
Lecture 4: Quantum typicality and quantum data

compression

Mark M. Wilde∗

One of the fundamental tasks in classical information theory is the compression of information.
Given access to many uses of a noiseless classical channel, what is the best that a sender and receiver
can make of this resource for compressed data transmission? Shannon’s compression theorem states
that the Shannon entropy is the fundamental limit for the compression rate in the IID setting.
That is, if one compresses at a rate above the Shannon entropy, then it is possible to recover the
compressed data perfectly in the asymptotic limit, and otherwise, it is not possible to do so. This
theorem establishes the prominent role of the entropy in Shannon’s theory of information.

In the quantum world, it very well could be that one day a sender and a receiver would have many
uses of a noiseless quantum channel available,1 and the sender could use this resource to transmit
compressed quantum information. But what exactly does this mean in the quantum setting? A
simple model of a quantum information source is an ensemble of quantum states {pX(x), |ψx〉}, i.e.,
the source outputs the state |ψx〉 with probability pX(x), and the states {|ψx〉} do not necessarily
have to form an orthonormal basis. Let us suppose for the moment that the classical data x is
available as well, even though this might not necessarily be the case in practice. A naive strategy for
compressing this quantum information source would be to ignore the quantum states coming out,
handle the classical data instead, and exploit Shannon’s compression protocol. That is, the sender
compresses the sequence xn emitted from the quantum information source at a rate equal to the
Shannon entropy H(X), sends the compressed classical bits over the noiseless quantum channels,
the receiver reproduces the classical sequence xn at his end, and finally reconstructs the sequence
|ψxn〉 of quantum states corresponding to the classical sequence xn.

The above strategy will certainly work, but it makes no use of the fact that the noiseless quantum
channels are quantum! It is clear that noiseless quantum channels will be expensive in practice,
and the above strategy is wasteful in this sense because it could have merely exploited classical
channels (channels that cannot preserve superpositions) to achieve the same goals. Schumacher
compression is a strategy that makes effective use of noiseless quantum channels to compress a
quantum information source down to a rate equal to the von Neumann entropy. This has a great
benefit from a practical standpoint—the von Neumann entropy of a quantum information source is
strictly lower than the source’s Shannon entropy if the states in the ensemble are non-orthogonal.
In order to execute the protocol, the sender and receiver simply need to know the density operator
ρ ≡

∑
x pX(x)|ψx〉〈ψx| of the source. Furthermore, Schumacher compression is provably optimal in
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1How we hope so! If working, coherent fault-tolerant quantum computers come along one day, they stand to
benefit from quantum compression protocols.
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Figure 1: The most general protocol for quantum compression. Alice begins with the output of some
quantum information source whose density operator is ρ⊗n on some system An. The inaccessible
reference system holds the purification of this density operator. She performs some CPTP encoding
map E , sends the compressed qubits through 2nR uses of a noiseless quantum channel, and Bob
performs some CPTP decoding map D to decompress the qubits. The scheme is successful if the
difference between the initial state and the final state is negligible in the asymptotic limit n→∞.

the sense that any protocol that compresses a quantum information source of the above form at a
rate below the von Neumann entropy cannot have a vanishing error in the asymptotic limit.

Schumacher compression thus gives an operational interpretation of the von Neumann entropy
as the fundamental limit on the rate of quantum data compression. Also, it sets the term “qubit”
on a firm foundation in an information-theoretic sense as a measure of the amount of quantum
information “contained” in a quantum information source.

We begin this lecture by giving the details of the general information processing task corre-
sponding to quantum data compression. We then prove that the von Neumann entropy is an
achievable rate of compression.

1 The Information Processing Task

We first overview the general task that any quantum compression protocol attempts to accomplish.
Three parameters n, R, and ε corresponding to the length of the original quantum data sequence,
the rate, and the error, respectively, characterize any such protocol. An (n,R+ δ, ε) quantum
compression code consists of four steps: state preparation, encoding, transmission, and decoding.
Figure 1 depicts a general protocol for quantum compression.

State Preparation. The quantum information source outputs a sequence |ψxn〉A
n

of quantum
states according to the ensemble {pX(x), |ψx〉} where

|ψxn〉A
n

≡ |ψx1〉
A1 ⊗ · · · ⊗ |ψxn〉

An . (1)

The density operator, from the perspective of someone ignorant of the classical sequence xn, is
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equal to the tensor power state ρ⊗n where

ρ ≡
∑
x

pX(x)|ψx〉〈ψx|. (2)

Also, we can think about the purification of the above density operator. That is, an equivalent
mathematical picture is to imagine that the quantum information source produces states of the
form

|ϕρ〉RA ≡
∑
x

√
pX(x)|x〉R|ψx〉A, (3)

where R is the label for an inaccessible reference system (not to be confused with the rate R!). The
resulting IID state produced is (|ϕρ〉RA)⊗n.

Encoding. Alice encodes the systems An according to some CPTP compression map EAn→W
where W is a quantum system of size 2nR. Recall that R is the rate of compression:

R =
1

n
log dW − δ, (4)

where dW is the dimension of system W and δ is an arbitrarily small positive number.
Transmission. Alice transmits the system W to Bob using n(R+ δ) noiseless qubit channels.

Decoding. Bob sends the system W through a decompression map DW→Ân .
The protocol has ε error if the compressed and decompressed state is ε-close in trace distance

to the original state (|ϕρ〉RA)⊗n:∥∥∥(ϕRAρ )⊗n − (DW→Ân ◦ EAn→W )(
(
ϕRAρ

)⊗n
)
∥∥∥
1
≤ ε. (5)

2 The Quantum Data Compression Theorem

We say that a quantum compression rate R is achievable if there exists an (n,R+ δ, ε) quantum
compression code for all δ, ε > 0 and all sufficiently large n. Schumacher’s compression theorem
establishes the von Neumann entropy as the fundamental limit on quantum data compression.

Theorem 1 (Quantum Data Compression) Suppose that ρA is the density operator of the
quantum information source. Then the von Neumann entropy H(A)ρ is the smallest achievable
rate R for quantum data compression:

inf{R : R is achievable} = H(A)ρ. (6)

In this lecture, we will only prove the direct part of this theorem (that is, we will exhibit a
coding scheme that achieves the von Neumann entropy rate of compression). The main technical
tool required in proving the direct part is the notion of quantum typicality, which we describe in
the next section.

2.1 Quantum Typicality

2.1.1 The Typical Subspace

Our first task is to establish the notion of a quantum information source. It is analogous to the
notion of a classical information source, in the sense that the source randomly outputs a quantum
state according to some probability distribution, but the states that it outputs do not necessarily
have to be distinguishable as in the classical case.
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Definition 2 (Quantum Information Source) A quantum information source is some device
that randomly emits pure qudit states in a Hilbert space HX of size |X |.

We use the symbol X to denote the quantum system for the quantum information source in
addition to denoting the Hilbert space in which the state lives. Suppose that the source outputs
states |ψy〉 randomly according to some probability distribution pY (y). Note that the states |ψy〉
do not necessarily have to form an orthonormal set. Then the density operator ρX of the source is
the expected state emitted:

ρX ≡ EY {|ψY 〉〈ψY |} =
∑
y

pY (y)|ψy〉〈ψy|. (7)

There are many decompositions of a density operator as a convex sum of rank-one projectors (and
the above decomposition is one such example), but perhaps the most important decomposition is
a spectral decomposition of the density operator ρ:

ρX =
∑
x∈X

pX(x)|x〉〈x|X . (8)

The above states |x〉X are eigenvectors of ρX and form a complete orthonormal basis for Hilbert
space HX , and the non-negative, convex real numbers pX(x) are the eigenvalues of ρX .

We have written the states |x〉X and the eigenvalues pX(x) in a suggestive notation because it
is actually possible to think of our quantum source as a classical information source—the emitted
states {|x〉X}x∈X are orthonormal and each corresponding eigenvalue pX(x) acts as a probability
for choosing |x〉X . We can say that our source is classical because it is emitting the orthogonal,
and thus distinguishable, states |x〉X with probability pX(x). This description is equivalent to the
ensemble {pY (y), |ψy〉}y because the two ensembles lead to the same density operator (recall that
two ensembles that have the same density operator are essentially equivalent because they lead to
the same probabilities for outcomes of any measurement performed on the system). Our quantum
information source then corresponds to the pure-state ensemble:{

pX(x), |x〉X
}
x∈X

. (9)

Recall that the von Neumann entropy H(X) of the density operator ρX is as follows:

H(X)ρ ≡ −Tr
{
ρX log ρX

}
. (10)

It is straightforward to show that the von Neumann entropy H(X)ρ is equal to the Shannon

entropy H(X) of a random variable X with distribution pX(x) because the basis states |x〉X are
orthonormal.

Suppose now that the quantum information source emits a large number n of random quantum
states so that the density operator describing the emitted state is as follows:

ρX
n ≡

ρX1 ⊗ · · · ⊗ ρXn︸ ︷︷ ︸
n times

=
(
ρX
)⊗n

. (11)

The labels X1, . . . , Xn denote the Hilbert spaces in which the different quantum systems live, but
the density operator is the same for each Hilbert space X1, . . . , Xn and is equal to ρX . The above

4



description of a quantum source is within the independent and identically distributed (IID) setting
for the quantum domain. The spectral decomposition of the state in (11) is as follows:

ρX
n

=
∑
x1∈X

pX(x1)|x1〉〈x1|X1 ⊗ · · · ⊗
∑
xn∈X

pX(xn)|xn〉〈xn|Xn (12)

=
∑

x1,··· ,xn∈X
pX(x1) · · · pX(xn)|x1〉 · · · |xn〉〈x1| · · · 〈xn|X1,...,Xn (13)

=
∑

xn∈Xn
pXn(xn)|xn〉〈xn|X

n

, (14)

where we employ the shorthand:

pXn(xn) ≡ pX(x1) · · · pX(xn), |xn〉X
n

≡ |x1〉X1 · · · |xn〉Xn . (15)

The above quantum description of the density operator is essentially equivalent to the classical
picture of n realizations of random variable X with each eigenvalue pX1(x1) · · · pXn(xn) acting as
a probability because the set of states {|x1〉 · · · |xn〉X1,...,Xn}x1,··· ,xn∈X is an orthonormal set.

Definition 3 (Typical Subspace) The δ-typical subspace TX
n

δ is a subspace of the full Hilbert
space X1, . . . , Xn and is associated with many copies of a density operator, such as the one in (8).
It is spanned by states |xn〉X

n

whose corresponding classical sequences xn are δ-typical:

TX
n

δ ≡ span
{
|xn〉X

n

: | − log(pXn(xn))/n−H(X)| ≤ δ
}
, (16)

where pX(x) is the distribution from the spectral decomposition of ρ in (8). We could also denote
the typical subspace as TX

n

ρ,δ if we would like to make the dependence of the space on ρ more explicit.

2.1.2 The Typical Subspace Measurement

The definition of the typical subspace (Definition 3) gives a way to divide up the Hilbert space of
n qudits into two subspaces: the typical subspace and the atypical subspace. The properties of
the typical subspace are similar to what we found for the properties of typical sequences. That is,
the typical subspace is exponentially smaller than the full Hilbert space of n qudits, yet it contains
nearly all of the probability (in a sense that we show below). The intuition for these properties
of the typical subspace is the same as it is classically once we have a spectral decomposition of a
density operator.

The typical projector is a projector onto the typical subspace, and the complementary projector
projects onto the atypical subspace. These projectors play an important operational role in quantum
Shannon theory because we can construct a quantum measurement from them. That is, this
measurement is the best way of asking the question, “Is the state typical or not?” because it
minimally disturbs the state while still retrieving this one bit of information.

Definition 4 (Typical Projector) Let ΠXn

δ denote the typical projector for the typical subspace
of a density operator ρX with spectral decomposition in (8). It is a projector onto the typical
subspace:

ΠXn

δ ≡
∑

xn∈TXnδ

|xn〉〈xn|X
n

, (17)
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where it is implicit that the xn below the summation is a classical sequence in the typical set TX
n

δ ,
and the state |xn〉 is a quantum state given in (15) and associated with the the classical sequence
xn via the spectral decomposition of ρ in (8). We can also denote the typical projector as ΠXn

ρ,δ if
we would like to make its dependence on ρ explicit.

The action of multiplying the density operator ρX
n

by the typical projector ΠXn

δ is to select
out all the basis states of ρX

n
that are in the typical subspace and form a “sliced” operator ρ̃X

n

that is close to the original density operator ρX
n
:

ρ̃X
n ≡ ΠXn

δ ρX
n
ΠXn

δ =
∑

xn∈TXnδ

pXn(xn)|xn〉〈xn|X
n

. (18)

That is, the effect of projecting a state onto the typical subspace TX
n

δ is to “slice” out any component
of the state ρX

n
that does not lie in the typical subspace TX

n

δ .

Exercise 5 Show that the typical projector ΠXn

δ commutes with the density operator ρX
n

:

ρX
n
ΠXn

δ = ΠXn

δ ρX
n
. (19)

The typical projector allows us to formulate an operational method for delicately asking the
question: “Is the state typical or not?” We can construct a quantum measurement that consists of
two outcomes: the outcome “1” reveals that the state is in the typical subspace, and “0” reveals
that it is not. This typical subspace measurement is often one of the first important steps in most
protocols in quantum Shannon theory.

Definition 6 (Typical Subspace Measurement) The following map is a quantum measure-
ment map that realizes the typical subspace measurement:

σ →
(
I −ΠXn

δ

)
σ
(
I −ΠXn

δ

)
⊗ |0〉〈0|+ ΠXn

δ σΠXn

δ ⊗ |1〉〈1|, (20)

where σ is some quantum state living in the Hilbert space Xn. It associates a classical register with
the outcome of the measurement—the value of the classical register is |0〉 for the support of the
state σ that is not in the typical subspace, and it is equal to |1〉 for the support of the state σ that
is in the typical subspace.

2.1.3 Properties of the Typical Subspace

The typical subspace TX
n

δ enjoys several useful properties that are “quantized” versions of the
typical sequence properties:

Property 7 (Unit Probability) Suppose that we perform a typical subspace measurement of a
state ρX

n
. Then the probability that the quantum state ρX

n
is in the typical subspace TX

n

δ approaches
one as n becomes large:

∀ε > 0 Tr
{

ΠXn

δ ρX
n} ≥ 1− ε for sufficiently large n, (21)

where ΠXn

δ is the typical subspace projector from Definition 4.

6



Property 8 (Exponentially Small Dimension) The dimension dim
(
TX

n

δ

)
of the δ-typical sub-

space is exponentially smaller than the dimension |X |n of the entire space of quantum states when
the output of the quantum information source is not maximally mixed. We formally state this
property as follows:

Tr
{

ΠXn

δ

}
≤ 2n(H(X)+cδ), (22)

where c is some constant that depends on whether we employ the weak or strong notion of typicality.
We can also lower bound the dimension dim

(
TX

n

δ

)
of the δ-typical subspace when n is sufficiently

large:
∀ε > 0 Tr

{
ΠXn

δ

}
≥ (1− ε)2n(H(X)−cδ) for sufficiently large n. (23)

Property 9 (Equipartition) The operator ΠXn

δ ρX
n
ΠXn

δ corresponds to a “slicing” of the density
operator ρX

n
where we slice out and keep only the part with support in the typical subspace. We

can then bound all of the eigenvalues of the sliced operator ΠXn

δ ρX
n
ΠXn

δ as follows:

2−n(H(X)+cδ)ΠXn

δ ≤ ΠXn

δ ρX
n
ΠXn

δ ≤ 2−n(H(X)−cδ)ΠXn

δ . (24)

The above inequality is an operator inequality. It is a statement about the eigenvalues of the opera-
tors ΠXn

δ ρX
n
ΠXn

δ and ΠXn

δ , and these operators have the same eigenvectors because they commute.
Therefore, the above inequality is equivalent to the following inequality that applies in the classical
case:

∀xn ∈ TXn

δ : 2−n(H(X)+cδ) ≤ pXn(xn) ≤ 2−n(H(X)−cδ). (25)

This equivalence holds because each probability pXn(xn) is an eigenvalue of ΠXn

δ ρX
n
ΠXn

δ .

The dimension dim
(
TX

n

δ

)
of the δ-typical subspace is approximately equal to the dimension

|X |n of the entire space only when the density operator of the quantum information source is
maximally mixed because

Tr
{

ΠXn

δ

}
≤ |X |n · 2nδ ' |X |n. (26)

The proofs of the above properties are essentially identical to those from the theory of classical
typicality (see arXiv:1106.1445). We leave the proofs as the three exercises below.

Exercise 10 Prove the Unit Probability Property of the δ-typical subspace (Property 7). First show
that the probability that many copies of a density operator is in the δ-typical subspace is equal to
the probability that a random sequence is δ-typical:

Tr
{

ΠXn

δ ρX
n}

= Pr
{
Xn ∈ TXn

δ

}
. (27)

Exercise 11 Prove the Exponentially Small Dimension Property of the δ-typical subspace (Prop-
erty 8). First show that the trace of the typical projector ΠXn

δ is equal to the dimension of the
typical subspace TX

n

δ :
dim

(
TX

n

δ

)
= Tr

{
ΠXn

δ

}
. (28)

Then prove the property.

Exercise 12 Prove the Equipartition Property of the δ-typical subspace (Property 9). First show
that

ΠXn

δ ρX
n
ΠXn

δ =
∑

xn∈TXnδ

pXn(xn)|xn〉〈xn|X
n

, (29)

and then argue the proof.
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Figure 2: Schumacher’s compression protocol. Alice begins with many copies of the output of the
quantum information source. She performs a measurement onto the typical subspace corresponding
to the state ρ and then performs a compression isometry of the typical subspace to a space of
size 2n[H(ρ)+δ] qubits. She transmits these compressed qubits over n[H(ρ) + δ] uses of a noiseless
quantum channel. Bob performs the inverse of the isometry to uncompress the qubits. The protocol
is successful in the asymptotic limit due to the properties of typical subspaces.

Exercise 13 Show that the purity Tr
{(
ρ̃X

n)2}
of the sliced state ρ̃X

n
satisfies the following bound

for sufficiently large n and any ε > 0 (use weak quantum typicality):

(1− ε)2−n(H(X)+δ) ≤ Tr
{(
ρ̃X

n)2} ≤ 2−n(H(X)−δ). (30)

Exercise 14 Show that the following bounds hold for the zero-norm and the ∞-norm of the sliced
state ρ̃X

n
for any ε > 0 and sufficiently large n:

(1− ε)2n(H(X)−δ) ≤
∥∥ρ̃Xn∥∥

0
≤ 2n(H(X)+δ), (31)

2−n(H(X)+δ) ≤
∥∥ρ̃Xn∥∥

∞ ≤ 2−n(H(X)−δ). (32)

(Recall that the zero-norm of an operator is equal to the size of its support and that the infinity
norm is equal to its maximum eigenvalue. Again use weak quantum typicality.)

2.2 The Direct Coding Theorem

Schumacher’s compression protocol demonstrates that the von Neumann entropy H(A)ρ is an
achievable rate for quantum data compression. It is remarkably similar to Shannon’s compression
protocol, but it has some subtle differences that are necessary for the quantum setting. The basic
steps of the encoding are to perform a typical subspace measurement and an isometry that com-
presses the typical subspace. The decoder then performs the inverse of the isometry to decompress
the state. The protocol is successful if the typical subspace measurement successfully projects onto
the typical subspace, and it fails otherwise. Just like in the classical case, the law of large numbers
guarantees that the protocol is successful in the asymptotic limit as n→∞. Figure 2 provides an
illustration of the protocol, and we now provide a rigorous argument.
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Alice begins with many copies of the state
(
ϕRAρ

)⊗n
. Suppose that the spectral decomposition

of ρ is as follows:

ρ =
∑
z

pZ(z)|z〉〈z|, (33)

where pZ(z) is some probability distribution, and {|z〉} is some orthonormal basis. Her first step
EAn→Y An1 is to perform a typical subspace measurement of the form in (6) onto the typical subspace
of An, where the typical projector is with respect to the density operator ρ. The action of EAn→AnY1

on a general state σA
n

is

EAn→Y An1 (σA
n
) ≡ |0〉〈0|Y ⊗

(
I −ΠAn

δ

)
σA

n(
I −ΠAn

δ

)
+ |1〉〈1|Y ⊗ΠAn

δ σA
n
ΠAn

δ , (34)

and the classically-correlated flag bit Y indicates whether the typical subspace projection ΠAn

δ is
successful or unsuccessful. In the Shannon compression protocol, we exploit a one-to-one function
f that maps from the set of typical sequences to a set of binary sequences {0, 1}n[H(ρ)+δ]. Now, we
can construct an isometry Uf that is a coherent version of this classical function f . It simply maps

the orthonormal basis {|zn〉A
n

} to the basis {|f(zn)〉W }:

Uf ≡
∑

zn∈TZnδ

|f(zn)〉W 〈zn|A
n

, (35)

where Z is a random variable corresponding to the distribution pZ(z) so that TZ
n

δ is its typical
set. The above operator is an isometry because the input space is a subspace of size at most
2n[H(ρ)+δ] (recall Property 8) embedded in a larger space of size 2n (at least for qubits) and the
output space is of size at most 2n[H(ρ)+δ]. So her next step EY An→YW2 is to perform the isometric
compression conditional on the flag bit Y being equal to one, and the action of EY An→YW2 on a
general classical-quantum state σY A

n ≡ |0〉〈0|Y ⊗ σAn0 + |1〉〈1|Y ⊗ σAn1 is as follows:

EY An→YW2

(
σY A

n) ≡ |0〉〈0|Y ⊗ Tr
{
σA

n

0

}
|e〉〈e|W + |1〉〈1|Y ⊗ UfσA

n

1 U †f , (36)

where |e〉W is some error flag orthogonal to all of the states {|f(φxn)〉W }φxn∈TZnδ . This last step

completes the details of her encoder EAn→YW , and the action of it on the initial state is

EAn→YW (
(
ϕRAρ

)⊗n
) ≡ (EY An→YW2 ◦ EAn→Y An1 )(

(
ϕRAρ

)⊗n
). (37)

Alice then transmits all of the compressed qubits over n[H(ρ) + δ] + 1 uses of the noiseless qubit
channel.

Bob’s decoding DYW→An performs the inverse of the isometry conditional on the flag bit being
equal to one and otherwise maps to some other state |e〉A

n

outside of the typical subspace. The
action of the decoder on some general classical-quantum state σYW ≡ |0〉〈0|Y ⊗σW0 + |1〉〈1|Y ⊗σW1
is

DYW→Y An1

(
σYW

)
≡ |0〉〈0|Y ⊗ Tr

{
σW0
}
|e〉〈e|A

n

+ |1〉〈1|Y ⊗ U †fσ
W
1 Uf . (38)

The final part of the decoder is to discard the classical flag bit: DY An→An2 ≡TrY {·}. Then
DYW→An ≡ DY An→An2 ◦ DYW→Y An1 .
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We now can analyze how this protocol performs with respect to our performance criterion in (5).
Consider the following chain of inequalities:∥∥∥(ϕRAρ )⊗n − (DYW→An ◦ EAn→YW )((ϕRAρ )⊗n

)
∥∥∥
1

=
∥∥∥TrY

{
|1〉〈1|Y ⊗

(
ϕRAρ

)⊗n}− (DYW→An ◦ EAn→YW )((ϕRAρ )⊗n
)
∥∥∥
1

(39)

≤
∥∥∥|1〉〈1|Y ⊗ (ϕRAρ )⊗n − (DYW→Y An1 ◦ EAn→YW

)
(
(
ϕRAρ

)⊗n
)
∥∥∥
1

(40)

=

∥∥∥∥∥∥∥
|1〉〈1|Y ⊗

(
ϕRAρ

)⊗n−(
|0〉〈0|Y ⊗ Tr

{(
I −ΠAn

δ

)(
ϕRAρ

)⊗n}|e〉〈e|An
+|1〉〈1|Y ⊗ΠAn

δ

(
ϕRAρ

)⊗n
ΠAn

δ

) ∥∥∥∥∥∥∥
1

(41)

The first equality follows by adding a flag bit |1〉Y to
(
ϕRAρ

)⊗n
and tracing it out. The first inequality

follows from monotonicity of trace distance under the discarding of subsystems. The second equality
follows by evaluating the map DYW→An1 ◦ EAn→YW on the state

(
ϕRAρ

)⊗n
. Continuing, we have

≤
∥∥∥|1〉〈1|Y ⊗ (ϕRAρ )⊗n − |1〉〈1|Y ⊗ΠAn

δ

(
ϕRAρ

)⊗n
ΠAn

δ

∥∥∥
1

+
∥∥∥|0〉〈0|Y ⊗ Tr

{(
I −ΠAn

δ

)(
ϕRAρ

)⊗n}|e〉〈e|An∥∥∥
1

(42)

=
∥∥∥(ϕRAρ )⊗n −ΠAn

δ

(
ϕRAρ

)⊗n
ΠAn

δ

∥∥∥
1

+ Tr
{(
I −ΠAn

δ

)(
ϕRAρ

)⊗n}
(43)

≤ 2
√
ε+ ε (44)

The first inequality follows from the triangle inequality for trace distance. The equality uses the
facts ‖ρ⊗ σ − ω ⊗ σ‖1 = ‖ρ− ω‖1‖σ‖1 = ‖ρ− ω‖1 and ‖bρ‖1 = |b|‖ρ‖1 for some density operators
ρ, σ, and ω and a constant b. The final inequality follows from the first property of typical subspaces:

Tr
{

ΠAn

δ

(
ϕRAρ

)⊗n}
= Tr

{
ΠAn

δ ρ⊗n
}
≥ 1− ε, (45)

and the following Gentle Operator Lemma:

Lemma 15 (Gentle Operator Lemma) Suppose that an operator Λ such that I ≥ Λ ≥ 0 suc-
ceeds with high probability on the state ρ:

Tr{Λρ} ≥ 1− ε.

Then the subnormalized state
√

Λρ
√

Λ is close in trace distance to the original state ρ:∥∥∥√Λρ
√

Λ− ρ
∥∥∥
1
≤ 2
√
ε.

We remark that it is important for the typical subspace measurement in (34) to be implemented
as a coherent quantum measurement. That is, the only information that this measurement should
learn is whether the state is typical or not. Otherwise, there would be too much disturbance to the
quantum information, and the protocol would fail at the desired task of compression. Such precise
control on so many qubits is possible in principle, but it is of course rather daunting to implement
in practice!
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3 Quantum Compression Example

We now highlight a particular example where Schumacher compression gives a big savings in com-
pression rates if noiseless quantum channels are available. Suppose that the ensemble is of the
following form: {(

1

2
, |0〉

)
,

(
1

2
, |+〉

)}
. (46)

This ensemble is known as the Bennett-92 ensemble because it is useful in Bennett’s protocol for
quantum key distribution. The naive strategy would be for Alice and Bob to exploit Shannon’s
compression protocol. That is, Alice would ignore the quantum nature of the states, and supposing
that the classical label for them were available, she would encode the classical label. Though, the
entropy of the uniform distribution on two states is equal to one bit, and she would have to transmit
classical messages at a rate of one bit per channel use.

A far wiser strategy is to employ Schumacher compression. The density operator of the above
ensemble is

1

2
|0〉〈0|+ 1

2
|+〉〈+|, (47)

which has the following spectral decomposition:

cos2(π/8)
∣∣+′〉〈+′∣∣+ sin2(π/8)

∣∣−′〉〈−′∣∣, (48)

where ∣∣+′〉 ≡ cos(π/8)|0〉+ sin(π/8)|1〉, (49)∣∣−′〉 ≡ sin(π/8)|0〉 − cos(π/8)|1〉. (50)

The binary entropy H2

(
cos2(π/8)

)
of the distribution

[
cos2(π/8), sin2(π/8)

]
is approximately equal

to
0.6009 qubits, (51)

and thus they can save a significant amount in terms of compression rate by employing Schumacher
compression. This type of savings will always occur whenever the ensemble includes non-orthogonal
quantum states.

Exercise 16 In the above example, suppose that Alice associates a classical label with the states,
so that the ensemble instead is{(

1

2
, |0〉〈0| ⊗ |0〉〈0|

)
,

(
1

2
, |1〉〈1| ⊗ |+〉〈+|

)}
. (52)

Does this help in reducing the amount of qubits she has to transmit to Bob?

4 Concluding Remarks

Schumacher compression was the first quantum Shannon-theoretic result discovered and is the sim-
plest one that we encounter in this book. The proof is remarkably similar to the proof of Shannon’s
noiseless coding theorem, with the main difference being that we should be more careful in the
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quantum case not to be learning any more information than necessary when performing measure-
ments. The intuition that we gain for future quantum protocols is that it often suffices to consider
only what happens to a high probability subspace rather than the whole space itself if our primary
goal is to have a small probability of error in a communication task. In fact, this intuition is the
same needed for understanding information processing tasks such as entanglement concentration,
classical communication, private classical communication, and quantum communication.
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