
Lecture 5: Classical communication and

sequential decoding

Mark M. Wilde∗

This lecture begins our exploration of “dynamic” information processing tasks in quantum
Shannon theory, where the term “dynamic” indicates that a quantum channel connects a sender to
a receiver and their goal is to exploit this resource for communication. We specifically consider the
scenario where a sender Alice would like to communicate classical information to a receiver Bob,
and the theorem that we prove here is one particular generalization of Shannon’s noisy channel
coding theorem from classical information theory.

The naive approach to communicate classical information over a quantum channel is for Alice
and Bob simply to mimic the approach used in Shannon’s noisy channel coding theorem. That
is, they select a random classical code according to some distribution pX(x), and Bob performs
individual measurements of the outputs of a noisy quantum channel according to some POVM. The
POVM at the output induces some conditional probability distribution pY |X(y|x), which we can in
turn think of as an induced noisy classical channel. The classical mutual information I(X;Y ) of
this channel is an achievable rate for communication, and the best strategy for Alice and Bob is to
optimize the mutual information over all of Alice’s inputs to the channel and over all measurements
that Bob could perform at the output. The resulting quantity is equal to Bob’s optimized accessible
information.

If the aforementioned coding strategy were optimal, then there would not be anything much
interesting to say for the information processing task of classical communication. Furthermore, the
Holevo information is an upper bound to the accessible information, and this bound might prompt
us to wonder if it is also an achievable rate for classical communication, given that the accessible
information is achievable.

The main theorem of this lecture gives a lower bound on the classical capacity of a quantum
channel (also known as the Holevo-Schumacher-Westmoreland theorem), and it states that the
Holevo information of a quantum channel is an achievable rate for classical communication. The
Holevo information is easier to manipulate mathematically than is the accessible information. The
proof of its achievability demonstrates that the aforementioned strategy is not optimal, and the
proof also shows how performing collective measurements over all of the channel outputs allows
the sender and receiver to achieve the Holevo information as a rate for classical communication.
Thus, this strategy fundamentally makes use of quantum-mechanical effects at the decoder and
suggests that such an approach is necessary to achieve the Holevo information. Although this
strategy exploits collective measurements at the decoder, it does not make use of entangled states
at the encoder. That is, the sender could input quantum states that are entangled across all of the
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Figure 1: The most naive strategy for Alice and Bob to communicate classical information over
many independent uses of a quantum channel. Alice wishes to send some message M and selects
some tensor product state to input to the channel conditional on the message M . She transmits
the codeword over the channel, and Bob then receives a noisy version of it. He performs individual
measurements of his quantum systems and produces some estimate M ′ of the original message
M . This scheme is effectively a classical scheme because it makes no use of quantum-mechanical
features such as entanglement.

channel inputs, and this encoder entanglement might potentially increase classical communication
rates.

We mentioned that the Holevo-Schumacher-Westmoreland coding strategy does not make use of
entangled inputs at the encoder. But a natural question is to wonder whether entanglement at the
encoder could boost classical information transmission rates, given that it is a resource for many
quantum protocols. This question was known as the additivity conjecture and went unsolved for
many years, but recently Hastings offered a proof that entangled inputs can increase communication
rates for certain channels. Thus, for these channels, the single-letter Holevo information is not
the proper characterization of classical capacity (though, this is not to say that there could be
some alternate characterization of the classical capacity other than the Holevo information which
would be single-letter). These recent results demonstrate that we still know little about classical
communication in the general case and furthermore that quantum Shannon theory is an active area
of research.

1 Naive Approach: Product Measurements at the Decoder

We begin by discussing in more detail the most naive strategy that a sender and receiver can exploit
for the transmission of classical information over many uses of a quantum channel. Figure 1 depicts
this naive approach. This first approach mimics certain features of Shannon’s classical approach
without making any use of quantum-mechanical effects. Alice and Bob agree on a codebook be-
forehand, where each classical codeword xn(m) in the codebook corresponds to some message m
that Alice wishes to transmit. Alice can exploit some alphabet {ρx} of density operators to act as
input to the quantum channel. That is, the quantum codewords are of the form

ρxn(m) ≡ ρx1(m) ⊗ ρx2(m) ⊗ · · · ⊗ ρxn(m). (1)
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Figure 2: A coding strategy that can outperform the previous naive strategy, simply by making
use of entanglement at the encoder and decoder.

Bob then performs individual measurements of the outputs of the quantum channel by exploiting
some POVM {Λy}. This scheme induces the following conditional probability distribution:

pY1···Yn|X1···Xn
(y1 · · · yn | x1(m) · · ·xn(m))

= Tr
{

Λy1 ⊗ · · · ⊗ Λyn(N ⊗ · · · ⊗ N )
(
ρx1(m) ⊗ · · · ⊗ ρxn(m)

)}
(2)

= Tr
{

(Λy1 ⊗ · · · ⊗ Λyn)
(
N
(
ρx1(m)

)
⊗ · · · ⊗ N

(
ρxn(m)

))}
(3)

=

n∏
i=1

Tr
{

ΛyiN
(
ρxi(m)

)}
, (4)

which we immediately realize is many independent and identically distributed instances of the
following classical channel:

pY |X(y|x) ≡ Tr{N (ρx)Λy}. (5)

Thus, if they exploit this scheme, the optimal rate at which they can communicate is equal to the
following expression:

Iacc(N ) ≡ max
{pX(x),ρx,Λ}

I(X;Y ), (6)

where the maximization of the classical mutual information is over all input distributions, all input
density operators, and all POVMs that Bob could perform at the output of the channel. This
information quantity is known as the accessible information of the channel.

The above strategy is not necessarily an optimal strategy if the channel is truly a quantum
channel—it does not make use of any quantum effects such as entanglement. A first simple modi-
fication of the protocol to allow for such effects would be to consider coding for the tensor product
channel N ⊗N rather than the original channel. The input states would be entangled across two
channel uses, and the output measurements would be over two channel outputs at a time. In this
way, they would be exploiting entangled states at the encoder and collective measurements at the
decoder. Figure 2 illustrates the modified protocol, and the rate of classical communication that
they can achieve with such a strategy is 1

2Iacc(N ⊗N ). This quantity is always at least as large as
Iacc(N ) because a special case of the strategy for the tensor product channel N ⊗N is to choose
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the distribution pX(x), the states ρx, and the POVM Λ to be tensor products of the ones that
maximize Iacc(N ). We can then extend this construction inductively by forming codes for the
tensor product channel N⊗k (where k is a positive integer), and this extended strategy achieves
the classical communication rate of 1

kIacc

(
N⊗k

)
for any finite k. These results then suggest that

the ultimate classical capacity of the channel is the regularization of the accessible information of
the channel:

Ireg,acc(N ) ≡ lim
k→∞

1

k
Iacc

(
N⊗k

)
. (7)

The regularization of the accessible information is intractable for general quantum channels,
but the optimization task could simplify immensely if the accessible information is additive. In
this case, the regularized accessible information Ireg,acc(N ) would be equivalent to the accessible
information Iacc(N ). Though, even if the quantity is additive, the optimization could still be
difficult to perform in practice. A simple upper bound on the accessible information is the Holevo
information χ(N ) of the channel, defined as

χ(N ) ≡ max
ρ
I(X;B), (8)

where the maximization is over classical-quantum states ρXB of the following form:

ρXB ≡
∑
x

pX(x)|x〉〈x|X ⊗NA′→B
(
ψA
′

x

)
. (9)

The Holevo information is a more desirable quantity to characterize classical communication over
a quantum channel because it is always an upper bound on the accessible information.

Thus, a natural question to ask is whether Alice and Bob can achieve the Holevo information
rate, and the main theorem of this chapter states that it is possible to do so (however we only
consider a simple type of quantum channel in which the inputs are classical and the outputs are
pure quantum states). The resulting coding scheme bears some similarities with the techniques in
Shannon’s noisy channel coding theorem, but the main difference is that the decoding POVM is a
collective measurement over all of the channel outputs.

2 The Information Processing Task

2.1 Classical Communication

We now discuss the most general form of the information processing task and give the criterion for
a classical communication rate C to be achievable—i.e., we define an (n,C − δ, ε) code for classical
communication over a quantum channel. Alice begins by selecting some classical message m that
she would like to transmit to Bob—she selects from a set of messages {1, . . . , |M|}. Let M denote
the random variable corresponding to Alice’s choice of message, and let |M| denote its cardinality.
She then prepares some state ρA

′n
m as input to the many independent uses of the channel—the input

systems are n copies of the channel input system A′. She transmits this state over n independent
uses of the channel N , and the state at Bob’s receiving end is

N⊗n
(
ρA
′n

m

)
. (10)

Bob has some decoding POVM {Λm} that he can exploit to determine which message Alice trans-
mits. Figure 3 depicts such a general protocol for classical communication over a quantum channel.
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Figure 3: The most general protocol for classical communication over a quantum channel. Alice
selects some message M and encodes it as a quantum codeword for input to many independent
uses of the noisy quantum channel. Bob performs some POVM over all of the channel outputs to
determine the message that Alice transmits.

Let M ′ denote the random variable for Bob’s estimate of the message. The probability that he
determines the correct message m is as follows:

Pr
{
M = m | M ′ = m

}
= Tr

{
ΛmN⊗n

(
ρA
′n

m

)}
, (11)

and thus the probability of error for a particular message m is

pe(m) ≡ 1− Pr
{
M = m | M ′ = m

}
(12)

= Tr
{

(I − Λm)N⊗n
(
ρA
′n

m

)}
. (13)

The maximal probability of error for any coding scheme is then

p∗e ≡ max
m∈M

pe(m). (14)

The rate C of communication is

C ≡ 1

n
log2|M|+ δ, (15)

where δ is some arbitrarily small positive number, and the code has ε error if p∗e ≤ ε. A rate C
of classical communication is achievable if there exists an (n,C − δ, ε) code for all δ, ε > 0 and
sufficiently large n.

3 Sequential Decoding

In this section (taken from arXiv:1202.0518), we describe the operation of a sequential decoder that
can reliably recover classical information encoded into a pure state ensemble. We follow with a full
error analysis, demonstrating that the scheme achieves the Holevo rate for pure-state channels.

Suppose that a classical-quantum channel of the form

x→ |φx〉
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connects a sender Alice to a receiver Bob. For our purposes here, it does not matter whether the
classical input x is discrete or continuous.

Theorem 1 Let x→ |φx〉 be a classical-quantum channel and let ρ ≡
∑

x pX(x)|φx〉〈φx| for some
distribution pX(x). Then the rate H(ρ) bits per channel use is achievable for communication over
this channel by having the receiver employ a sequential decoding strategy.

Proof. We break the proof into several steps.
Codebook Construction. Before communication begins, Alice and Bob agree upon a code-

book. We allow them to select a codebook randomly according to the distribution pX(x). So, for
every message m ∈ M ≡

{
1, . . . , 2nR

}
, generate a codeword xn(m) ≡ x1(m) · · ·xn(m) randomly

and independently according to

pXn(xn) ≡
n∏
i=1

pX(xi).

Sequential Decoding. Transmitting the codeword xn(m) through n uses of the channel
x→ |φx〉 leads to the following quantum state at Bob’s output:∣∣φxn(m)

〉
≡
∣∣φx1(m)

〉
⊗ · · · ⊗

∣∣φxn(m)

〉
.

Upon receiving the quantum codeword
∣∣φxn(m)

〉
, Bob performs a sequence of binary-outcome

quantum measurements to determine the classical codeword xn(m) that Alice transmitted. He
first “asks,” “Is it the first codeword?” by performing the measurement {

∣∣φxn(1)

〉〈
φxn(1)

∣∣, I⊗n −∣∣φxn(1)

〉〈
φxn(1)

∣∣}. If he receives the outcome “yes,” then he performs no further measurements
and concludes that Alice transmitted the codeword xn(1). If he receives the outcome “no,” then
he performs the measurement {

∣∣φxn(2)

〉〈
φxn(2)

∣∣, I⊗n − ∣∣φxn(2)

〉〈
φxn(2)

∣∣} to check if Alice sent the
second codeword. Similarly, he stops if he receives “yes,” and otherwise, he proceeds along similar
lines.

Error Analysis. We now provide an error analysis demonstrating that this scheme works well,
i.e., the word error goes to zero as n → ∞, as long as R < H(ρ). In general, if Alice transmits
the mth codeword, then the probability for Bob to decode correctly with this sequential decoding
strategy is as follows:

Tr
{
φxn(m)Π̂m−1 · · · Π̂1φxn(m)Π̂1 · · · Π̂m−1φxn(m)

}
,

where we make the abbreviations

φxn(m) ≡
∣∣φxn(m)

〉〈
φxn(m)

∣∣,
Π̂i ≡ I⊗n −

∣∣φxn(i)

〉〈
φxn(i)

∣∣.
So the probability that Bob makes an error when decoding the mth codeword is just

1− Tr
{
φxn(m)Π̂m−1 · · · Π̂1φxn(m)Π̂1 · · · Π̂m−1φxn(m)

}
.

To further simplify the error analysis, we consider the expectation of the above error probability,
under the assumption that Alice selects a message uniformly at random according to a random
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variable M and that the codeword xn is selected at random according to the distribution pXn(xn)
(as described above):

1− E
Xn,M

Tr
{
φXn(M)Π̂M−1 · · · Π̂1φXn(M)Π̂1 · · · Π̂M−1

}
. (16)

For the rest of the proof, it is implicit that the expectation E is with respect to random variables
Xn and M .

Our first observation is that, for the purposes of our error analysis, we can “smooth” the channel
xn → φxn , by imagining instead that we are coding for a projected version of the channel Π φxn Π,
where Π is the typical projector for the average state ρ ≡

∑
x pX(x)φx. Doing so simplifies the

error analysis by cutting off large eigenvalues that reside outside of the high-probability typical
subspace. Furthermore, we expect that doing so should not affect the error analysis very much
because most of the probability tends to concentrate in this subspace anyway. That we can do so
follows from the fact that

1 = ETr
{
φXn(M)

}
= ETr

{
ΠφXn(M)

}
+ ETr

{
Π̂φXn(M)

}
= ETr

{
ΠφXn(M)Π

}
+ Tr

{
Π̂EφXn(M)

}
= ETr

{
ΠφXn(M)Π

}
+ Tr

{
Π̂ρ⊗n

}
,

where Π̂ ≡ I −Π. Furthermore, we know that

ETr
{
φXn(M)Π̂M−1 · · · Π̂1φXn(M)Π̂1 · · · Π̂M−1

}
= ETr

{
Π̂1 · · · Π̂M−1φXn(M)Π̂M−1 · · · Π̂1φXn(M)

}
≥ ETr

{
Π̂1 · · · Π̂M−1φXn(M)Π̂M−1 · · · Π̂1ΠφXn(M)Π

}
− E

∥∥φXn(M) −ΠφXn(M)Π
∥∥

1
,

where the inequality follows from the following lemma:

Lemma 2 Let 0 ≤ ρ, σ,Λ ≤ I. Then

Tr[Λρ] ≤ Tr[Λσ] + ‖ρ− σ‖1. (17)

Proof. This follows from a variational characterization of trace distance as the distinguishability
of the states under an optimal measurement M : ‖ρ− σ‖1 = 2 max0≤M≤I Tr[M(ρ− σ)].

We need another lemma, known as the Gentle Operator Lemma:

Lemma 3 (Gentle Operator Lemma for Ensembles) Given an ensemble {pX(x), ρx} with ex-
pected density operator ρ ≡

∑
x pX(x)ρx, suppose that an operator Λ such that I ≥ Λ ≥ 0 succeeds

with high probability on the state ρ:
Tr{Λρ} ≥ 1− ε.

Then the subnormalized state
√

Λρx
√

Λ is close in expected trace distance to the original state ρx:

EX
{∥∥∥√ΛρX

√
Λ− ρX

∥∥∥
1

}
≤ 2
√
ε.
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Using the above observations and the facts that

E
∥∥φXn(M) −ΠφXn(M)Π

∥∥
1
≤ 2
√
ε, (18)

Tr
{

Π̂ρ⊗n
}
≤ ε, (19)

for all ε > 0 whenever n is sufficiently large (these are from the properties of typicality and the
Gentle Operator Lemma, we obtain the following upper bound on (16):

ETr
{

ΠφXn(M)Π
}
− ETr

{
φXn(M)Π̂M−1 · · · Π̂1ΠφXn(M)ΠΠ̂1 · · · Π̂M−1φXn(M)

}
+ ε + 2

√
ε. (20)

(In the next steps, we omit the terms ε + 2
√
ε as they are negligible.) The most important

step of this error analysis is to apply Pranab Sen’s non-commutative union bound (Lemma 3 of
arXiv:1109.0802), which holds for any subnormalized state σ (σ ≥ 0 and Tr{σ} ≤ 1) and sequence
of projectors Π1, . . . , ΠN :

Tr{σ} − Tr{ΠN · · ·Π1σΠ1 · · ·ΠN} ≤ 2

√√√√ N∑
i=1

Tr{(I −Πi)σ}

For our case, we take ΠφXn(M)Π as σ and φXn(M), Π̂M−1, . . . , Π̂1 as the sequence of projectors.
Applying Sen’s bound and concavity of the square root function leads to the following upper bound
on (20):

2

√√√√ETr
{

Π̂MΠφXn(M)Π
}

+ E
M−1∑
i=1

Tr
{
φXn(i)ΠφXn(M)Π

}
where Π̂M = I⊗n − φXn(M) and φXn(i) = I⊗n − Π̂i. We now bound each of the above two terms
individually. For the first term, consider that

ETr
{

Π̂MΠφXn(M)Π
}

≤ ETr
{

Π̂MφXn(M)

}
+ E

∥∥φXn(M) −ΠφXn(M)Π
∥∥

1

≤ 2
√
ε.

where the last inequality follows from applying (18) and because

Tr
{

Π̂MφXn(M)

}
= Tr

{(
I⊗n − φXn(M)

)
φXn(M)

}
= 0.
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For the second term, consider that

E
M−1∑
i=1

Tr
{
φXn(i)ΠφXn(M)Π

}
≤ EM

∑
i 6=M

EXnTr
{
φXn(i)ΠφXn(M)Π

}
= EM

∑
i 6=M

Tr
{
EXn

{
φXn(i)

}
ΠEXn

{
φXn(M)

}
Π
}

=
∑
i 6=M

Tr
{
ρ⊗nΠρ⊗nΠ

}
≤ 2−n[H(ρ)−δ]

∑
i 6=M

Tr
{
ρ⊗nΠ

}
≤ 2−n[H(ρ)−δ] |M|

The first inequality follows by just adding in all of the future terms i > M to the sum. The first
equality follows because the random variables Xn(i) and Xn(M) are independent, due to the way
that we selected the code (each codeword is selected independently of a different one). The second
equality follows from averaging the state φXn with respect to the distribution pXn , and we drop
the expectation EM because the quantities inside the trace no longer have a dependence on the
message M . The second inequality follows from the entropy bound for the eigenvalues of ρ⊗n in
the typical subspace. The final inequality follows because Tr{ρ⊗nΠ} ≤ 1.

Thus, the overall upper bound on the error probability with this sequential decoding strategy
is

ε′ ≡ ε+ 2
√
ε+ 2

√
2
√
ε+ 2−n[H(ρ)−δ] |M|,

which we can make arbitrarily small by choosing |M| = 2n[H(ρ)−2δ] and n sufficiently large. The next
arguments are standard. We proved a bound on the expectation of the average probability, which
implies there exists a particular code that has arbitrarily small average error probability under the
same choice of |M| and n. For this code, we can then eliminate the worst half of the codewords,
ensuring that the error probability of the resulting code is no larger than 2ε′. Furthermore, it should
be clear that it is only necessary for the sequential decoder to process the remaining codewords
when decoding messages.

4 Sequential Decoding for Optical Communication

We now provide a physical realization of the sequential decoding strategy in the context of optical
communications. In this setting, we suppose that a lossy bosonic channel, specified by the following
Heisenberg relations, connects Alice to Bob:

b̂ =
√
ηâ+

√
1− ηê, (21)

where â, b̂, and ê are the respective field operators for Alice’s input mode, Bob’s output mode, and
an environmental input mode (assumed to be in its vacuum state). The transmissivity η ∈ [0, 1]
is the fraction of Alice’s input photons that make it to Bob on average. We assume that Alice is
constrained to using mean photon number NS per channel use.
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The strategy for achieving the classical capacity of this channel is for Alice to induce a classical-
quantum channel, by selecting α ∈ C and preparing a coherent state |α〉 at the input of the channel
in (21). A coherent state in quantum optics is defined as the following coherent superposition of
photon number states:

|α〉 ≡ exp

{
−|α|2

2

} ∞∑
n=0

αn√
n!
|n〉.

It is often described as being the ideal state of a single mode of the light field output from a laser.
The most useful property of coherent states for classical communication over a pure-loss bosonic
channel is that it retains its purity. That is, if Alice inputs the state |α〉 to the pure-loss bosonic
channel with transmissivity η, then the state output for Bob and Eve is

|√ηα〉 ⊗ |
√

1− ηα〉,

so that we recover a pure coherent state for Bob when tracing over the second mode.
The resulting induced classical-quantum channel to Bob is of the following form:

α→ |√ηα〉.

By choosing the distribution pX(x) in Theorem 1 to be an isotropic, complex Gaussian with variance
NS :

pNS
(α) ≡ (1/πNS) exp

{
−|α|2/NS

}
,

we have that g(ηNS) is an achievable rate for classical communication, where

g(x) ≡ (x+ 1) log(x+ 1)− x log x.

The quantity g(ηNS) is the entropy of the average state of the ensemble {pNS
(α), |√ηα〉}:∫

d2α pNS
(α)|√ηα〉〈√ηα|,

which is a thermal state with mean photon number ηNS .
Each quantum codeword selected from the ensemble {pNS

(α), |α〉} has the following form:

|αn(m)〉 ≡ |α1(m)〉 ⊗ · · · ⊗ |αn(m)〉.

We assume η = 1 above and for the rest of this section without loss of generality. Thus, the
sequential decoder consists of measurements of the following form for all m ∈M:{

|αn(m)〉〈αn(m)|, I⊗n − |αn(m)〉〈αn(m)|
}
. (22)

Observing that
|αn(m)〉 = D(α1(m))⊗ · · · ⊗D(αn(m))|0〉⊗n,

where D(α) ≡ exp
{
αâ† − α∗â

}
is the unitary “displacement” operator from quantum optics and

|0〉⊗n is the n-fold tensor product vacuum state, we see that that the decoder can implement the
measurement in (22) in three steps:
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1. Displace the n-mode codeword state by

D(−α1(m))⊗ · · · ⊗D(−αn(m)),

by employing highly asymmetric beam-splitters with a strong local oscillator [?].

2. Perform a “vacuum-or-not” measurement of the form{
|0〉〈0|⊗n, I⊗n − |0〉〈0|⊗n

}
.

If the vacuum outcome occurs, decode as the mth codeword. Otherwise, proceed.

3. Displace by D(α1(m))⊗ · · · ⊗D(αn(m)) with the same method as in Step 1.

The receiver just iterates this strategy for every codeword in the codebook, and Theorem 1
states this strategy is capacity-achieving.
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