
Lecture 6: Quantum error correction and

quantum capacity

Mark M. Wilde∗

The quantum capacity theorem is one of the most important theorems in quantum Shannon
theory. It is a fundamentally “quantum” theorem in that it demonstrates that a fundamentally
quantum information quantity, the coherent information, is an achievable rate for quantum com-
munication over a quantum channel. The fact that the coherent information does not have a
strong analog in classical Shannon theory truly separates the quantum and classical theories of
information.

The no-cloning theorem provides the intuition behind quantum error correction. The goal
of any quantum communication protocol is for Alice to establish quantum correlations with the
receiver Bob. We know well now that every quantum channel has an isometric extension, so that
we can think of another receiver, the environment Eve, who is at a second output port of a larger
unitary evolution. Were Eve able to learn anything about the quantum information that Alice is
attempting to transmit to Bob, then Bob could not be retrieving this information—otherwise, they
would violate the no-cloning theorem. Thus, Alice should figure out some subspace of the channel
input where she can place her quantum information such that only Bob has access to it, while Eve
does not. That the dimensionality of this subspace is exponential in the coherent information is
perhaps then unsurprising in light of the above no-cloning reasoning. The coherent information is
an entropy difference H(B)−H(E)—a measure of the amount of quantum correlations that Alice
can establish with Bob less the amount that Eve can gain.

Perhaps the most surprising result in quantum Shannon theory is that it is possible to “superac-
tivate” the quantum capacity. That is, suppose that two channels on their own have zero capacity
for transmitting quantum information (for the phenomenon to occur, these channels are specific
channels). Then it is possible for the joint channel (the tensor product of the individual channels)
to have a non-zero quantum capacity, in spite of them being individually useless for quantum data
transmission. This latter result implies that we are rather distant from having a complete quantum
theory of information, in spite of the many successes reviewed in this book.

We structure this lecture as follows. We first overview the information processing task relevant
for quantum communication. Next, we discuss the no-cloning intuition for quantum capacity in
some more detail, presenting the specific example of a quantum erasure channel. We follow with a
brief introduction to the theory of quantum error correction and demonstrate a proof of the direct
part of the quantum capacity theorem for quantum stabilizer codes used for protecting quantum
data sent over many independent uses of a Pauli channel.
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ogy, Louisiana State University, Baton Rouge, Louisiana 70803. These lecture notes are available under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Much of the material is from the book
preprint “From Classical to Quantum Shannon Theory” available as arXiv:1106.1445.
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Figure 1: The information processing task for entanglement transmission. Alice is trying to preserve
the entanglement with some inaccessible reference system by encoding her system and transmitting
the encoded quantum data over many independent uses of a noisy quantum channel. Bob performs
a decoding of the systems he receives, and the state at the end of the protocol is close to the
original state shared between Alice and the reference if the protocol is any good for entanglement
transmission.

1 The Information Processing Task

We begin the technical development in this lecture by describing the information processing task
for quantum communication (we define an (n,Q− δ, ε) quantum communication code). First, there
are several protocols that we can consider for quantum communication, but perhaps the strongest
definition of quantum capacity corresponds to a task known as entanglement transmission. Suppose
that Alice shares entanglement with a reference system to which she does not have access. Then
their goal is to devise a quantum coding scheme such that Alice can transfer this entanglement
to Bob. To this end, suppose that Alice and the reference share an arbitrary state |ϕ〉RA1 . Alice
then performs some encoder on system A1 to prepare it for input to many instances of a quantum
channel NA′→B. The resulting state is as follows:

EA1→A′n(ϕRA1). (1)

Alice transmits the systems A′n through many independent uses of the channel, resulting in the
following state:

NA′n→Bn(EA1→A′n(ϕRA1)), (2)

where NA′n→Bn ≡ (NA′→B)⊗n. After Bob receives the systems Bn from the channel outputs, he
performs some decoding map DBn→B1 , where B1 is some system of the same dimension as A1. The
final state after Bob decodes is as follows:

ωRB1 ≡ DBn→B1(NA′n→Bn(EA1→A′n(ϕRA1))). (3)

Figure 1 depicts all of the above steps.
If the protocol is good for quantum communication, then the following condition should hold

for all states |ϕ〉RA1 : ∥∥ϕRA1 − ωRB1
∥∥
1
≤ ε. (4)
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The rate Q of this scheme is equal to the number of qubits transmitted per channel use:

Q ≡ 1

n
log dA1 + δ, (5)

where dA1 is the dimension of the A1 register and δ is an arbitrarily small positive number. We
say that a rate Q is achievable if there exists an (n,Q− δ, ε) quantum communication code for all
ε, δ > 0 and sufficiently large n.

The above notion of quantum communication encompasses other quantum information process-
ing tasks such as mixed state transmission, pure state transmission, and entanglement generation.
Alice can transmit any mixed or pure state if she can preserve the entanglement with a reference
system. Also, she can generate entanglement with Bob if she can preserve entanglement with a
reference system—she just needs to create an entangled state locally and apply the above protocol
to one system of the entangled state.

2 The No-Cloning Theorem and Quantum Communication

We first discuss quantum communication over a quantum erasure channel before stating and proving
the quantum capacity theorem. Consider the quantum erasure channel that gives Alice’s input state
to Bob with probability 1− ε and an erasure flag to Bob with probability ε:

ρ→ (1− ε)ρ+ ε|e〉〈e|, (6)

where 〈e|ρ|e〉 = 0 for all inputs ρ. An isometric extension of this channel is as follows:

|ψ〉RA →
√

1− ε|ψ〉RB|e〉E +
√
ε|ψ〉RE |e〉B, (7)

so that the channel now has the other interpretation that Eve gets the state with probability ε
while giving her the erasure flag with probability 1− ε.

Now suppose that the erasure parameter is set to 1/2. In such a scenario, the channel to Eve is
the same as the channel to Bob, namely, both have the channel ρ→ 1/2(ρ+ |e〉〈e|). We can argue
that the quantum capacity of such a channel should be zero, by invoking the no-cloning theorem.
More specifically, suppose there is a scheme (an encoder and decoder as given in Figure 1) for Alice
and Bob to communicate quantum information reliably at a non-zero rate over such a channel. If
so, Eve could simply use the same decoder that Bob does, and she should also be able to obtain
the quantum information that Alice is sending. But the ability for both Bob and Eve to decode
the quantum information that Alice is transmitting violates the no-cloning theorem. Thus, the
quantum capacity of such a channel should vanish.

Exercise 1 Prove that the quantum capacity of an amplitude damping channel vanishes if its damp-
ing parameter is equal to 1/2.

The no-cloning theorem plays a more general role in the analysis of quantum communication
over quantum channels. In the construction of a quantum code, we are trying to find a “no-cloning”
subspace of the input Hilbert space that is protected from Eve. If Eve is able to obtain any of the
quantum information in this subspace, then this information cannot be going to Bob by the same
no-cloning argument featured in the previous paragraph.
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3 Stabilizer Codes and the Hashing Bound

We now describe a well-known class of quantum error-correcting codes known as the stabilizer
codes, and we prove that a randomly chosen stabilizer code achieves a quantum communication
rate known as the hashing bound of a Pauli channel (the hashing bound is equal to the coherent
information of a Pauli channel when sending one share of a Bell state through it). The proof of
this theorem is different from our proof above that the coherent information rate is achievable, and
we consider it instructive to see this other approach for the special case of stabilizer codes used for
protecting quantum information sent over many independent instances of a Pauli channel. Before
delving into the proof, we first briefly introduce the simple repetition code and the more general
stabilizer quantum codes.

3.1 The Qubit Repetition Code

The simplest quantum error correction code is the repetition code, which encodes one qubit |ψ〉 ≡
α|0〉+ β|1〉 into three physical qubits as follows:

α|0〉+ β|1〉 → α|000〉+ β|111〉. (8)

A simple way to perform this encoding is to attach two ancilla qubits in the state |0〉 to the original
qubit and perform a CNOT gate from the first qubit to the second and from the first to the
last. This encoding illustrates one of the fundamental principles of quantum error correction: the
quantum information is spread across the correlations between the three physical qubits after the
encoding takes place. (Of course, this was also the case for the codes we constructed in the direct
part of the quantum capacity theorem.)

The above encoding will protect the encoded qubit against an artificial noise where either the
first, second, or third qubit is subjected to a bit flip (and no other errors occur). For example, if a
bit flip occurs on the second qubit, the encoded state changes as follows:

X2(α|000〉+ β|111〉) = α|010〉+ β|101〉, (9)

where the notation X2 indicates that a Pauli operator X acts on the second qubit. The procedure
for the receiver to recover from such an error is to perform collective measurements on all three
qubits that learn only about the error and nothing about the encoded quantum data. In this case,
the receiver can perform a measurement of the operators Z1Z2 and Z2Z3 to learn only about the
error, so that the coherent superposition is preserved. One can easily verify that Z1Z2 and Z2Z3

are as follows:

Z1Z2 ≡ Z ⊗ Z ⊗ I = [(|00〉〈00|+ |11〉〈11|)− (|01〉〈01|+ |10〉〈10|)]⊗ I, (10)

Z2Z3 ≡ I ⊗ Z ⊗ Z = I ⊗ [(|00〉〈00|+ |11〉〈11|)− (|01〉〈01|+ |10〉〈10|)], (11)

revealing that these measurements return a +1 if the parity of the basis states is even and −1 if
the parity is odd. So, for our example error in (9), the syndrome measurements will return −1 for
Z1Z2 and −1 for Z2Z3, which the receiver can use to identify the error that occurs. He can then
perform the bit flip operator X2 to invert the action of the error. One can verify that the following
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syndrome table identifies which type of error occurs:

Measurement Result Error

+1,+1 I

+1,−1 X3

−1,+1 X1

−1,−1 X2

. (12)

Thus, if the only errors that occur are either no error or a single-qubit bit-flip error, then it is
possible to perfectly correct these. If errors besides these ones occur, then it is not possible to
correct them with this code.

3.2 Stabilizer Codes

We can generalize the main idea behind the above qubit repetition code to formulate the class of
quantum stabilizer codes. These stabilizer codes then generalize the classical theory of linear error
correction to the quantum case.

In the repetition code, observe that the encoded state in (8) is a +1-eigenstate of the operators
Z1Z2 and Z2Z3, i.e., it holds that

Z1Z2(α|000〉+ β|111〉) = α|000〉+ β|111〉 = Z2Z3(α|000〉+ β|111〉). (13)

We say that the operators Z1Z2 and Z2Z3 stabilize the encoded state. The stabilizing operators
form a group under multiplication because we obtain another stabilizing operator if we multiply
two of them: one can check that the operator Z1Z3 stabilizes the encoded state and that Z1Z3 =
(Z1Z2)(Z2Z3). Also, the two operators Z1Z2 and Z2Z3 commute, implying that the encoded state
is in the simultaneous eigenspace of these operators, and that it is possible to measure the operators
Z1Z2 and Z2Z3 in any order, in order to learn about errors that occur.

We now describe the theory of quantum stabilizer codes. Recall that the Pauli matrices for one
qubit are I, X, Y , and Z, whose action on the computational basis is as follows:

I|0〉 = |0〉, I|1〉 = |1〉, (14)

X|0〉 = |1〉, X|1〉 = |0〉, (15)

Y |0〉 = i|1〉, Y |1〉 = −i|0〉, (16)

Z|0〉 = |0〉, Z|1〉 = −|1〉. (17)

The X operator is known as the “bit-flip” operator, Z as the “phase-flip” operator, and Y as the
“bit and phase flip” operator. The Pauli group Gn acting on n qubits consists of n-fold tensor
products of these operators along with the phase factors ±1 and ±i:

Gn ≡ {±1,±i} ⊗ {I,X, Y, Z}⊗n. (18)

The inclusion of the phase factors, along with the relations Y = iXZ, Z = iY X, and X = iZY
and the fact that any one of X, Y , and Z anticommutes with the other two ensures that the set
Gn is closed under multiplication. It is useful in the theory of quantum error correction to consider
the Pauli group quotiented out by its center: Gn/{±1,±i}, essentially because global phases are
not physically observable. This reduced version of the Pauli group has 4n elements.
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Let S be an abelian subgroup of the Pauli group Gn. Any such subgroup S has size 2n−k for
some integer k such that 0 ≤ k ≤ n. This subgroup S can be generated by a set of size n − k, so
that S = 〈S1, . . . , Sn−k〉. A state |ψ〉 is stabilized by the subgroup S if

S|ψ〉 = |ψ〉 ∀S ∈ S. (19)

The 2k-dimensional subspace of the full 2n-dimensional space for the n qubits that is stabilized by
S is known as the codespace, or equivalently, an [n, k] stabilizer code that encodes k logical qubits
into n physical qubits. The decoding operation that the receiver performs is analogous to that for
the repetition code—he just measures the n − k operators constituting some generating set of S
and performs a recovery operation based on the results of these measurements.

We can define logical operations on the quantum information encoded inside an [n, k] stabilizer
code. These are operations that manipulate the quantum information inside of the codespace
without taking the encoded information outside the codespace. These logical operations are part
of the normalizer of S, defined as

N(S) ≡
{
U ∈ U(2n) : USU † = S

}
, (20)

where U(2n) denotes the unitary group for n qubits. We can easily see that any U ∈ N(S) does not
take a state |ψ〉 in the codespace outside of it. First, for all U ∈ N(S), it follows that U † ∈ N(S),
so that for all S ∈ S, we have

SU |ψ〉 = UU †SU |ψ〉 = USU |ψ〉 = U |ψ〉, (21)

where SU = U †SU and SU ∈ S from the definition of the normalizer. From the above, we conclude
that the state U |ψ〉 is in the codespace since it is stabilized by all S ∈ S: SU |ψ〉 = U |ψ〉. It also
follows that S ⊆ N(S) because S is abelian, implying that

S1S2S
†
1 = S2S1S

†
1 = S2 ∀S1, S2 ∈ S. (22)

In quantum error correction, we are concerned with correcting a fixed set of errors E ⊆ Gn such
that each element of E acts on the n physical qubits. In doing so, we might not be able to correct
all of the errors in a set E if there exists a pair E1, E2 ∈ E such that

E†1E2 ∈ N(S). (23)

Consider that for all S ∈ S, we have

E†1E2S = (−1)g(S,E1)+g(S,E2)SE†1E2, (24)

where we define g(P,Q) by PQ = (−1)g(P,Q)QP for all P,Q ∈ Gn. The above relation then implies
the following one for all S ∈ S:

E†1E2S
(
E†1E2

)†
= (−1)g(S,E1)+g(S,E2)S. (25)

Since we assumed that E†1E2 ∈ N(S), the only way that the above relation can be true for all S ∈ S
is if g(S,E1) = g(S,E2). Thus, during the error correction procedure, Bob will measure a set {Sj}
of generators, and since the outcome of a measurement of Sj on E|ψ〉 is g(S,E), the errors E1 and
E2 will be assigned the same syndrome. Since they have the same syndrome, the receiver will have
to reverse these errors with the same recovery operation, and this is only possible if E1|ψ〉 = E2|ψ〉
for all states |ψ〉 in the codespace. This latter condition is only true if E†1E2 ∈ S, leading us to the
error correcting conditions for quantum stabilizer codes:
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Theorem 2 It is possible to correct a set of errors E with a quantum stabilizer code if every pair
E1, E2 ∈ E satisfies

E†1E2 /∈ N(S)/S. (26)

A simple way to satisfy the error-correcting conditions is just to demand that every pair of errors
in E be such that E†1E2 /∈ N(S). In such a case, each error is assigned a unique syndrome, and
codes along with an error set satisfying this property are known as non-degenerate codes. Codes
with a corresponding error set not satisfying this are known as degenerate codes.

3.3 The Hashing Bound

We now provide a proof that the hashing bound for a Pauli channel (coherent information when
sending one share of a Bell state through a Pauli channel) is an achievable rate for quantum
communication. Of course, our proof of the direct part of the quantum capacity theorem already
suffices as a proof of this statement, but we think it is instructive to provide a proof of this
statement using the theory of stabilizer codes. The main idea of the proof is to choose a stabilizer
code randomly from the set of all stabilizer codes and show that such a code can correct the typical
errors issued by a tensor-product Pauli channel.

Theorem 3 (Hashing Bound) There exists a stabilizer quantum error-correcting code that achieves
the hashing bound R = 1−H(p) for a Pauli channel of the following form:

ρ→ pIρ+ pXXρX + pY Y ρY + pZZρZ, (27)

where p = (pI , pX , pY , pZ) and H(p) is the entropy of this probability vector.

Proof. We consider a decoder that corrects only the typical errors. That is, consider defining the
typical error set as follows:

Tpn

δ ≡
{
an :

∣∣∣∣− 1

n
log2(Pr{Ean})−H(p)

∣∣∣∣ ≤ δ}, (28)

where an is some sequence consisting of letters corresponding to the Pauli operators {I,X, Y, Z}
and Pr{Ean} is the probability that an IID Pauli channel issues some tensor-product error Ean ≡
Ea1 ⊗ · · · ⊗ Ean . This typical set consists of the likely errors in the sense that∑

an∈Tpn

δ

Pr{Ean} ≥ 1− ε, (29)

for all ε > 0 and sufficiently large n. The error-correcting conditions for a stabilizer code in this
case are that {Ean : an ∈ Tpn

δ } is a correctable set of errors if

E†anEbn /∈ N(S)/S, (30)
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for all error pairs Ean and Ebn such that an, bn ∈ Tpn

δ . Also, we consider the expectation of the
error probability under a random choice of a stabilizer code. We proceed as follows:

ES{pe} = ES

{∑
an

Pr{Ean}I(Ean is uncorrectable under S)

}
(31)

≤ ES


∑

an∈Tpn

δ

Pr{Ean}I(Ean is uncorrectable under S)

+ ε (32)

=
∑

an∈Tpn

δ

Pr{Ean}ES{I(Ean is uncorrectable under S)}+ ε (33)

=
∑

an∈Tpn

δ

Pr{Ean}Pr
S
{Ean is uncorrectable under S}+ ε (34)

The first equality follows by definition—I is an indicator function equal to one if Ean is uncor-
rectable under S and equal to zero otherwise. The first inequality follows from (29)—we correct
only the typical errors because the atypical error set has negligible probability mass. The second
equality follows by exchanging the expectation and the sum. The third equality follows because the
expectation of an indicator function is the probability that the event it selects occurs. Continuing,
we have

=
∑

an∈Tpn

δ

Pr{Ean}Pr
S

{
∃Ebn : bn ∈ Tpn

δ , bn 6= an, E†anEbn ∈ N(S)/S
}

(35)

≤
∑

an∈TAnδ

Pr{Ean}Pr
S

{
∃Ebn : bn ∈ Tpn

δ , bn 6= an, E†anEbn ∈ N(S)
}

(36)

=
∑

an∈Tpn

δ

Pr{Ean}Pr
S


⋃

bn∈Tpn

δ , bn 6=an

E†anEbn ∈ N(S)

 (37)

≤
∑

an,bn∈Tpn

δ , bn 6=an

Pr{Ean}Pr
S

{
E†anEbn ∈ N(S)

}
(38)

≤
∑

an,bn∈Tpn

δ , bn 6=an

Pr{Ean}2−(n−k) (39)

≤ 22n[H(p)+δ]2−n[H(p)+δ]2−(n−k) (40)

= 2−n[1−H(p)−k/n−3δ]. (41)

The first equality follows from the error-correcting conditions for a quantum stabilizer code, where
N(S) is the normalizer of S. The first inequality follows by ignoring any potential degeneracy in
the code—we consider an error uncorrectable if it lies in the normalizer N(S) and the probability
can only be larger because N(S)/S ⊆ N(S). The second equality follows by realizing that the
probabilities for the existence criterion and the union of events are equivalent. The second inequality
follows by applying the union bound. The third inequality follows from the fact that the probability
for a fixed operator E†anEbn not equal to the identity commuting with the stabilizer operators of a
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random stabilizer can be upper bounded as follows:

Pr
S

{
E†anEbn ∈ N(S)

}
=

2n+k − 1

22n − 1
≤ 2−(n−k). (42)

The random choice of a stabilizer code is equivalent to fixing operators Z1, . . . , Zn−k and performing
a uniformly random Clifford unitary U . The probability that a fixed operator commutes with
UZ1U

†, . . . , UZn−kU
† is then just the number of non-identity operators in the normalizer (2n+k−1)

divided by the total number of non-identity operators (22n − 1). After applying the above bound,
we then exploit the following typicality bounds:

∀an ∈ Tpn

δ : Pr{Ean} ≤ 2−n[H(p)+δ], (43)∣∣∣Tpn

δ

∣∣∣ ≤ 2n[H(p)+δ]. (44)

We conclude that as long as the rate k/n = 1−H(p)− 4δ, the expectation of the error probability
becomes arbitrarily small, so that there exists at least one choice of a stabilizer code with the same
bound on the error probability.
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