” of the trace operation indicates that the partial trace acts on the second system.
It is a linear operation, much like the full trace is a linear operation.
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Exercise 12 Show that the partial trace operation is equivalent to

TrB

{
|x1〉〈x2|A ⊗ |y1〉〈y2|B

}
=
∑
i

〈i|B
(
|x1〉〈x2|A ⊗ |y1〉〈y2|B

)
|i〉B, (97)

for some orthonormal basis {|i〉B} on Bob’s system.

The most general density operator on two systems A and B is some operator ρAB that is positive
with unit trace. We can obtain the local density operator ρA from ρAB by tracing out the B system:

ρA = TrB
{
ρAB

}
. (98)

In more detail, let us expand an arbitrary density operator ρAB with an orthonormal basis {|i〉A⊗
|j〉B}i,j for the bipartite (two-party) state:

ρAB =
∑
i,j,k,l

λi,j,k,l(|i〉A ⊗ |j〉B)(〈k|A ⊗ 〈l|B). (99)

The coefficients λi,j,k,l are the matrix elements of ρAB with respect to the basis {|i〉A⊗|j〉B}i,j , and
they are subject to the constraint of positivity and unit trace for ρAB . We can rewrite the above
operator as

ρAB =
∑
i,j,k,l

λi,j,k,l|i〉〈k|A ⊗ |j〉〈l|B. (100)

We can now evaluate the partial trace:

ρA = TrB

∑
i,j,k,l

λi,j,k,l|i〉〈k|A ⊗ |j〉〈l|B
 (101)

=
∑
i,j,k,l

λi,j,k,lTrB

{
|i〉〈k|A ⊗ |j〉〈l|B

}
(102)

=
∑
i,j,k,l

λi,j,k,l|i〉〈k|ATr
{
|j〉〈l|B

}
(103)

=
∑
i,j,k,l

λi,j,k,l|i〉〈k|A〈j|l〉 (104)

=
∑
i,j,k

λi,j,k,j |i〉〈k|A (105)

=
∑
i,k

∑
j

λi,j,k,j

|i〉〈k|A. (106)

The second equality exploits the linearity of the partial trace operation. The last equality explic-
itly shows how the partial trace operation earns its name—it is equivalent to performing a trace
operation over the coefficients corresponding to Bob’s system.

The next exercise asks you to verify that the operator ρA, as defined by the partial trace,
predicts the results of a local measurement accurately and confirms the role of ρA as a local density
operator.
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Exercise 13 Suppose Alice and Bob share a quantum system in a state described by the density
operator ρAB. Consider a local measurement, with measurement operators {Mm}m, that Alice may
perform on her system. The global measurement operators are thus

{
MA

m ⊗ IB
}
m

. Show that the
probabilities predicted by the global density operator are the same as those predicted by the local
density operator ρA where ρA =TrB

{
ρAB

}
:

Tr
{(
MA

m ⊗ IB
)
ρAB

}
= Tr

{
MA

mρ
A
}
. (107)

Thus, the predictions of the global noisy quantum theory are consistent with the predictions of the
local noisy quantum theory.

Exercise 14 Verify that the partial trace of a product state gives one of the density operators in
the product state:

Tr2{ρ⊗ σ} = ρ. (108)

This result is consistent with the observation near (71).

Exercise 15 Verify that the partial trace of a separable state gives the result in (77):

Tr2

{∑
z

pZ(z)ρz ⊗ σz

}
=
∑
z

pZ(z)ρz. (109)

Exercise 16 Consider the following density operator that is formally analogous to a joint proba-
bility distribution pX,Y (x, y):

ρ =
∑
x,y

pX,Y (x, y)|x〉〈x| ⊗ |y〉〈y|, (110)

where the set of states {|x〉}x and {|y〉}y each form an orthonormal basis. Show that tracing out
the second system is formally analogous to taking the marginal distribution pX(x) =

∑
y pX,Y (x, y)

of the joint distribution pX,Y (x, y). That is, we are left with a density operator of the form∑
x

pX(x)|x〉〈x|. (111)

Keep in mind that the partial trace is a generalization of the marginalization because it handles
more exotic quantum states besides the above “classical” state.

Exercise 17 Show that the two partial traces in any order on a bipartite system are equivalent to
a full trace:

Tr
{
ρAB

}
= TrA

{
TrB

{
ρAB

}}
= TrB

{
TrA

{
ρAB

}}
. (112)

Exercise 18 Verify that Alice’s local density operator does not change if Bob performs a unitary
operator or a measurement where he does not inform her of the measurement result.

4 Noisy Evolution

The evolution of a quantum state is never perfect. In this section, we introduce noise as resulting
from the loss of information about a quantum system. This loss of information is similar to the lack
of information about the preparation of a quantum state, as we have seen in the previous section.
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4.1 Noisy Evolution from a Random Unitary

We begin with an example, the quantum bit-flip channel. Suppose that we prepare a quantum
state |ψ〉. For simplicity, let us suppose that we are able to prepare this state perfectly. Suppose that
we send this qubit over a quantum bit-flip channel, i.e., the channel applies the X Pauli operator
(bit-flip operator) with some probability p and applies the identity operator with probability 1− p.
We can describe the resulting state as the following ensemble:

{{p,X|ψ〉}, {1− p, |ψ〉}}. (113)

The density operator of this ensemble is as follows:

pX|ψ〉〈ψ|X† + (1− p)|ψ〉〈ψ|. (114)

We now generalize the above example by beginning with an ensemble

{pX(x), |ψx〉}x∈X (115)

with density operator ρ ≡
∑

x∈X pX(x)|ψx〉〈ψx| and apply the bit-flip channel to this ensemble.
Given that the input state is |ψx〉, the resulting ensemble is as in (113) with |ψ〉 replaced by |ψx〉.
The overall ensemble is then as follows:

{{pX(x)p,X|ψx〉}, {pX(x)(1− p), |ψx〉}}x∈X . (116)

We can calculate the density operator of the above ensemble:∑
x∈X

pX(x)pX|ψx〉〈ψx|X† + pX(x)(1− p)|ψx〉〈ψx|, (117)

and simplify the above density operator by employing the definition of ρ:

pXρX† + (1− p)ρ. (118)

The above density operator is more “mixed” than the original density operator.

4.1.1 Random Unitaries

The generalization of the above discussion is to consider some ensemble of unitaries (a random uni-
tary) {p(k), Uk} that we can apply to an ensemble of states {pX(x), |ψx〉}x∈X . It is straightforward
to show that the resulting density operator is∑

k

p(k)UkρU
†
k , (119)

where ρ is the density operator of the ensemble of states.
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4.2 Noisy Evolution as the Loss of a Measurement Outcome

We can also think about noise as arising from the loss of a measurement outcome. Suppose that
we have an ensemble of states {pX(x), |ψx〉}x∈X and we perform a measurement with a set {Mk}
of measurement operators where

∑
kM

†
kMk = I. First let us suppose that we know that the state

is |ψx〉. Then the probability of obtaining the measurement outcome k is pK|X(k|x) where

pK|X(k|x) = 〈ψx|M †kMk|ψx〉, (120)

and the post-measurement state is
Mk|ψx〉√
pK|X(k|x)

. (121)

Let us now suppose that we lose track of the measurement outcome, or equivalently, someone else
measures the system and does not inform us of the measurement outcome. The resulting ensemble
description is then {

pX|K(x|k)pK(k),Mk|ψx〉/
√
pK|X(k|x)

}
x∈X ,k

. (122)

The density operator of the ensemble is then∑
x,k

pX|K(x|k)pK(k)
Mk|ψx〉〈ψx|M †k
pK|X(k|x)

=
∑
x,k

pK|X(k|x)pX(x)
Mk|ψx〉〈ψx|M †k
pK|X(k|x)

(123)

=
∑
x,k

pX(x)Mk|ψx〉〈ψx|M †k (124)

=
∑
k

MkρM
†
k . (125)

We can thus write this evolution as a noisy map N (ρ) where

N (ρ) ≡
∑
k

MkρM
†
k . (126)

We derived the map in (126) from the perspective of the loss of a measurement outcome, but
it in fact represents a general evolution of a density operator, and the operators Mk are known as
the Kraus operators. We can represent all noisy evolutions in the form (126). The evolution of the
density operator ρ is trace-preserving because the trace of the resulting density operator has unit
trace:

Tr{N (ρ)} = Tr

{∑
k

MkρM
†
k

}
(127)

=
∑
k

Tr
{
MkρM

†
k

}
(128)

=
∑
k

Tr
{
M †kMkρ

}
(129)
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Figure 1: We use the diagram on the left to depict a noisy quantum channel NA→B that takes a
quantum system A to a quantum system B. This quantum channel is equivalent to the diagram
on the right, where some third party performs a measurement on the input system and does not
inform the receiver of the measurement outcome.

= Tr

{∑
k

M †kMkρ

}
(130)

= Tr{ρ} (131)

= 1. (132)

There is another important condition that the map N (ρ) should satisfy: complete positivity. Posi-
tivity is a special case of complete positivity, and this condition is that the output N (ρ) is a positive
operator whenever the input ρ is a positive operator. Positivity ensures that the noisy evolution
produces a quantum state as an output whenever the input is a quantum state. Complete positivity
is that the output of the tensor product map

(
Ik ⊗N

)
(σ) for any finite k is a positive operator

whenever the input σ is a positive operator (this input operator now lives on a tensor-product
Hilbert space). If the input dimension of the noisy map is d, then it is sufficient to consider k = d.
Complete positivity makes good physical sense because we expect that the action of a noisy map
on one system of a quantum state and the identity on the other part of that quantum state should
produce as output another quantum state (which is a positive operator). The map N (ρ) is a
completely positive trace-preserving map, and any physical evolution is such a map.

Exercise 19 Show that the evolution in (126) is positive, i.e., the evolution takes a positive density
operator to a positive density operator.

Exercise 20 Show that the evolution in (126) is completely positive.

Exercise 21 Show that the evolution in (126) is linear:

N

(∑
x

pX(x)ρx

)
=
∑
x

pX(x)N (ρx), (133)

for any probabilities pX(x) and density operators ρx.

Unitary evolution is a special case of the evolution in (126). We can think of it merely as some
measurement where we always know the measurement outcome. That is, it is a measurement with
one operator U in the set of measurement operators and it satisfies the completeness condition
because U †U = I.
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A completely positive trace-preserving map is the mathematical model that we use for a quan-
tum channel in quantum Shannon theory because it represents the most general noisy evolution
of a quantum state. This evolution is a generalization of the conditional probability distribution
noise model of classical information theory. To see this, suppose that the input density operator ρ
is of the following form:

ρ =
∑
x

pX(x)|x〉〈x|, (134)

where {|x〉} is some orthonormal basis. We consider a channel N with the Kraus operators{√
pY |X(y|x)|y〉〈x|

}
x,y
, (135)

where |y〉 and |x〉 are part of the same basis. Evolution according to this map is then as follows:

N (ρ) =
∑
x,y

√
pY |X(y|x)|y〉〈x|

(∑
x′

pX
(
x′
)∣∣x′〉〈x′∣∣)√pY |X(y|x)|x〉〈y| (136)

=
∑
x,y,x′

pY |X(y|x)pX
(
x′
)∣∣〈x′|x〉∣∣2 |y〉〈y| (137)

=
∑
x,y

pY |X(y|x)pX(x) |y〉〈y| (138)

=
∑
y

(∑
x

pY |X(y|x)pX(x)

)
|y〉〈y|. (139)

Thus, the evolution is the same that a noisy classical channel pY |X(y|x) would enact on a probability
distribution pX(x) by taking it to

pY (y) =
∑
x

pY |X(y|x)pX(x) (140)

at the output.

4.3 Noisy Evolution from a Unitary Interaction

There is another perspective on quantum noise that is useful to consider. Suppose that a quantum
system A begins in the state ρA and that there is an environment system E in a pure state |0〉E .
So the initial state of the joint system AE is

ρA ⊗ |0〉〈0|E . (141)

Suppose that these two systems interact according to some unitary operator UAE acting on the
tensor-product space of A and E. If we are only interested in the state σA of the system A after
the interaction, then we find it by taking the partial trace over the environment E:

σA = TrE

{
UAE

(
ρA ⊗ |0〉〈0|E

)(
UAE

)†}
. (142)
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This evolution is equivalent to that of a completely-positive, trace-preserving map with Kraus
operators {Bi ≡ 〈i|EUAE |0〉E}i. This follows easily because we can take the partial trace with
respect to an orthonormal basis {|i〉E} for the environment:

TrE

{
UAE

(
ρA ⊗ |0〉〈0|E

)(
UAE

)†}
=
∑
i

〈i|EUAE
(
ρA ⊗ |0〉〈0|E

)(
UAE

)†|i〉E (143)

=
∑
i

〈i|EUAE |0〉EρA〈0|E
(
UAE

)†|i〉E (144)

=
∑
i

BiρB
†
i . (145)

That the operators {Bi} are a legitimate set of Kraus operators satisfying
∑

iB
†
iBi = IA follows

from the unitarity of UAE and the orthonormality of the basis {|i〉E}:∑
i

B†iBi =
∑
i

〈0|E
(
UAE

)†|i〉E〈i|EUAE |0〉E (146)

= 〈0|E
(
UAE

)†∑
i

|i〉〈i|EUAE |0〉E (147)

= 〈0|E
(
UAE

)†
UAE |0〉E (148)

= 〈0|EIA ⊗ IE |0〉E (149)

= IA. (150)

4.4 Axiomatic Approach to Noisy Evolution

We can also take an axiomatic approach to understanding noisy quantum evolution, and such
an approach leads to the Choi-Kraus representation theorem for quantum channels. It seems
reasonable that every evolution of a quantum state should satisfy three properties:

1. It should be linear so that we do not allow for signaling (by a so-called “steering” argument,
one could have signaling).

2. It should be completely positive so that it takes quantum states to quantum states (even for
systems correlated with the one on which the map is acting).

3. It should be trace preserving (again so that it takes quantum states to quantum states).

The three requirements above lead naturally to Choi’s theorem, which states that the map has
to take a particular form according to a Kraus decomposition. We now give a proof of Choi’s
theorem:

Let |Γ〉RA denote the following vector:

|Γ〉RA ≡
dA∑
i=1

|i〉R ⊗ |i〉A, (151)
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so that it is equal to the maximally entangled state |Φ〉RA times
√
dA since

|Φ〉RA ≡
1√
dA

dA∑
i=1

|i〉R ⊗ |i〉A. (152)

Then consider the following Choi matrix of a completely-positive, trace-preserving (CPTP) linear
map NA→B:

NA→B(|Γ〉〈Γ|RA) =

dA∑
i,j=1

|i〉〈j|R ⊗NA→B(|i〉〈j|). (153)

This matrix completely describes the action of the map because it describes the action of it on every
operator |i〉〈j|, from which we can construct any other operator on which the map acts (it is a large
dAdB × dAdB matrix with blocks of the form NA→B(|i〉〈j|)). Also, the above matrix is positive due
to the requirement that the map is completely positive. So we can diagonalize NA→B(|Γ〉〈Γ|RA) as
follows:

NA→B(|Γ〉〈Γ|RA) =

dAdB∑
l=1

|φl〉〈φl|RB. (154)

(This decomposition does not necessarily have to be such that the vectors {|φl〉RB} are orthonor-
mal.) Consider by inspecting (153) that

(〈i|R ⊗ IB)(NA→B(|Γ〉〈Γ|RA))(|j〉R ⊗ IB) = NA→B(|i〉〈j|). (155)

Now, we can define some operators {Vl} by their action on a basis {|i〉A} as follows:

Vl|i〉A = (〈i|R ⊗ IB)|φl〉RB. (156)

This is related to the observation that any bipartite vector |φl〉RB can be written as follows:

|φl〉RB = IR ⊗ (Vl)B|Γ〉RB, (157)

for some operator Vl. After making this observation, we finally realize that it is possible to write

NA→B(|i〉〈j|) = (〈i|R ⊗ IB)(NA→B(|Γ〉〈Γ|RA))(|j〉R ⊗ IB) (158)

= (〈i|R ⊗ IB)

dAdB∑
l=1

|φl〉〈φl|RB(|j〉R ⊗ IB) (159)

=

dAdB∑
l=1

[(〈i|R ⊗ IB)|φl〉RB][〈φl|RB(|j〉R ⊗ IB)] (160)

=

dAdB∑
l=1

Vl|i〉〈j|AV
†
l . (161)

By linearity of the map NA→B, it follows that its action on any operator σ can be written as follows:

NA→B(σ) =

dAdB∑
l=1

VlσV
†
l , (162)
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since any operator σ can be written as a linear combination of operators in the basis {|i〉〈j|}.
If the decomposition in (154) is the spectral decomposition, then it follows that the Kraus

operators {Vl} are orthogonal with respect to the Hilbert-Schmidt inner product:

Tr
{
V †l Vk

}
= Tr

{
V †l Vl

}
δl,k. (163)

This follows from the fact that

δl,k〈φl|φl〉 = 〈φl|φk〉 (164)

= 〈Γ|RB

[
IR ⊗

(
V †l Vk

)
B

]
|Γ〉RB (165)

=
∑
i,j

〈i|j〉 〈i|
(
V †l Vk

)
|j〉 (166)

=
∑
i

〈i|
(
V †l Vk

)
|i〉 (167)

= Tr
{
V †l Vk

}
. (168)

The Kraus operators {Vl} should satisfy the following condition:

dAdB∑
l=1

V †l Vl = I. (169)

This follows from the fact that

TrB{NA→B(|Φ〉〈Φ|RA)} =
1

dA
IR. (170)

(That is, when inputting the maximally entangled state, the reduced state on the reference should
be the maximally mixed state no matter what the CPTP map NA→B is.) By using the fact that

(I ⊗ CA)|Φ〉RA =
(
CT
R ⊗ IA

)
|Φ〉RA, (171)

for any operator C, we find that

TrB{NA→B(|Φ〉〈Φ|RA)} = TrB

{
dAdB∑
l=1

(IR ⊗ Vl)(|Φ〉〈Φ|RA)
(
IR ⊗ V †l

)}
(172)

= TrB

{
dAdB∑
l=1

((
V T
l

)
R
⊗ IA

)
(|Φ〉〈Φ|RA)((V ∗l )R ⊗ IA)

}
(173)

=
1

dA

dAdB∑
l=1

V T
l V

∗
l (174)

=
1

dA
IR. (175)

The result that
∑dAdB

l=1 V †l Vl follows because

1

dA
IR =

(
1

dA
IR

)∗
. (176)
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4.5 Unique Specification of a Noisy Channel

Consider a given noisy quantum channel N with Kraus representation

N (ρ) =
∑
j

AjρA
†
j . (177)

We can also uniquely specify N by its action on an operator of the form |i〉〈j| where {|i〉} is some
orthonormal basis:

Nij ≡ N (|i〉〈j|). (178)

We can figure out how the channel N would act on any density operator if we know how it acts on
|i〉〈j| for all i and j. Thus, two channels N and M are equivalent if they have the same effect on
all operators of the form |i〉〈j|:

N =M ⇔ ∀i, j N (|i〉〈j|) =M(|i〉〈j|). (179)

Let us now consider a maximally entangled qudit state |Φ〉AB where

|Φ〉AB =
1√
d

d−1∑
i=0

|i〉A|i〉B, (180)

and d is the dimension of each system A and B. The density operator ΦAB of such a state is as
follows:

ΦAB =
1

d

d−1∑
i,j=0

|i〉〈j|A ⊗ |i〉〈j|B. (181)

Let us now send the A system of ΦAB through the noisy quantum channel N :

(
NA ⊗ IB

)(
ΦAB

)
=

1

d

d−1∑
i,j=0

NA(|i〉〈j|A)⊗ |i〉〈j|B. (182)

The resulting state completely characterizes the noisy channel N because the following map
translates between the state in (182) and the operators Nij in (178):

d
〈
i′
∣∣(NA ⊗ IB

)(
ΦAB

)∣∣j′〉B = Nij . (183)

Thus, we can completely characterize a noisy map by determining the quantum state resulting from
sending half of a maximally entangled state through it, and the following condition is necessary
and sufficient for any two noisy channels to be equivalent:

N =M ⇔
(
NA ⊗ IB

)(
ΦAB

)
=
(
MA ⊗ IB

)(
ΦAB

)
. (184)

It is equivalent to the condition in (179).
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4.6 Concatenation of Noisy Maps

A quantum state may undergo not just one type of noisy evolution—it can of course undergo one
noisy quantum channel followed by another noisy quantum channel. Let N1 denote a first noisy
evolution and let N2 denote a second noisy evolution. Suppose that the Kraus operators of N1 are
{Ak} and the Kraus operators of N2 are {Bk}. It is straightforward to define the concatenation
N2 ◦ N1 of these two maps. Consider that the output of the first map is

N1(ρ) ≡
∑
k

AkρA
†
k, (185)

for some input density operator ρ. The output of the concatenation map N2 ◦ N1 is then

(N2 ◦ N1)(ρ) =
∑
k

BkN1(ρ)B†k =
∑
k,k′

BkAk′ρA
†
k′B
†
k. (186)

It is clear that the Kraus operators of the concatenation map are {BkAk′}k,k′ .

4.7 Important Examples of Noisy Evolution

This section discusses some of the most important examples of noisy evolutions that we will consider
in this book. Throughout this book, we will be considering the information-carrying ability of these
various channels. They will provide some useful, “hands on” insight into quantum Shannon theory.

4.7.1 Dephasing Channel

We have already given the example of a noisy quantum bit flip channel in Section 4.1. Another
important example is a bit flip in the conjugate basis, or equivalently, a phase flip channel. This
channel acts as follows on any given density operator:

ρ→ (1− p)ρ+ pZρZ. (187)

It is also known as the dephasing channel.
For p = 1/2, the action of the dephasing channel on a given quantum state is equivalent

to the action of measuring the qubit in the computational basis and forgetting the result of the
measurement. We make this idea more clear with an example. First, suppose that we have a qubit

|ψ〉 = α|0〉+ β|1〉, (188)

and we measure it in the computational basis. Then the postulates of quantum theory state that
the qubit becomes |0〉 with probability |α|2 and it becomes |1〉 with probability |β|2. Suppose that
we forget the measurement outcome, or alternatively, we do not have access to it. Then our best
description of the qubit is with the following ensemble:{{

|α|2, |0〉
}
,
{
|β|2, |1〉

}}
. (189)

The density operator of this ensemble is

|α|2|0〉〈0|+ |β|2|1〉〈1|. (190)
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Now let us check if the dephasing channel gives the same behavior as the forgetful measurement
above. We can consider the qubit as being an ensemble {1, |ψ〉}, i.e., the state is certain to be |ψ〉.
The density operator of the ensemble is then ρ where

ρ = |α|2|0〉〈0|+ αβ∗|0〉〈1|+ α∗β|1〉〈0|+ |β|2|1〉〈1|. (191)

If we act on the density operator ρ with the dephasing channel with p = 1/2, then it preserves the
density operator with probability 1/2 and phase flips the qubit with probability 1/2:

1

2
ρ+

1

2
ZρZ

=
1

2

(
|α|2|0〉〈0|+ αβ∗|0〉〈1|+ α∗β|1〉〈0|+ |β|2|1〉〈1|

)
+

1

2

(
|α|2|0〉〈0| − αβ∗|0〉〈1| − α∗β|1〉〈0|+ |β|2|1〉〈1|

)
(192)

= |α|2|0〉〈0|+ |β|2|1〉〈1|. (193)

The dephasing channel nullifies the off-diagonal terms in the density operator with respect to the
computational basis. The resulting density operator description is the same as what we found for
the forgetful measurement.

Exercise 22 Verify that the action of the dephasing channel on the Bloch vector is

1

2
(I + rxX + ryY + rzZ)→

1

2
(I + (1− 2p)rxX + (1− 2p)ryY + rzZ), (194)

so that the channel preserves any component of the Bloch vector in the Z direction, while shrinking
any component in the X or Y direction.

4.7.2 Pauli Channel

A Pauli channel is a generalization of the above dephasing channel and the bit flip channel. It
simply applies a random Pauli operator according to a probability distribution. The map for a
qubit Pauli channel is

ρ→
1∑

i,j=0

p(i, j)ZiXjρXjZi. (195)

The generalization of this channel to qudits is straightforward. We simply replace the Pauli oper-
ators with the Heisenberg-Weyl operators. The Pauli qudit channel is

ρ→
d−1∑
i,j=0

p(i, j)Z(i)X(j)ρX†(j)Z†(i). (196)

These channels are important in the study of quantum key distribution (QKD) because an eaves-
dropper induces such a channel in a QKD protocol.
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Exercise 23 We can write a Pauli channel as

ρ→ pIρ+ pXXρX + pY Y ρY + pZZρZ. (197)

Verify that the action of the Pauli channel on the Bloch vector is

(rx, ry, rz)→
((pI + pX − pY − pZ)rx, (pI + pY − pX − pZ)ry, (pI + pZ − pX − pY )rz). (198)

4.7.3 Depolarizing Channel

The depolarizing channel is a “worst-case scenario” channel. It assumes that we just completely
lose the input qubit with some probability, i.e., it replaces the lost qubit with the maximally mixed
state. The map for the depolarizing channel is

ρ→ (1− p)ρ+ pπ, (199)

where π is the maximally mixed state: π = I/2.
Most of the time, this channel is too pessimistic. Usually, we can learn something about the

physical nature of the channel by some estimation process. We should only consider using the
depolarizing channel as a model if we have little to no information about the actual physical
channel.

Exercise 24 (Pauli Twirl) Show that randomly applying the Pauli operators I, X, Y , Z with
uniform probability to any density operator gives the maximally mixed state:

1

4
ρ+

1

4
XρX +

1

4
Y ρY +

1

4
ZρZ = π. (200)

(Hint: Represent the density operator as ρ = (I + rxX + ryY + rzZ)/2 and apply the commutation
rules of the Pauli operators.) This is known as the “twirling” operation.

Exercise 25 Show that we can rewrite the depolarizing channel as the following Pauli channel:

ρ→ (1− 3p/4)ρ+ p

(
1

4
XρX +

1

4
Y ρY +

1

4
ZρZ

)
. (201)

Exercise 26 Show that the action of a depolarizing channel on the Bloch vector is

(rx, ry, rz)→ ((1− p)rx, (1− p)ry, (1− p)rz). (202)

Thus, it uniformly shrinks the Bloch vector to become closer to the maximally mixed state.

The generalization of the depolarizing channel to qudits is again straightforward. It is the
same as the map in (199), with the exception that the density operators ρ and π are qudit density
operators.
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Exercise 27 (Qudit Twirl) Show that randomly applying the Heisenberg-Weyl operators

{X(i)Z(j)}i,j∈{0,...,d−1} (203)

with uniform probability to any qudit density operator gives the maximally mixed state π:

1

d2

d−1∑
i,j=0

X(i)Z(j)ρZ†(j)X†(i) = π. (204)

(Hint: You can do the full calculation, or you can decompose this channel into the composition of
two completely dephasing channels where the first is a dephasing in the computational basis and the
next is a dephasing in the conjugate basis).

4.7.4 Amplitude Damping Channel

The amplitude damping channel is a first-order approximation to a noisy evolution that occurs in
many physical systems ranging from optical systems to chains of spin-1/2 particles to spontaneous
emission of a photon from an atom.

In order to motivate this channel, we give a physical interpretation to our computational basis
states. Let us think of the |0〉 state as the ground state of a two-level atom and let us think of the
state |1〉 as the excited state of the atom. Spontaneous emission is a process that tends to decay
the atom from its excited state to its ground state, even if the atom is in a superposition of the
ground and excited states. Let the parameter γ denote the probability of decay so that 0 ≤ γ ≤ 1.
One Kraus operator that captures the decaying behavior is

A0 =
√
γ|0〉〈1|. (205)

The operator A0 annihilates the ground state:

A0|0〉〈0|A†0 = 0, (206)

and it decays the excited state to the ground state:

A0|1〉〈1|A†0 = γ|0〉〈0|. (207)

The Kraus operator A0 alone does not specify a physical map because A†0A0 = γ|1〉〈1| (recall that

the Kraus operators of any channel should satisfy the condition
∑

k A
†
kAk = I). We can satisfy

this condition by choosing another operator A1 such that

A†1A1 = I −A†0A0 (208)

= |0〉〈0|+ (1− γ)|1〉〈1|. (209)

The following choice of A1 satisfies the above condition:

A1 ≡ |0〉〈0|+
√

1− γ|1〉〈1|. (210)

Thus, the operators A0 and A1 are valid Kraus operators for the amplitude damping channel.
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Exercise 28 Consider a single-qubit density operator with the following matrix representation with
respect to the computational basis:

ρ =

[
1− p η
η∗ p

]
, (211)

where 0 ≤ p ≤ 1 and η is some complex number. Show that applying the amplitude damping
channel with parameter γ to a qubit with the above density operator gives a density operator with
the following matrix representation: [

1− (1− γ)p
√

1− γη√
1− γη∗ (1− γ)p

]
. (212)

Exercise 29 Show that the amplitude damping channel obeys a composition rule. Consider an
amplitude damping channel N1 with transmission parameter (1− γ1) and consider another ampli-
tude damping channel N2 with transmission parameter (1− γ2). Show that the composition channel
N2 ◦N1 is an amplitude damping channel with transmission parameter (1− γ1)(1− γ2). (Note that
the transmission parameter is equal to one minus the damping parameter.)

4.7.5 Erasure Channel

The erasure channel is another important channel in quantum Shannon theory. It admits a simple
model and is amenable to relatively straightforward analysis when we later discuss its capacity.
The erasure channel can serve as a simplified model of photon loss in optical systems.

We first recall the classical definition of an erasure channel. A classical erasure channel either
transmits a bit with some probability 1 − ε or replaces it with an erasure symbol e with some
probability ε. The output alphabet contains one more symbol than the input alphabet, namely,
the erasure symbol e.

The generalization of the classical erasure channel to the quantum world is straightforward. It
implements the following map:

ρ→ (1− ε)ρ+ ε|e〉〈e|, (213)

where |e〉 is some state that is not in the input Hilbert space, and thus is orthogonal to it. The output
space of the erasure channel is larger than its input space by one dimension. The interpretation
of the quantum erasure channel is similar to that for the classical erasure channel. It transmits
a qubit with probability 1 − ε and “erases” it (replaces it with an orthogonal erasure state) with
probability ε.

Exercise 30 Show that the following operators are the Kraus operators for the quantum erasure
channel:

√
1− ε(|0〉B〈0|A + |1〉B〈1|A), (214)
√
ε|e〉B〈0|A, (215)
√
ε|e〉B〈1|A. (216)

At the receiving end of the channel, a simple measurement can determine whether an erasure
has occurred. We perform a measurement with measurement operators {Πin, |e〉〈e|}, where Πin is
the projector onto the input Hilbert space. This measurement has the benefit of detecting no more
information than necessary. It merely detects whether an erasure occurs, and thus preserves the
quantum information at the input if an erasure does not occur.
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Figure 2: The above figure illustrates the internal workings of a classical-quantum channel. It first
measures the input state in some basis {|k〉} and outputs a quantum state σk conditional on the
measurement outcome.

4.7.6 Classical-Quantum Channel

A classical-quantum channel is one that first measures the input state in a particular orthonormal
basis and outputs a density operator conditional on the result of the measurement. Suppose that
the input to the channel is a density operator ρ. Suppose that {|k〉}k is an orthonormal basis
for the Hilbert space on which the density operator ρ acts. The classical-quantum channel first
measures the input state in the basis {|k〉}. Given that the result of the measurement is k, the post
measurement state is

|k〉〈k|ρ|k〉〈k|
〈k|ρ|k〉

. (217)

The classical-quantum channel correlates a density operator σk with the post-measurement state k:

|k〉〈k|ρ|k〉〈k|
〈k|ρ|k〉

⊗ σk. (218)

This action leads to an ensemble: {
〈k|ρ|k〉, |k〉〈k|ρ|k〉〈k|

〈k|ρ|k〉
⊗ σk

}
, (219)

and the density operator of the ensemble is∑
k

〈k|ρ|k〉 |k〉〈k|ρ|k〉〈k|
〈k|ρ|k〉

⊗ σk =
∑
k

|k〉〈k|ρ|k〉〈k| ⊗ σk. (220)

The channel then only outputs the system on the right (tracing out the first system) so that the
resulting channel is as follows:

N (ρ) ≡
∑
k

〈k|ρ|k〉σk. (221)

Figure 2 depicts the behavior of the classical-quantum channel. This channel is a particular kind
of entanglement-breaking channel, for reasons that become clear in the next exercise.

Exercise 31 Show that the classical-quantum channel is an entanglement-breaking channel—i.e.,
if we input the B system of an entangled state ψAB, then the resulting state on AB is no longer
entangled.
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We can prove a more general structural theorem regarding entanglement-breaking channels by
exploiting the observation in the above exercise.

Theorem 32 An entanglement-breaking channel has a representation with Kraus operators that
are unit rank.

Proof. Consider that the output of an entanglement-breaking channel NEB acting on half of a
maximally entangled state is as follows:

NA→B′
EB (ΦBA) =

∑
z

pZ(z)|φz〉〈φz|B ⊗ |ψz〉〈ψz|B
′
. (222)

This holds because the output of a channel is a separable state (it “breaks” entanglement), and it
is always possible to find a representation of the separable state with pure states (see Exercise 8).
Now consider constructing a channel M with the following unit-rank Kraus operators:

Az ≡
{√

d pZ(z)|ψz〉〈φ∗z|
}
z
, (223)

where |φ∗z〉 is the state |φz〉 with all of its elements conjugated. We should first verify that these

Kraus operators form a valid channel, by checking that
∑

z A
†
zAz = I:∑

z

A†zAz =
∑
z

d pZ(z)|φ∗z〉〈ψz|ψz〉〈φ∗z| (224)

= d
∑
z

pZ(z)|φ∗z〉〈φ∗z|. (225)

Consider that

TrB′
{
NA→B′

EB (ΦBA)
}

= πB (226)

= TrB′

{∑
z

pZ(z)|φz〉〈φz|B ⊗ |ψz〉〈ψz|B
′

}
(227)

=
∑
z

pZ(z)|φz〉〈φz|B, (228)

where πB is the maximally mixed state. Thus, it follows thatM is a valid quantum channel because

d
∑
z

pZ(z)|φz〉〈φz|B = d πB (229)

= IB (230)

=
(
IB
)∗

(231)

= d
∑
z

pZ(z)|φ∗z〉〈φ∗z| (232)

=
∑
z

A†zAz. (233)
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Now let us consider the action of the channel M on the maximally entangled state:

MA→B′(ΦBA) (234)

=
1

d

∑
z,i,j

|i〉〈j|B ⊗
√
d pZ(z)|ψz〉〈φ∗z||i〉〈j||φ∗z〉〈ψz|B

′√
d pZ(z) (235)

=
∑
z,i,j

pZ(z) |i〉〈j|B ⊗ 〈φ∗z|i〉〈j|φ∗z〉 |ψz〉〈ψz|B
′

(236)

=
∑
z,i,j

pZ(z) |i〉〈j|φ∗z〉〈φ∗z|i〉〈j|
B ⊗ |ψz〉〈ψz|B

′
(237)

=
∑
z

pZ(z) |φz〉〈φz|B ⊗ |ψz〉〈ψz|B
′

(238)

The last equality follows from recognizing
∑

i,j |i〉〈j| · |i〉〈j| as the transpose operation and noting
that the transpose is equivalent to conjugation for an Hermitian operator |φz〉〈φz|. Finally, since
the action of both NA→B′

EB and MA→B′ on the maximally entangled state is the same, we can
conclude that the two channels are equivalent (see Section 4.5). Thus,M is a representation of the
channel with unit-rank Kraus operators.

5 Summary

We give a brief summary of the main results in this lecture. We derived all of these results from
the noiseless quantum theory and an ensemble viewpoint. An alternate viewpoint is to say that
the density operator is the state of the system and then give the postulates of quantum mechanics
in terms of the density operator. Regardless of which viewpoint you view as more fundamental,
they are consistent with each other in standard quantum mechanics.

The density operator ρ for an ensemble {pX(x), |ψx〉} is the following expectation:

ρ =
∑
x

pX(x)|ψx〉〈ψx|. (239)

The evolution of the density operator according to a unitary operator U is

ρ→ UρU †. (240)

A measurement of the state according to a measurement {Mj} where
∑

j M
†
jMj = I leads to the

following post-measurement state:

ρ→
MjρM

†
j

pJ(j)
, (241)

where the probability pJ(j) for obtaining outcome j is

pJ(j) = Tr
{
M †jMjρ

}
. (242)

The most general noisy evolution that a quantum state can undergo is according to a completely-
positive, trace-preserving map N (ρ) that we can write as follows:

N (ρ) =
∑
j

AjρA
†
j , (243)

where
∑

j A
†
jAj = I.
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